Avallability

Availability - A(t)
the probability that the system is operating correctly and is
available to perform its functions at the instant of time t

More general concept than reliability: failure and repair of the system

Repair rate - which is the average number of repairs that occur
per time period, generally number of repairs per hours. Analogous

to failure rate, constant repair rate
w(®) = p

Maintenability - M(t) is the conditional probability that the system
IS repaired throughout the interval of time [O, t], given that the
system was faulty at time O

M) =1-en

with u constant repair rate.



MTTR - The Mean Time To Repair is the average time required
to repair the system. Analogous to MTTF, MTTR is expressed in terms

of the repair rate:

MTTR= E

LU

Mean Time Between Failures - The MTBF is the average time
between failures of the system, including the time required
to repair the system and place it back into an operational status

MTBF = MTTF + MTTR
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Steady-state availabllity

Steady-state availability (or instantaneous avaibaility ) of a system
IS the percentage of time for which the system will deliver a correct
service in presence of failures and repairs

Steady-state availability (A):

A = MTTF
MTTF+MTTR

Log-term probability that the system is available when requested
t-> a0

T8
A+ W

Single system with failure rate A and repair rate p: A, =

Availability without maintenance and repair
MTTR = o0 A.=0



Model-based evaluation of dependability
State-based models: Markov models

Model construction based on the identification of system states and
changes of states

- each state represents a distinct combination of failed and working
modules

- state transitions govern the changes of state that occur within
a system

The system goes from state to state as modules fail and repair.

The state transitions are characterized by the probability of failure
and the probability of repair



Model-based evaluation of dependability

Basic assumption underlying Markov models:

the system behavior at any time instant depends
only on the current state (independent of past values)

- systems with arbitrary structures and complex dependencies
can be modeled

- assumption of independent failures no longer necessary
- used for both reliability and availability modeling

- based on a Markov process, a special type of random process



Random process

Random process
a collection of random variables {X,} indexed by time

Let X be a random variable representing the result of tossing a die
The sequence of results of tossing a die can be expressed by a random
process

{X;} witht= 0,1, 2, 3. ...

P[X, = 4] = 1/6
PIX,=4|X;=2]=P[X,=4]=1/6

In this case, random variables are independent

The probability assigned to each transition is 1/6



Random process

/ N

Discrete-time random process Continuous-time random process
all state transitions occur at fixed intervals state transitions occur at random intervals
probabilities assigned to each transition transition rates assigned to each transition

State space S of a random process {X;}: the set of all possible values the
process can take

S ={y: X, =Yy, for some t}

- Discrete-state random process
if the state space of random process is finite or countable (e.g., S={1, 2, 3,...})

- Continuous-state random process
if the state space of random process is infinite and uncountable (e.g., S = the set of real
numbers)



Discrete-time Markov process

Let {X,, t>=0} be a random process. A special type of random
process is called the Markov process.

Basic assumption underlying Markov process:

the probability of state transition depends only on the current state

For each t, for any couple of states i and j, for any sequence kg, ..., k.,

P{Xt+1 — j|Xn — kﬂ; Xig = kt—hXt — ’5} — P{XH—l — j‘)(t — ?J}

the future behaviour is independent of past values
(memoryless property)



Markov Process. steady-state transition probabilities

Let {X,, t>=0} be a Markov process. The Markov process X has
steady-state transition probabilities if for any pair of states |, |:

P{Xin =jlXi=i} =P{X1 =j[Xo=1i} VI > 0

The probability of transition from state i to state | does not depend
by the time. This probability is called p;

Pij = 'P{.Xl = j\Xn — 3-}



Transition probability matrix

If a Markov process is finite-state, we can define the transition
probability matrix P (nxn)

P= S |
Dij = 'P{fil = J\Xn = 3}

pij = probability of moving from state i to state j in one step

row i of matrix P:
probability of make a transition starting from state |

column j of matrix P:
probability of making a transition from any state to state |
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Transition probability after n-time steps

THEOREM: Generalization of the steady-state transition probabilities.
For any i, jin S, and for any n>0

P{ Xign =1 |Xt

F{JZE}HfED

T

Definition: steady-state transition probability after n-time steps

pzj 'P{ kn_ﬂ){[]—?} n E{U 1,2,.. }

Definition: transition matrix after n-time steps

P = ()
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Transition probability after n-time steps

Definition: i
pf?] ’P{;{{] — j|;‘.’n — 1} — { D :z j ;j
pz_j 'P{1| - ?|Xﬂ - ?} - p?._j'
pIJ = {}LH—J|Y[]—£} 116{012 }
Properties: . o <1 jesvn>0
po=r pPl=PpP.
—o,..nPij =1
S
JES jES
It can be proved that:
P(® = pn where

— ZTP{X” = Xo=i}=1VieSVn =0

Pr=PP.. P
the n-th power of P
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Discrete-time Markov model of a single
system with repair

- all state transitions occur at fixed intervals
- probabilities assigned to each transition

The probability of state transition depends only on the current state

Graph model Transition Probability Matrix P
Current New
State State
0 1
0 B C e V
1 : 1 U
0, 1—States qr qr
q.. q, — State transition probabilities
State 0 : working Pij = probability of a transition from
State 1: failed state i to state |
Arcs are possible state transitions _Pij >=0

- the sum of each row must be one
13



Discrete-time Markov models

Solved by a set of linear equations:

1 - Qe -
[polk + 1), prtk + 1)] = [polk), p1(k)] q q ]
T Q' )= q:

probability of being in
state O after (k+1)
transitions

Probability distribution of a transition from one state i to another state j in
no more than k steps:
state j can be made a trapping state with pjj =1
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Another example

A computer is idle, working or failed. When the computer is idle
jobs arrives with a given probability. When the computer is idle
or busy it may fail with probabillity P; or Py, respectively.

{X,, t>=0} : state of the computer
attime t

Pbusy

D S={1,2,3}

1 computer idle
2 computer working
3 computer failed

Pidle Parr P/i
P= R-om I)busy ij
I R 0 Pf/. o
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Continuous-time Markov models

Continuous-time models:
state transitions occur at random intervals
transition rates assigned to each transition

The length of time already spent in a state does not influence either the
probability distribution of the next state or the probability distribution of
remaining time in the same state before the next transition

Single system with repair

A failure rate, u repair rate

Po(t) probability of being in the operational state
p,(t) probability of being in the failed state

Graph model

AQL Transition Matrix P
1 — pndt

o (i el Y1 1 AAL

g THAY| 1 — At

[T0AY

AAQfl, pAr—State transition probabilities
A, p—State transition rates
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Continuous-time Markov models

Probability of being in state O or 1 at time t+At:

- ANAt AAL ‘

|
[po(t + At), pr(t + At)] = [PO(”rP'“’ll Y, 1 — pdt

!

probability of being in
state 0 at time t+At

Performing multiplication, rearranging and dividing by At, taking the limit as
At approaches to O:

M = polt) Apolt) + ppoq(t)
delf_l} ~ 3 - \
= pi(t) = Apoll) ppal(t)

Chapman-Kolmogorov equations
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Continuous-time Markov models

Matrix form: T matrix

=N N
o(t),pa(t)] = (t),p1(t) [ ]
[po(t),pa(t)] = [polt),pa(t)] oy

The set of equations can be written by inspection of a transition diagram
without self-loops and At’s:
A

0 0 Continuous time Markov model graph

)t

A—Failure rate
j—Repair rate

The change in state 0 is minus the flow out of state O times the probability
of being in state 0 at time t, plus the flow into state 0 from state 1 times
the probability of being in state 1.
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Continuous-time Markov models

Chapman-Kolmogorov equations solved by use of a LaPlace transform of
a time domain function

2 . ST A =
[TPO(O)' p1(0)] = [po(s), pi(s)] [ £RL | ol u]

probability of being in A matrix
state O at time t=0

—i;"(s)[sl - T] = 7”‘(5),4

2
=
I

D D 1

PO)[sl — T]"" = P(0)A

—
n
S—

|I

where | is the identity matrix

We solve the equations. We obtain as solutions a ratio of two polynomials
in s. and we apply the inverse transform to the solutions.
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Continuous-time Markov models

Our example
[s + W A ]
L $ &+ A

.
"+ AS + s

A"l =

Assume the system starts in the operational state: P(0) = [1,0]

i S + | A i
" s°+ As + us s+ s + s
P*(s) = [1,0]
T8 S+t A
bsz+)\s+us sz+)\s+u5_
X S+
po(s) = =

52+)\s+|.Ls

A
s+ \s + LS

pi(s) =

We apply the inverse transforms.



Continuous-time Markov models
po(t) e A T aii2a - A(t)

A+ W A+ p

pa(t)

Po(t) probability that the system is in the operational state at time t,
availability at time t

The availability consists of a steady-state term and an exponential
decaying transient term

Only steady-state solution

Chapman-Kolmogorov equations: derivative replaced by 0; pO(t) replaced by p0(0) and p1(t)
replaced by p1(0)

0= —Apo + pps 1

m Po = o=

0 = Apo — P g AT
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Availability

Availability as a function of time
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Continuous-time Markov models:
Reliability

system-failed state a trapping state

Single system without repair

AAt = state transition probability

Differential equations:

T matrix
po(t) = —Apol(t) l X )\l
p'1(t) = Apol(t) L 0

Continuous time Markov model graph

Dt O

A = failure rate

AAL
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Continuous-time Markov models:
Reliability

S + A A
0 S

A matrix
A= [sl -T]

P*(s) = P(0)A'

: 1
(S) =
P S+ A
1(s) ] 1
§) = — —
P S S + A

Taking the inverse transform:

Al

polt) = e

Al

pit) =1—e

PX(s) = [1,0]

ls
0

N
S + A

S

)

-

AS
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Markov chain

A Markov chain is a Markov process X with discrete-state space S.

A Markov chain is homogeneous if X has steady-state transition
probabilities

A Markov chain is a finite-state Markov chain if the number of
states is finite (N).

Discrete-time homogeneous Markov chains (DTMC)
Continuous-time homogeneous Markov chains (CTMC)
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