
Data Warehouses

These slides are a modified version of the slides of the book

“Database System Concepts” (Chapter 18), 5th Ed., McGraw-Hill,

by Silberschatz, Korth and Sudarshan.

Original slides are available at www.db-book.com

http://www.mhcollege.com/
http://www.mhcollege.com/
http://www.mhcollege.com/
http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

1.2

Decision Support Systems

 Decision-support systems are used to make business decisions, often

based on data collected by on-line transaction-processing systems.

 Examples of business decisions:

 What items to stock?

 What insurance premium to change?

 To whom to send advertisements?

 Examples of data used for making decisions

 Retail sales transaction details

 Customer profiles (income, age, gender, etc.)

1.3

OLTP systems

 Transaction Processing Systems - On-Line Transaction Processing

 Systems that records information about transactions

 ACID properties of transactions

 Organizations accumulate a vast amount of information

generated by these systems

 Decision Support Systems - On-Line Analytical Processing

 Get high level information out of the detailed information

stored in transaction processing systems

 Large databases

 Read-only operations. Periodic updates of data

OLAP systems

1.4

Decision-Support Systems: Overview

 Data analysis tasks are simplified by specialized tools and SQL extensions

 Example tasks

 For each product category and each region, what were the total sales in
the last quarter and how do they compare with the same quarter last year

 As above, for each product category and each customer category

 A data warehouse archives information gathered from multiple sources, and
stores it under a unified schema, at a single site.

 Important for large businesses that generate data from multiple divisions,
possibly at multiple sites

 Data may also be purchased externally

 Data mining seeks to discover knowledge automatically in the form of statistical
rules and patterns from large databases.

 Statistical analysis packages (e.g., : S++) can be interfaced with databases

 Statistical analysis is a large field, but not covered here

1.5

Data Warehousing

 Data sources often store only current data, not historical data

 Corporate decision making requires a unified view of all organizational

data, including historical data

 A data warehouse is a repository (archive) of information gathered

from multiple sources, stored under a unified schema, at a single site

 Greatly simplifies querying, permits study of historical trends

 Shifts decision support query load away from transaction

processing systems

1.6

Data Warehousing

1.7

Data warehouse architecture

Metadati

Data

Warehouse

Data Mart

Data sources
Data analysis

Metadata: description of data on sources and on DW

Data Mart: logical subset of the data warehouse for a data analysis

1.8

Another solution

Metadati

Data Mart

Data sources
Data analysis

Sometimes the datawarehouse is too complex, direct representation of Data Mart

1.9

Design Issues

 When and how to gather data

 Source driven architecture: data sources transmit new

information to warehouse, either continuously or periodically

(e.g., at night)

 Destination driven architecture: warehouse periodically

requests new information from data sources

 Keeping warehouse exactly synchronized with data sources

(e.g., using two-phase commit) is too expensive

 Usually OK to have slightly out-of-date data at warehouse

 Data/updates are periodically downloaded form online

transaction processing (OLTP) systems.

 What schema to use

 Schema integration

1.10

More Warehouse Design Issues

 Data cleaning

 E.g., correct mistakes in addresses (misspellings, zip code

errors)

 Merge address lists from different sources and purge duplicates

 How to propagate updates

 Warehouse schema may be a (materialized) view of schema

from data sources

 What data to summarize

 Raw data may be too large to store on-line

 Aggregate values (totals/subtotals) often suffice

 Queries on raw data can often be transformed by query

optimizer to use aggregate values

1.11

Multidimensional data
Consider an application where a shop wants to find out what kinds of

clothes are popular.

 Let us suppose that clothes are characterized by item_name, colour,
size and number. We have the relation sales with the schema:

sales(item_name, colour, size, number)

 Assume item_name can take on values (skirt, dress, shirt, pant)

 colour “ “ (dark, pastel, white)

 size “ “ (small, medium, large)

We can identify some of the attributes as measure attributes, since they measure
some value, and can be aggregated upon.

 Some other attributes of the relation are identified as dimension attributes, since
they define the dimension on which measure attributes

Possible Dimensions on which measures are viewed for this application:

 - item information
 - time
 - sales location
 - customer information

1.12

Multidimensional data

 Data that can be modeled as dimension attributes and measure
attributes are called multidimensional data.

 Measure attributes

 measure some value

 can be aggregated upon

 e.g. the attribute number of the sales relation

 Dimension attributes

 define the dimensions on which measure attributes (or
aggregates thereof) are viewed

 e.g. the attributes item_name, color, and size of the sales
relation are dimension attributes for dimension item_info

1.13

Warehouse Schemas

 Dimension values are usually encoded using small integers and

mapped to full values via dimension tables

 Resultant schema is called a Star schema

 More complicated schema structures

 Snowflake schema: multiple levels of dimension tables

 Constellation: multiple fact tables

1.14

Data Warehouse Schema
Star schema

fact table

dimension table

fact table : BCNF

dimension tables: redundant data

1.15

Cross Tabulation of sales by item-name and color

 The table above is an example of a cross-tabulation (cross-tab)

 Values for one of the dimension attributes form the row headers

 Values for another dimension attribute form the column headers

 Other dimension attributes are listed on top

 Values in individual cells are (aggregates of) the values of the
dimension attributes that specify the cell.

 In the example, the aggregation used is the sum of the values for
attribute number across all size

 Extra column (row) storing the totals of the cells in the row (column)

A manager may want to see data laid out as number of sales for different

combinations of item_info and colour

Size: all indicates that the displayed values are a summary across all values

of size.

1.16

Relational Representation of Cross-tabs

 Cross-tabs can be represented
as relations

 We use the value all is used to
represent aggregates
(summary rows or columns)

 The SQL:1999 standard
actually uses null values in
place of all despite confusion
with regular null values

tuples with value all for colour and size

sum (number)

 from sales

group by item_name

tuples with value all for item_name, colour and size

 sum (number)

 from sales

1.17

Data Cube
 A data cube is a multidimensional generalization of a cross-tab (which is two-

dimensional)

 Can have n dimensions; we show 3 below (time_name, colour, size)

 Measure attribute is number

 Cross-tabs can be used as views on a data cube

data cube

on sales

relation

- each cell

identified by values

of the three dimensions

- each cell

contains a value

shown on one of

the faces

(pant, dark, medium)

summary of all values

on that dimension

(pant, dark, all)

1.18

Online Analytical Processing

 An OLAP system is an interactive system that permits an analyst to view

different summaries of multidimensional data

 Online indicates that an analyst must be able to request new summaries

and get responses on line, and should not be forced to wait for a long

time.

 An analyst can look at different cross-tabs on the same data by selecting

the attributes in the cross-tab.

 Each cross-tab is a two-dimensional view of a multidimensional data

cube

 - Pivoting

 - Slicing

 - Rollup

 - Drill down

1.19

Online Analytical Processing

 Pivoting: the operation of changing the dimensions used in a cross-tab

1.20

Online Analytical Processing

 Slicing: creating a cross-tab for fixed

values only

 cross-tab for item_name and colour for

a fixed value of size

 cross-tab for colour and size for

a fixed value of item_name

 cross-tab for item_name and size for

a fixed value of colour

size

colour

item_name

1.21

Online Analytical Processing

 Dicing : slicing, when values for multiple dimensions are fixed.

subset of item_names

subset of colours

subset of size

size
item_name

colour

1.22

Online Analytical Processing
OLAP systems permit users to view data at any desired level of granularity

 Rollup: moving from finer-granularity data to a coarser granularity

by means of aggregation

 Starting from the data cube on the sales table, we got cross-tab by rolling

up on size

size
item_name

colour

 Drill down: The opposite operation - that of moving from coarser-
granularity data to finer-granularity data

 Finer granularity cannot be generated by coarser granularity data;
Must be generated either from the original data or from ever finer
granularity summary data

1.23

Hierarchies on Dimensions

 Hierarchy on dimension attributes: lets dimensions to be viewed at

different levels of detail

 E.g. the dimension DateTime can be used to aggregate by hour of

day, date, day of week, month, quarter or year

Analysts may wish to view a dimension at different levels of details

1.24

Cross Tabulation With Hierarchy

on item-name

 Cross-tabs can be easily extended to deal with hierarchies

 Can drill down or roll up on a hierarchy

Assume Clothes are grouped by category (menswear and womenswear):

category lies above item_name

Different levels are shown in the same cross-tab

1.25

OLAP Implementation

 The earliest OLAP systems used multidimensional arrays in memory to

store data cubes, and are referred to as multidimensional OLAP

(MOLAP) systems.

 OLAP implementations using only relational database features are called

relational OLAP (ROLAP) systems

 Hybrid systems, which store some summaries in memory and store the

base data and other summaries in a relational database, are called

hybrid OLAP (HOLAP) systems.

1.26

OLAP Implementation (Cont.)

 Early OLAP systems precomputed all possible aggregates in order to

provide online response

 Space and time requirements for doing so can be very high

 2n combinations of group by

 It suffices to precompute some aggregates, and compute others on

demand from one of the precomputed aggregates

 Can compute aggregate on (item-name, color) from an aggregate

on (item-name, color, size)

– is cheaper than computing it from scratch

 Several optimizations available for computing multiple aggregates

 Can compute aggregates on (item-name, color, size),

(item-name, color) and (item-name) using a single sorting

of the base data

1.27

An example

Articolo

(prodotto)

Tempo

(trimestre)

Quantità

Luogo

(negozio)

Lettori DVD

Lettori CD

Televisori

Videoregistratori

Roma-1

Roma-2
Milano-1

Milano-2

1 trim. 2003

2 trim. 2003
3 trim. 2003

4 trim. 2003

Fatto = vendita Misura = quantità Dimensione = Tempo, Articolo, Luogo

Basi di dati: Architetture e linee di evoluzione

Atzeni, Ceri, Fraternali, Paraboschi, Torlone,

Mc GrawHill

1.28

negozio

regione

provincia

città

giorno

anno

trimestre

mese
prodotto

marca categoria

Luogo

Articolo

Tempo

Basi di dati: Architetture e linee di evoluzione

Atzeni, Ceri, Fraternali, Paraboschi, Torlone,

Mc GrawHill

Dimensioni e gerarchie di livelli

1.29

Vendite

CodiceTempo

CodiceLuogo

CodiceArticolo

CodiceCliente

Quantità

Incasso

Tempo

CodiceTempo

Giorno

Mese

Trimestre

Anno

Luogo

CodiceLuogo

Negozio

Indirizzo

Città

Provincia

Regione

Articolo

CodiceArticolo

Descrizione

Marca

CodiceCategoria

Categoria

Cliente

CodiceCliente

Nome

Cognome

Sesso

Età

Professione

Basi di dati: Architetture e linee di evoluzione

Atzeni, Ceri, Fraternali, Paraboschi, Torlone,

Mc GrawHill

Schema a stella

1.30

Basi di dati: Architetture e linee di evoluzione

Atzeni, Ceri, Fraternali, Paraboschi, Torlone,

Mc GrawHill

1.31

Extended Aggregation in SQL:1999

 The cube operation computes union of group by’s on every subset of the

specified attributes

 E.g. consider the query

 select item-name, color, size, sum(number)

 from sales

 group by cube(item-name, color, size)

 This computes the union of eight different groupings of the sales relation:

 { (item-name, color, size), (item-name, color),

 (item-name, size), (color, size),

 (item-name), (color),

 (size), () }

 where () denotes an empty group by list.

 For each grouping, the result contains the null value

for attributes not present in the grouping.

1.32

Extended Aggregation (Cont.)

 Relational representation of cross-tab that we saw earlier, but with null in
place of all, can be computed by

 select item-name, color, sum(number)
 from sales
 group by cube(item-name, color)

 The function grouping() can be applied on an attribute

 Returns 1 if the value is a null value representing all, and returns 0 in all
other cases.

 select item-name, color, size, sum(number),
 grouping(item-name) as item-name-flag,
 grouping(color) as color-flag,
 grouping(size) as size-flag,
from sales
group by cube(item-name, color, size)

 Can use the function decode() in the select clause to replace
such nulls by a value such as all

 E.g. replace item-name in first query by

 decode(grouping(item-name), 1, ‘all’, item-name)

1.33

Extended Aggregation (Cont.)

 The rollup construct generates union on every prefix of specified list of
attributes

 E.g.

 select item-name, color, size, sum(number)
 from sales
 group by rollup(item-name, color, size)

Generates union of four groupings:

 { (item-name, color, size), (item-name, color), (item-name), () }

 Rollup can be used to generate aggregates at multiple levels of a
hierarchy.

 E.g., suppose table itemcategory(item-name, category) gives the
category of each item. Then

 select category, item-name, sum(number)
 from sales, itemcategory
 where sales.item-name = itemcategory.item-name
 group by rollup(category, item-name)

 would give a hierarchical summary by item-name and by category.

1.34

Extended Aggregation (Cont.)

 Multiple rollups and cubes can be used in a single group by clause

 Each generates set of group by lists, cross product of sets gives overall

set of group by lists

 E.g.,

 select item-name, color, size, sum(number)

 from sales

 group by rollup(item-name), rollup(color, size)

 generates the groupings

 {item-name, ()} X {(color, size), (color), ()}

 = { (item-name, color, size), (item-name, color), (item-name),

 (color, size), (color), () }

1.35

Ranking

 Ranking is done in conjunction with an order by specification.

 Given a relation student-marks(student-id, marks) find the rank of each

student.

 select student-id, rank() over (order by marks desc) as s-rank

from student-marks

 An extra order by clause is needed to get them in sorted order

 select student-id, rank () over (order by marks desc) as s-rank

from student-marks

order by s-rank

 Ranking may leave gaps: e.g. if 2 students have the same top mark, both

have rank 1, and the next rank is 3

 dense_rank does not leave gaps, so next dense rank would be 2

1.36

Ranking (Cont.)

 Ranking can be done within partition of the data.

 “Find the rank of students within each section.”

 select student-id, section,

 rank () over (partition by section order by marks desc)

 as sec-rank

from student-marks, student-section

where student-marks.student-id = student-section.student-id

order by section, sec-rank

 Multiple rank clauses can occur in a single select clause

 Ranking is done after applying group by clause/aggregation

1.37

Ranking (Cont.)

 Other ranking functions:

 percent_rank (within partition, if partitioning is done)

 cume_dist (cumulative distribution)

 fraction of tuples with preceding values

 row_number (non-deterministic in presence of duplicates)

 SQL:1999 permits the user to specify nulls first or nulls last

 select student-id,

 rank () over (order by marks desc nulls last) as s-rank

from student-marks

1.38

Ranking (Cont.)

 For a given constant n, the ranking the function ntile(n) takes the

tuples in each partition in the specified order, and divides them into n

buckets with equal numbers of tuples.

 E.g.:

 select threetile, sum(salary)

from (

 select salary, ntile(3) over (order by salary) as threetile

 from employee) as s

group by threetile

1.39

Windowing

 Used to smooth out random variations.

 E.g.: moving average: “Given sales values for each date, calculate for each
date the average of the sales on that day, the previous day, and the next
day”

 Window specification in SQL:

 Given relation sales(date, value)

 select date, sum(value) over
 (order by date between rows 1 preceding and 1 following)
 from sales

 Examples of other window specifications:

 between rows unbounded preceding and current

 rows unbounded preceding

 range between 10 preceding and current row

 All rows with values between current row value –10 to current value

 range interval 10 day preceding

 Not including current row

1.40

Windowing (Cont.)

 Can do windowing within partitions

 E.g. Given a relation transaction (account-number, date-time, value),

where value is positive for a deposit and negative for a withdrawal

 “Find total balance of each account after each transaction on the

account”

 select account-number, date-time,

 sum (value) over

 (partition by account-number

 order by date-time

 rows unbounded preceding)

 as balance

from transaction

order by account-number, date-time

