
1

Single-version software fault tolerance techniques

(redundancy applied to a single version of software to detect errors and recover)

Heisenbugs
temporary internal faults (intermittent faults)
They are essentially permanent faults whose
conditions of activation occur rarely or are not
easily reproducible.
For example faults at boundaries between various
software components with timinig dependences.
They are state dependent and input dependent
faults.
(extremely difficult to identify through testing)

Bohrbugs
permanent design faults, deterministic in nature

identified during the testing and debugging phase

Software faults

Basis to implement fault tolerance

 - software architecture (modularization)

 - system closure principle

 - self-checking and self-protection principle

2

Software architecture

(basis to implement fault tolerance)

1) Modularization

add to modules error detection capability

2) Hierarchy and connectivity of components

used to analyse error propagation

3) Partitioning

functional independent modules + control modules (that coordinate the execution)

provide isolation between functionally independent modules

error confinement

4) Temporal structuring of the activity between interacting components

atomic action: activity in which the components interact with each other and

there is no interaction with the rest of the system for the duration of the activity

provide a framework for error confinement and recovery

(if a failure is detected during an atomic action, only the participating components can be

affetcted)

 Error confinement areas, with boundary at interfaces between components

3

System closure fault tolerance principle

no action is permissible unless explicitly authorized (mutual suspicion)

1. Each component is only granted the capabilities needed to execute its function

2. Each component examines each request or data item from other components

before acting on it

For example, each software module checks legality and reasonableness of each

request received

3. A capability disabled by an error disables a valid action

(it does not result in an undesirable action)

Error detection and confinement
Added overhead, need for providing: signalling back to requestor and own strategy for dealing with
erroneous requests

4

Self-protection and self-checking principles

Software system: a set of communicating components

Component (self-protection): protect itself by detecting errors in the information

received by other interacting components

Component (self-checking): able to detect internal errors and take appropriate

actions to prevent the propagation to other components

5

Error detection checks

Reasonableness checks: use known sematic properties of data

(acceptable range of variables, rate of change, acceptable transitions, probable

results…) Based on the design requirements of a module

Reversal checks: inverse computation

use the output to compute the corresponding inputs

 assume the specified function of the system is to compute a mathemathical

function, output = F(input)

if the function has an inverse function F’, such that F’(F(x))=x,

we can compute F’(output) and verify that F’(output) = input

Coding checks: use coding in the representation of information

technique developed for hardware can be used for software

basically in data communication (in which the content of

the data is not changed)

6

Error detection checks

Structural checks: use known properties of data structures

lists, trees, queues can be inspected for a number of elements

(redundant data structure could be added, extra pointers, embedded counts, …)

Timing checks: watchdog timers

check deviations from the acceptable module behaviour

Run-time checks:

 error detection mechanism provided in hardware (dived by 0, overflow, underflow,

…) can be used to detect design errors

7

Error recovery

Exception handling

exceptions are signalled by the error detection mechanism

 catch() clauses implement the appropriate error recovery

Three classes of exceptions

 interface exceptions

(invalid service request, triggered by the self-protection mechanism, handled by the

module that requested the serice)

 internal local exceptions

(an error in the internal operations of the module, triggered by the error detection

mechanism of the module, handled by the module)

 failure exceptions

(detected error, not handled by the fault processing mechanism. Tell the module

requesting the service that the service had a failure)

Error confinement is essential to design effective exception handlers

8

Checkpointing and restart recovery mechanism
Most of the faults at this stage are Heisenbugs, hence

these faults result in transient failures, i.e., failures

which may not recur if the software is restarted.

Restart is usually enough to successful completion of

the execution of the module

Checkpointing and restart recovery mechanism

 - Static

 restart from predetermined states

 (initial state or intermediate state, ..)

 - Dynamic

 restart from checkpoints created during

 the execution of the module (backword error recovery)

W. Torres-Pomales

Software fault tolerance: A tutorial

NASA,/TM-2000-210616, 2000

C/C++ language: checkpoint libraries

Process pair:

 two processors

 uses the same version of the software

 the primary processor sends checkpoints to the other

 error detection:

 the secondary process takes the role of primary and

 starts from the checkpoint

Process pair

9

1. Duplication implemented in a compiler

RECCO: a REliable c/c++ Code COmpiler for dependable applications

 - duplicate variables (code analysis to find important variables - read variables,

variables keeping a value for a long time, lifetime of variables)

 - duplicate instructions - selective instruction duplication (e.g., instruction that are

executed more frequently)

 Covered faults: data errors, memory instruction in memory errors

2. Add information to the Control Flow Graph, and check conditions at run-time

Covered faults: control flow errors

3. ……………………………

Redundancy at code level

10

Organisation of fault tolerance
From A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr. Basic Concepts and Taxonomy of Dependable

and Secure Computing, IEEE Transactions on Dependable and Secure Computing, Vol. 1, N. 1, 2004

11

Error Recovery

Forward recovery
transform the erroneous state in a new state from which the system can operate

Example:

real-time control systems, an occasional missed response to a sensor input is tolerable The system

can recover by skipping its response to the missed sensor input

 - Fundamental in case of interaction with the outside world

(Computing systems must talk to the outside world)

If these actions are not correct, the computer may still limit (or undo) the damage

by a compensating action

 Forward recovery would help return the system to a consistent state by sending the

environment a message informing it to disregard previous output from the program

Example:

A cash dispensing machine does not give the right money

forward recovery: tell the bank and ask the bank for the money

Backward recovery
bring the system back to a state prior to the error occurrence

 - Checkpointing

 (coordinated checkpointing, overhead)

Backward and forward recovery can be combined if the error persists

12

Fault handling

1. can the error detection mechanism identify the faulty component/task with

sufficient precision?

 - LOG and TRACES are important

 - diagnostic checks

2. What if diagnostic information / testing components are themselves

damaged?

3. System level diagnosis:

 A system is a set of nodes:

- who tests whom is described by a testing graph

- checks are never 100% certain

Suppose A tests B.

If B is faulty,

 A has a certain probability (we hope close to 100%) of finding out.

But if A is faulty too,

 it might conclude B is OK; or says that C is faulty when it isn’t

Fault location

13

Fault treatment

1. Faulty components could be left in the system

 - faults can add up over time

2. Reconfigure faulty components out of the system

 - physical reconfiguration

 turn off power, disable from bus access, ..

 - logical reconfiguration:

 don’t talk, don’t listen to it

3. Excluding faulty components will in the end exhaust available redundancy

 -insertion of spares

 -reinsertion of excluded component after thorough

 testing, possibly repair

4. Newly inserted components may require:

 - reallocation of software components

 - bringing the recreated components up to current state

14

Fault tolerance uses replication for error detection and system recovery

Fault tolerance relies on the independency of redundancies with respect to the process of fault creation
and activations

When tolerance to physical faults is foreseen, the channels may be identical, based on the assumption
that hardware components fail independently

When tolerance to design faults is foreseen, channels have to provide identical service through separate
designs and implementation (through design diversity)

Fault masking will conceal a possibly progressive and eventually fatal loss of protective redundancy.

Practical implementations of masking generally involve error detection (and possibly fault handling),
leading to masking and error detection and recovery.

Observations

