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Introduction

m Parallel machines are becoming quite common and affordable

Prices of microprocessors, memory and disks have dropped
sharply

Recent desktop computers feature multiple processors and this
trend is projected to accelerate

m Databases are growing increasingly large

large volumes of transaction data are collected and stored for later
analysis.

multimedia objects like images are increasingly stored in
databases

®m Large-scale parallel database systems increasingly used for:
storing large volumes of data
processing time-consuming decision-support queries
providing high throughput for transaction processing
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Parallelism in Databases

Data can be partitioned across multiple disks for parallel I/O.

Individual relational operations (e.g., sort, join, aggregation) can be
executed in parallel

data can be partitioned and each processor can work
independently on its own partition.

Queries are expressed in high level language (SQL, translated to
relational algebra)

makes parallelization easier.

Different queries can be run in parallel with each other.
Concurrency control takes care of conflicts.

Thus, databases naturally lend themselves to parallelism.
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Parallel Database Architectures

Basic architectural models for parallel machines

® Shared memory -- processors share a common memory
Shared disk -- processors share a common disk

Shared nothing -- processors share neither a common memory nor
common disk

m Hierarchical -- hybrid of the above architectures
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Parallel Database Architectures

DB accessible from all processors
Tolerant to processor failure
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Shared Memory

Processors and disks have access to a common memory, typically via
a bus or through an interconnection network.

Extremely efficient communication between processors — data in
shared memory can be accessed by any processor without having to
move it using software.

Downside — architecture is not scalable beyond 32 or 64 processors
since the bus or the interconnection network becomes a bottleneck

Widely used for lower degrees of parallelism (4 to 8).

1.7



Shared Disk

All processors can directly access all disks via an interconnection
network, but the processors have private memories.

The memory bus is not a bottleneck

Architecture provides a degree of fault-tolerance — if a
processor fails, the other processors can take over its tasks
since the database is resident on disks that are accessible from
all processors.

Examples: IBM Sysplex and DEC clusters (now part of Compaq)
running Rdb (now Oracle Rdb) were early commercial users

Downside: bottleneck now occurs at interconnection to the disk
subsystem.

Shared-disk systems can scale to a somewhat larger number of
processors, but communication between processors is slower.
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Shared Nothing

Node consists of a processor, memory, and one or more disks.
Processors at one node communicate with another processor at
another node using an interconnection network. A node functions as
the server for the data on the disk or disks the node owns.

Examples: Teradata, Tandem, Oracle-n CUBE

Data accessed from local disks (and local memory accesses) do not
pass through interconnection network, thereby minimizing the
Interference of resource sharing.

Shared-nothing multiprocessors can be scaled up to thousands of
processors without interference.

Main drawback: cost of communication and non-local disk access:
sending data involves software interaction at both ends.
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Hierarchical

Combines characteristics of shared-memory, shared-disk, and shared-
nothing architectures.

Top level is a shared-nothing architecture — nodes connected by an
interconnection network, and do not share disks or memory with each
other.

Each node of the system could be a shared-memory system with a
few processors.

Alternatively, each node could be a shared-disk system, and each of
the systems sharing a set of disks could be a shared-memory system.
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/O Parallelism

Reduce the time required to retrieve relations from disk by partitioning

The relations on multiple disks.

Horizontal partitioning — tuples of a relation are divided among many
disks such that each tuple resides on one disk.

Partitioning techniques (number of disks = n):
Round-robin:
Send the | " tuple inserted in the relation to disk i mod n.
Hash partitioning:
Choose one or more attributes as the partitioning attributes.
Choose hash function h with range 0...n-1

Let i denote result of hash function h applied tothe partitioning
attribute value of a tuple. Send tuple to disk i.
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I/O Parallelism (Cont.)

m Partitioning techniques (cont.):

B Range partitioning:
Choose an attribute as the partitioning attribute.
A partitioning vector [v,, V4, ..., V] IS chosen.

Let v be the partitioning attribute value of a tuple. Tuples such that
V,<Vi,; gotodisk | + 1. Tuples with v < v, go to disk O and tuples
with v > v, go to disk n-1.

E.g., with a partitioning vector [5,11], a tuple with partitioning
attribute value of 2 will go to disk 0, a tuple with value 8 will go to
disk 1, while a tuple with value 20 will go to disk2.

Example: P
shared memory architecture, n=3 M
select * _Ef] partition PO
f R
rom L = —8 partition P1
select * select * select * _8 partition P2
[P

from PO from P1 from P2
(Disk0) (Disk1) (Disk2)
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Comparison of Partitioning Techniques

Evaluate how well partitioning techniques support the following types
of data access:
1. Scanning the entire relation.
2. Locating a tuple associatively — point queries.

E.g.,r.A=25.
3. Locating all tuples such that the value of a given attribute lies within
a specified range — range queries.

E.g., 10<r.A<25.
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Comparison of Partitioning Techniques (Cont.)

Round robin:
m Advantages

Best suited for sequential scan of entire relation on each
query.

All disks have almost an equal number of tuples; retrieval work
Is thus well balanced between disks.

B Range gqueries are difficult to process
No clustering -- tuples are scattered across all disks
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Comparison of Partitioning Techniques (Cont.)
Hash partitioning:
m Good for sequential access

Assuming hash function is good, and partitioning attributes form a
key, tuples will be equally distributed between disks

Retrieval work is then well balanced between disks.
m Good for point queries on partitioning attribute

Can lookup single disk, leaving others available for
answering other queries.

Index on partitioning attribute can be local to disk, making
lookup and update more efficient

® No clustering, so difficult to answer range queries

select * M
from R H(xxx) =]
where A=xxx @ _Eﬂ partition PO H(a)=0

—@ partiion P1 ~ H(@)=1
_8 partition P2~ H(@)=2

select *
from Pj
(Diskj)

39095
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Comparison of Partitioning Techniques (Cont.)

Range partitioning:
Provides data clustering by partitioning attribute value.
Good for sequential access

Good for point queries on partitioning attribute: only one disk needs to
be accessed.

® For range queries on partitioning attribute, one to a few disks may need
to be accessed

Remaining disks are available for other queries.
Good if result tuples are from one to a few blocks.

If many blocks are to be fetched, they are still fetched from one to a
few disks, and potential parallelism in disk access is wasted

Example of execution skew.
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Partitioning a Relation across Disks

m [f a relation contains only a few tuples which will fit into a single disk
block, then assign the relation to a single disk.

®m Large relations are preferably partitioned across all the available
disks.

m |[f arelation consists of m disk blocks and there are n disks available in
the system, then the relation should be allocated min(m,n) disks.
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Handling of Skew

®m The distribution of tuples to disks may be skewed — that is, some
disks have many tuples, while others may have fewer tuples.

® Types of skew:

Attribute-value skew.

Some values appear in the partitioning attributes of many

tuples; all the tuples with the same value for the partitioning

attribute end up in the same partition.

Can occur with range-partitioning and hash-partitioning.
Partition skew.

With range-partitioning, badly chosen partition vector may

assign too many tuples to some partitions and too few to
others.

Less likely with hash-partitioning if a good hash-function is
chosen.
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Handling Skew in Range-Partitioning

®m To create a balanced partitioning vector (assuming partitioning
attribute forms a key of the relation):

Sort the relation on the partitioning attribute.

Construct the partition vector by scanning the relation in sorted
order as follows.

After every 1/nt" of the relation has been read, the value of
the partitioning attribute of the next tuple is added to the
partition vector.

n denotes the number of partitions to be constructed.

Duplicate entries or imbalances can result if duplicates are
present in partitioning attributes.

m Alternative technique based on histograms used in practice
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Handling Skew using Histograms

Balanced partitioning vector can be constructed from histogram in a
relatively straightforward fashion

Assume uniform distribution within each range of the histogram

Histogram can be constructed by scanning relation, or sampling (blocks
containing) tuples of the relation
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Interquery Parallelism

Each query is run sequentially
Queries/transactions execute in parallel with one another.

Increases transaction throughput; used primarily to scale up a
transaction processing system to support a larger number of
transactions per second.

Easiest form of parallelism to support, particularly in a shared-memory
parallel database, because even sequential database systems
support concurrent processing.

b

IJ
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Transaction System Processes (Sequential systems)

user user user
process process process

Sequential database systems support

ODBC JDBC concurrent processing of transactions
server server e — executed in time-shared concurrent
process process process manner
process
buffer pool monitor
shared process
memory
query plan cache Tock
log buffer lock table Tanager

process

database
writer
process

log writer checkpoint
process process

log disks data disks
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Interquery Parallelism

® More complicated to implement on shared-disk or shared-nothing
architectures

J K K E K

|
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Locking and logging must be coordinated by passing messages
between processors (2PL, 2PC, ....).

Data in a local buffer may have been updated at another
processor.

Cache-coherency has to be maintained — reads and writes of
data in buffer must find latest version of data.

Two processors do not update the same
data independently at the same time.

When a processor access or update data,
the DBMS must ensure that the process has
the latest version of the data in its buffer pool.

o
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Intraquery Parallelism

Execution of a single query in parallel on multiple processors/disks;
important for speeding up long-running queries

Consider a query that requires a relation to be sorted on attribute A
Assume the relation has been partitioned by range-partition on the
same attribute A. We can

sort each partition in parallel
concatenate the sorted partitions to get the final sorted relation
We have parallelized the query by parallelizing the sort operation.

The operator tree for a query can contain multiple operations

We can parallelize the operations that do not depend on one
another; and we may be able to pipeline the output of one
operation to another operation.
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Intraquery Parallelism

® Two complementary forms of intraquery parallelism:

Intraoperation Parallelism — parallelize the execution of each
iIndividual operation in the query.

Interoperation Parallelism — execute the different operations in
a query expression in parallel.

The first form scales better with increasing parallelism because
the number of tuples processed by each operation is typically more
than the number of operations in a query.

The two forms can be used simultaneously in a query.
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Parallel Processing of Relational Operations

The algorithms for parallelizing query evaluation depends on the
machine architecture.

®m Our discussion of parallel algorithms assumes:
read-only queries
shared-nothing architecture

n processors, Py, ..., P,.;, and n disks Dy, ..., D, ;,
where disk D, is associated with processor P..

m If a processor has multiple disks they can simply simulate
a single disk D..

B Shared-nothing architectures can be efficiently simulated on shared-
memory and shared-disk systems.

Algorithms for shared-nothing systems can thus be run on shared-
memory and shared-disk systems. However, some optimizations
may be possible.
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Intraoperation Parallelism

M

3

Parallel Sort .
Range-Partitioning Sort -
® Choose processors Py, ..., P,,, where m < n -1 to do sorting. M
=

Step 1:

m Create range-partition vector with m entries, on the sorting attribute
(each partition the same number of tuples)

®m Redistribute the relation using range partitioning
all tuples that lie in the i range are sent to processor P,
P, stores the tuples it received temporarily on disk D;.
This step requires I/O and communication overhead.

Step 2:

m Each processor P, sorts its partition of the relation locally.

m Each processor executes same operation (sort) in parallel with other
processors, without any interaction with the others (data parallelism).

® Final merge operation is trivial: range-partitioning ensures that,
for 1 <=i<j <=m, the key values in processor P, are all less than the key
values in P;.
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Parallel Sort (Cont.)

Parallel External Sort-Merge

m Assume the relation has already been partitioned among
disks Dy, ..., D, (in whatever manner).

m Each processor P; locally sorts the data on disk D,.

® The sorted runs on each processor are then merged to get the final
sorted output.

m Parallelize the merging of sorted runs as follows:

The sorted partitions at each processor P; are range-partitioned
across the processors Py, ..., P

Each processor P, performs a merge on the streams as they are
received, to get a single sorted run.

The sorted runs on processors P,,..., P, are concatenated to get
the final result.

=

<]
WEGEE

Run0 range-partitioned

across PO, P1, P2 RO0O R10 R20 -> Merge\l/

Sort partition PO (run0) —>
Para”ellzed ........................................
Merge

Concatenation

=

Sort partition P2 (run2)
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Run2 range-partitioned T
ge-p RO2 R12 R22 -> Merge

across PO, P1, P2
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Parallel Join

B The join operation requires pairs of tuples to be tested to see if they

satisfy the join condition, and if they do, the pair is added to the join
output.

m Parallel join algorithms attempt to split the pairs to be tested over

several processors. Each processor then computes part of the join
locally.

® |n a final step, the results from each processor can be collected
together to produce the final result.
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Partitioned Join

For equi-joins and natural joins, it is possible to partition the two input
relations across the processors, and compute the join locally at each
processor.

Let r and s be the input relations, and we want to compute rPX] . ,_. s S.

r and s each are partitioned into n partitions, denoted ry, r4, ..., I, and
Sos S1» -++» Spo1-

Can use either range partitioning or hash partitioning.

r and s must be partitioned on their join attributes r.A and s.B), using
the same range-partitioning vector or hash function.

Partitions r, and s; are sent to processor P;,

Each processor P; locally computes r; )i a=sj.B Si- Any of the
standard join methods can be used.

-
-
=
S
=
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Partitioned Join (Cont.)
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Fragment-and-Replicate Join

Partitioning not possible for some join conditions
E.g., non-equijoin conditions, such as r.A > s.B.

Not easy way of partitioning r and s such that tuple
In r; join only tuples in s,

For joins were partitioning is not applicable, parallelization can be
accomplished by fragment and replicate technique

Depicted on next slide
Special case — asymmetric fragment-and-replicate:

One of the relations, say r, is partitioned; any partitioning
technigue can be used.

The other relation, s, is replicated across all the processors.

Processor P; then locally computes the join of r; with all of s using
any join technique.
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Depiction of Fragment-and-Replicate Joins

2008

(O

p n-1,m-1

(a) Asymmetric (b) Fragment and replicate
fragment and replicate
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Fragment-and-Replicate Join (Cont.)

®m General case: reduces the sizes of the relations at each processor.

r is partitioned into n partitions,ry, ry, ..., I .1;
S is partitioned into m partitions, Sy, Sy, --+; Sp.1-

Any partitioning technique may be used.
There must be at least m * n processors.
Label the processors as

I:)0,0’ P0,1’ Tt I:)O,m-l’ I:)1,0’ S I:)n-lm-l'
P;; computes the join of r; with s;. In order to do so, r; Is replicated
to P, o, Pi1s ..., Pym.1, While s; is replicated to Py, Py, ..., P

Any join technique can be used at each processor P;;.
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Fragment-and-Replicate Join (Cont.)

®m Both versions of fragment-and-replicate work with any join condition,
since every tuple in r can be tested with every tuple in s.

®m Usually has a higher cost than partitioning, since one of the
relations (for asymmetric fragment-and-replicate) or both relations
(for general fragment-and-replicate) have to be replicated.

m Sometimes asymmetric fragment-and-replicate is preferable even
though partitioning could be used.

E.g., say s is small and r is large, and already partitioned. It may
be cheaper to replicate s across all processors, rather than
repartition r and s on the join attributes.
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Partitioned Parallel Hash-Join

The partitioned hash join can be parallelized:

B Assume s is smaller than r and therefore s is chosen as the build
relation.

® A hash function h, takes the join attribute value of each tuple in s
maps this tuple to one of the n processors.

m Each processor P; reads the tuples of s that are on its disk D;, and
sends each tuple to the appropriate processor based on hash function
h,. Let s; denote the tuples of relation s that are sent to processor P..

m As tuples of relation s are received at the
destination processors, they are partitioned
further using another hash function, h,,
which is used to compute the hash-
join locally.
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Partitioned Parallel Hash-Join
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Partitioned Parallel Hash-Join (Cont.)

®  Once the tuples of s have been distributed, the larger relation r is
redistributed across the m processors using the hash function h,

Let r, denote the tuples of relation r that are sent to processor P,.

m As the rtuples are received at the destination processors, they are
repartitioned using the function h,

(just as the probe relation is partitioned in the sequential hash-join
algorithm).

®m Each processor P; executes the build and probe phases of the hash-
join algorithm on the local partitions r, and s, of r and s to produce a
partition of the final result of the hash-join.
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Parallel Nested-Loop Join

Assume that

relation s is much smaller than relation r and that r is stored by
partitioning.

there is an index on a join attribute of relation r at each of the
partitions of relation r.

Use asymmetric fragment-and-replicate, with relation s being
replicated, and using the existing partitioning of relation r.

Each processor P; where a partition of relation s is stored reads the
tuples of relation s stored in D;, and replicates the tuples to every other
processor P..

At the end of this phase, relation s is replicated at all sites that
store tuples of relation r.

Each processor P; performs an indexed nested-loop join of relation s
with the it" partition of relation r.
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Parallel Nested-Loop Join

Pl s index
rl
DX
P2 s index
Dq [ ] r2
P3
S index
<] 3

asymmetric fragment-and-replicate
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Other Relational Operations

Selection cy(r)
m If 0 is of the form a; = v, where a; is an attribute and v a value.

If r is partitioned on a; the selection is performed at a single
processor.

m [f0is ofthe formi<=a;<=u (i.e., 0 is a range selection) and the
relation has been range-partitioned on a;

Selection is performed at each processor whose partition overlaps
with the specified range of values.

®m In all other cases: the selection is performed in parallel at all the
processors.
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Other Relational Operations (Cont.)

® Duplicate elimination
Perform by using either of the parallel sort techniques
eliminate duplicates as soon as they are found during sorting.

Can also partition the tuples (using either range- or hash-
partitioning) and perform duplicate elimination locally at each
processor.

® Projection

Projection without duplicate elimination can be performed as
tuples are read in from disk in parallel.

If duplicate elimination is required, any of the above duplicate
elimination technigques can be used.
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Cost of Parallel Evaluation of Operations

m [f there is no skew in the partitioning, and there is no overhead due to
the parallel evaluation, a parallel operation using n processors will
take 1/n times as long as the same operation on a single processor

® The time cost of parallel processing would be 1/n of the time cost of
sequential processing of the operation.

m |f skew and overheads are also to be taken into account, the time
taken by a parallel operation can be estimated as

Toart * Tasm + max (Tg, Tq, ..., Thg)
Tpart IS the time for partitioning the relations
T,sm IS the time for assembling the results
T; Is the time taken for the operation at processor P;

this needs to be estimated taking into account the skew
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Interoperator Parallelism

m Pipelined parallelism
Consider a join of four relations
1 DX T2 D M3y
Set up a pipeline that computes the three joins in parallel

Let P1 be assigned the computation of
templ =rqpx ry

And P2 be assigned the computation of temp2 = temp1 X rg
And P3 be assigned the computation of temp2 X r,

Each of these operations can execute in parallel, sending result
tuples it computes to the next operation even as it is computing
further results

Provided a pipelineable join evaluation algorithm (e.g., indexed
nested loops join) is used
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Independent Parallelism

® [Independent parallelism
Consider a join of four relations
DA T X 130X Iy
Let P, be assigned the computation of
templ=rypq I
And P, be assigned the computation of temp2 = r5 Iy
And P; be assigned the computation of temp1 x| temp,
P, and P, can work independently in parallel
P, has to wait for input from P, and P,

Can pipeline output of P, and P, to P;, combining
independent parallelism and pipelined parallelism

Does not provide a high degree of parallelism
useful with a lower degree of parallelism.
less useful in a highly parallel system.
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Query Optimization
Query optimization in parallel databases is significantly more complex than

guery optimization in sequential databases.

Cost models are more complicated, since we must take into account
partitioning costs and issues such as skew and resource contention.

When scheduling execution tree in parallel system, must decide:
How to parallelize each operation and how many processors to use for it.

What operations to pipeline, what operations to execute independently in
parallel, and what operations to execute sequentially, one after the other.

Determining the amount of resources to allocate for each operation is a
problem.

E.g., allocating more processors than optimal can result in high
communication overhead.

Long pipelines should be avoided as the final operation may wait a lot for
inputs, while holding precious resources

The number of parallel evaluation plans from which to choose from is much
larger than the number of sequential evaluation plans.

Therefore heuristics are needed
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Design of Parallel Systems

Some issues in the design of parallel systems:

m Parallel loading of data from external sources is needed in order to
handle large volumes of incoming data.

m Resilience to failure of some processors or disks.

Probability of some disk or processor failing is higher in a parallel
system.

Operation (perhaps with degraded performance) should be
possible in spite of failure.

Redundancy achieved by storing extra copy of every data item at
another processor.
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Design of Parallel Systems (Cont.)

® On-line reorganization of data and schema changes must be
supported.

For example, index construction on terabyte databases can take
hours or days even on a parallel system.

Need to allow other processing (insertions/deletions/updates)
to be performed on relation even as index is being constructed.

Basic idea: index construction tracks changes and “catches up” on
changes at the end.

m Also need support for on-line repartitioning and schema changes
(executed concurrently with other processing).
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