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Availability 

Availability - A(t)  

 the probability that the system is operating correctly and is 

 available to perform its functions at the instant of time t 

 

 
More general concept than reliability: failure and repair of the system 

Repair rate –  which is the average number of repairs that occur 

per time  period, generally number of repairs per hours. Analogous 

to failure rate, constant repair rate  

     m(t) = m   

 

Maintenability - M(t) is the conditional probability that the system 

is repaired throughout the interval of time [0, t], given that the 

system was faulty at time 0 

 

     M(t) = 1 - e-mt  
   with m constant repair rate. 



2 

MTTF MTTF MTTR MTTR 

ok ok ok 

Mean Time Between Failures - The MTBF is the average time  

between failures of the system, including the time required  

to repair the system and place it back into an operational status  

MTBF = MTTF + MTTR 

MTBF 

MTTR - The Mean Time To Repair  is the average time required  

to repair the system.   Analogous to MTTF, MTTR is expressed in terms  

of the repair  rate:      
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Steady-state availability 

Steady-state availability (or instantaneous avaibaility ) of a system  

is the percentage of time for which the system will  deliver a correct  

service in presence of failures and repairs 

 

Availability without maintenance and repair 

Steady-state availability (Ass):  

 

   Ass =          MTTF  

                                 MTTF+MTTR 

Log-term probability that the system is available when requested  

t ->  

Ass = 0  MTTR =  

Single system  with failure rate l and repair rate m:  Ass =  
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State-based models: Markov models  

Model-based evaluation of dependability  

Model construction  based on the identification of system states and 

changes of states  

 

 - each state represents a distinct combination of failed and working 

modules 

 

 - state transitions govern the changes of state that occur within  

a system 

 

The system goes from state to state as modules fail and repair.  

 

The state transitions are characterized by the probability of failure  

and the probability of repair 
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- systems with arbitrary structures  and complex dependencies  

can be modeled 

 

- assumption of independent failures no longer necessary 

 

- used for both reliability and availability modeling 

 

- based on a Markov process, a special type of random process 

 

Model-based evaluation of dependability  

Basic assumption underlying  Markov models:  

 

the system behavior at any time instant depends  

only on the current state  (independent of past values) 
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Random process 

 a collection of random variables {Xt } indexed by time 

 
Let X be a random variable representing the result of  tossing a die 

  

The sequence of results of tossing a die can be expressed by a random 

process    

     {Xt }  with t =  0, 1, 2, 3. …    

  

 P[X0 = 4] = 1/6      

 P[X4 = 4 | X3 = 2] = P[X4 = 4 ] = 1/6     

 

In this case, random variables  are independent 

 

   X0 = i      X1 = j         X2 = k    …………….. 
 

The probability assigned to each transition is 1/6 

Random process 
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Random process 

  Continuous-time random process 

 state transitions occur at random intervals  

 transition rates assigned to each transition 

 

 Discrete-time random process  

 all state transitions occur at fixed intervals 

probabilities assigned to each transition 

- Discrete-state random process 
if the state space of random process is finite or countable   (e.g., S={1, 2, 3,…}) 

 

- Continuous-state random process 
if the state space of random process is infinite and uncountable  (e.g., S = the set of real 

numbers) 

State space S of a random process  {Xt}: the set of all possible values the 

process can take  

     S = {y: Xt = y, for some t} 
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Discrete-time Markov process 

 

Basic assumption underlying Markov process:  

 

the probability of state transition depends only on the current state  

 

 

the future behaviour is independent  of past values  

         (memoryless property) 

Let {Xt, t>=0} be a random process. A special type of random 

process is called the Markov process. 

For each t, for any couple of states i and j, for any sequence k0, …, kt-1 
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Markov process: steady-state transition probabilities  

The probability of transition from state i to state j does not depend 

by the  time.   This probability is called pij 

Let {Xt, t>=0} be a Markov process. The Markov process X has 

steady-state transition probabilities if for any pair of states i, j: 
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Transition probability matrix 

If a Markov process is finite-state, we can define the transition 

probability matrix P (nxn)  

 

 pij = probability of moving from state i to state j in one step 

 

row i of matrix P: 

 probability of make a transition starting from state i 

 

column j of matrix P: 

 probability of making a transition from any state to state j  
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Transition probability after n-time steps  

THEOREM: Generalization of the steady-state transition probabilities.  

For any i, j in S, and for any n>0 

  

Definition: steady-state transition probability after n-time steps 

Definition: transition matrix after n-time steps 
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Properties: 

 

 

Transition probability after n-time steps 

Definition: 

 

 

Si=0,.., n pij = 1 

It can be proved that: 

       P(n) = Pn where       Pn = P. P. … . P 

the n-th power of P  
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- all state transitions occur at fixed intervals 

- probabilities assigned to each transition 

 

The probability of state transition depends only on the current state 

Discrete-time Markov model of a single 
system with repair 

State 0 : working 

State 1: failed  

Arcs are possible state transitions 

Graph model 

   

Pij = probability of a transition from  

 state i to state j 

 

- Pij >=0 

- the sum of each row must be one 

Transition Probability Matrix P 
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Solved by a set of linear equations: 

Discrete-time Markov models 

Probability distribution of a transition from one state i to another state j  in  

no more than k steps:   

    state j can be made a trapping state with pjj = 1 

   

probability of being in 

state 0 after (k+1) 

transitions 
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Another  example 

S={1,2,3}   

1 computer idle 

2 computer working 

3 computer failed 

A computer is idle, working or failed. When the computer is idle  

jobs arrives with a given probability. When the computer is idle  

or busy it may fail with probability Pfi or Pfb, respectively. 

1 

2 

3 

Pfi 

Pr 

Pidle 
Parr 

Pcom 

Pbusy 

Pfb 

Pff 

{Xt, t>=0} :  state of the computer  

   at time t 
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Continuous-time models:  

 state transitions occur at random intervals  

 transition rates assigned to each transition 

 

The length of time already spent in a state does not influence either the 

probability distribution of the next state or the probability distribution of 

remaining time in the same state before the next transition 

Continuous-time Markov models 

Single system  with repair 

l failure rate, m repair rate  

p0(t) probability of being in the operational state 

p1(t) probability of being in the failed state 

Graph model 

Transition Matrix P 
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Probability of being in state 0 or 1 at time t+Dt: 

Continuous-time Markov models 

Performing multiplication, rearranging and dividing by Dt, taking the limit as  

 Dt approaches to 0: 

probability of being in 

state 0 at time t+Dt 

Chapman-Kolmogorov equations 
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Matrix form: 

Continuous-time Markov models 

The set of equations can be written by inspection of a transition diagram 

without self-loops and Dt’s: 

  T matrix 

Continuous time Markov model graph 

The change in state 0 is minus the flow out of state 0 times the probability 

of being in state 0 at time t, plus the flow into state 0 from state 1 times 

the probability of being in state 1. 
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Chapman-Kolmogorov equations solved by use of a LaPlace transform of 

a time domain function  

 

 

Continuous-time Markov models 

where I is the identity matrix 

 

We solve the equations. We obtain as solutions a ratio of two polynomials 

in s. and we apply the inverse transform to the solutions. 

probability of being in 

state 0 at time t=0 

A matrix 
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Continuous-time Markov models 

Assume the system starts in the operational state: P(0) = [1,0] 

 

We apply the inverse transforms. 

Our example 
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Continuous-time Markov models 

p0(t) probability that the system is in the operational state at time t, 

availability at time t 

 

The availability consists of a steady-state term and an exponential 

decaying transient term  

A(t) 

Only steady-state solution 

 Chapman-Kolmogorov equations: derivative replaced by 0; p0(t) replaced by p0(0) and p1(t) 

replaced by p1(0)  
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Availability as a function of time  

l = 0.001 

m = 0.1 

 The steady-state 

value is reached in 

a very short time 



23 

  system-failed state a trapping state   
 

Continuous-time Markov models: 
Reliability 

Differential equations: 

Single system without repair 

 T matrix 

Continuous time Markov model graph 

lDt = state transition probability 

l = failure rate 
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Taking the inverse transform: 

 A matrix 

A= [sI –T] 

Continuous-time Markov models: 
Reliability 
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Markov chain 

A Markov chain is a Markov process X with discrete-state space S.  

A Markov chain is homogeneous if X has steady-state transition 

probabilities 

 

 

A Markov chain is a  finite-state Markov chain if the number of 

states is finite (N). 

 

 

Discrete-time homogeneous Markov chains (DTMC) 

Continuous-time homogeneous Markov chains (CTMC) 

 


