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1.2 

DBMS: Overall Structure  
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Basic Steps in Query Processing 

1. Parsing and translation: translate the query into its internal form. This is then 
translated into relational algebra. Parser checks syntax, verifies relations. 

2. Optimization: A relational algebra expression may have many equivalent 
expressions. Generation of an evaluation-plan. 

3. Evaluation: The query-execution engine takes a query-evaluation plan, 
executes that plan, and returns the answers to the query 
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Query Processing : Optimization 

 A relational algebra expression may have many equivalent 

expressions 

     E.g., balance2500(balance(account))  

  is equivalent to 

  balance(balance2500(account)) 

 

 Each relational algebra operation can be evaluated using one of 

several different algorithms 

 E.g., can use an index on balance to find accounts with balance  

         < 2500, 

or can perform complete relation scan and discard accounts  

with balance  2500 

 Annotated expression specifying detailed evaluation strategy is called 

an evaluation-plan. 
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Basic Steps 

Query Optimization: Amongst all equivalent evaluation plans choose the one with 

lowest cost.  

 Cost is estimated using 

 Statistical information from the database catalog 

 e.g. number of tuples in each relation, size of tuples,  

number of distinct values for an attribute. 

 

 Statistics estimation for intermediate results to compute cost of complex 

expressions 

 

 Cost of individual operations 

» Selection Operation 

» Sorting  

» Join Operation  

» Other Operations  

 

How to optimize queries, that is, how to find an evaluation plan with 

“good” estimated cost ? 
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Evaluation plan 
branch = (branch_name, branch_city, assets) 

account = (account_number, branch_name, balance) 

depositor = (customer_id, customer_name, account_number) 

 

 customer_name(branch_city=Brooklyn (branch      (account      depositor))))   

customer_name ((branch_city=Brooklyn (branch))      (account      depositor))     

A 

A -  

B 

B -  
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Evaluation plan (cont.) 

 An evaluation plan defines exactly what algorithm is used for each 
operation, and how the execution of the operations is coordinated  
(e.g., pipeline, materialization). 
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Cost-based query optimization 

 Cost difference between evaluation plans for a query can be enormous 

 E.g. seconds vs. days in some cases 

 

 Steps in cost-based query optimization 

1. Generate logically equivalent expressions using equivalence rules 

2. Annotate resultant expressions to get alternative query plans 

3. Choose the cheapest plan based on estimated cost 



Generating Equivalent Expressions 
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Transformation of Relational Expressions 

 Two relational algebra expressions are said to be equivalent if the 

two expressions generate the same set of tuples on every legal 

database instance 

 Note: order of tuples is irrelevant 

 In SQL, inputs and outputs are multisets of tuples 

 Two expressions in the multiset version of the relational algebra 

are said to be equivalent if the two expressions generate the same 

multiset of tuples on every legal database instance.  

 An equivalence rule says that expressions of two forms are 

equivalent 

 Can replace expression of first form by second, or vice versa 
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Equivalence Rules 

1. Conjunctive selection operations can be deconstructed into a 

sequence of individual selections. 

 

2. Selection operations are commutative. 

 

 

3. Only the last in a sequence of projection operations is needed, the 

others can be omitted. 

 

 

4. Selections can be combined with Cartesian products and theta joins. 

a. (E1 X E2) =  E1      E2  

b. 1(E1     2 E2) =  E1     1 2 E2  
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Equivalence Rules (Cont.) 

5. Theta-join operations (and natural joins) are commutative. 

 E1        E2 = E2       E1 

6. (a) Natural join operations are associative: 

   (E1      E2)    E3 = E1      (E2     E3) 

 

(b) Theta joins are associative in the following manner: 

 

  (E1       1 E2)     2 3 E3 = E1        1 3 (E2     2 E3) 

      

     where 2 involves attributes from only E2 and E3. 
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Pictorial Depiction of Equivalence Rules 
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Equivalence Rules (Cont.) 

7. The selection operation distributes over the theta join operation under 

the following two conditions: 

(a)  When all the attributes in 0  involve only the attributes of one  

       of the expressions (E1) being joined. 

 

                0E1      E2) = (0(E1))     E2  

 

 (b) When  1 involves only the attributes of E1 and 2  involves   

      only the attributes of E2. 

                   1 E1     E2) =  (1(E1))     ( (E2)) 
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Equivalence Rules (Cont.) 

8. The projection operation distributes over the theta join operation as 

follows: 

 (a) if  involves only attributes from L1  L2: 

 

  

 (b) Consider a join E1       E2.  

  Let L1 and L2 be sets of attributes from E1 and E2, respectively.   

 Let L3 be attributes of E1 that are involved in join condition , but are 

not in L1  L2, and 

  let L4 be attributes of E2 that are involved in join condition , but are 

not in L1  L2. 
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Equivalence Rules (Cont.) 

9. The set operations union and intersection are commutative  

 E1  E2  = E2  E1  

 E1  E2  = E2  E1  

 (set difference is not commutative). 

10. Set union and intersection are associative. 

                  (E1  E2)  E3 = E1  (E2  E3) 

              (E1  E2)  E3 = E1  (E2  E3) 

11. The selection operation distributes over ,  and –.  

                   (E1  –  E2) =  (E1) –  (E2) 

                     and similarly for  and  in place of  – 

Also:            (E1  –  E2) = (E1) –  E2 

                          and similarly for  in place of  –, but not for  

12. The projection operation distributes over union 

                       PL(E1  E2) = (PL(E1))  (PL(E2))  
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Transformation: Pushing Selections down 

 Query:  Find the names of all customers who have an account at 

some branch located in Brooklyn. 

Pcustomer_name(branch_city = “Brooklyn” 

 (branch     (account      depositor))) 

 Transformation using rule 7a. 

 Pcustomer_name 

                  ((branch_city =“Brooklyn” (branch))  

  (account      depositor)) 

 Performing the selection as early as possible reduces the size of the 

relation to be joined.  
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Example with Multiple Transformations 

 Query:  Find the names of all customers with an account at a 

Brooklyn branch whose account balance is over $1000. 

Pcustomer_name((branch_city = “Brooklyn”   balance > 1000  

                      (branch     (account      depositor))) 

 Transformation using join associatively (Rule 6a): 

Pcustomer_name((branch_city = “Brooklyn”   balance > 1000  

                      (branch     account))      depositor)  

 Second form provides an opportunity to apply the “perform 

selections early” rule, resulting in the subexpression 

           branch_city = “Brooklyn” (branch)      balance > 1000 (account) 

 Thus a sequence of transformations can be useful 
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Multiple Transformations (Cont.) 
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Transformation: Pushing Projections down 

 When we compute 

  (branch_city = “Brooklyn” (branch)    account ) 

 
we obtain a relation whose schema is: 
(branch_name, branch_city, assets, account_number, balance) 

 Push projections using equivalence rules 8a and 8b; eliminate unneeded 
attributes from intermediate results to get: 
 Pcustomer_name (( 
    Paccount_number ( (branch_city = “Brooklyn” (branch)     account ))    depositor ) 

 

 Performing the projection as early as possible reduces the size of the 
relation to be joined.  

 

Pcustomer_name((branch_city = “Brooklyn”  (branch)     account)     depositor)  
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Join Ordering Example 

 For all relations r1, r2, and r3, 

  (r1    r2)    r3  = r1    (r2    r3 ) 

 (Join Associativity) 

 If r2    r3  is quite large and r1    r2 is small, we choose 

 

  (r1    r2)    r3  

 so that we compute and store a smaller temporary relation. 
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Join Ordering Example (Cont.) 

 Consider the expression 

  Pcustomer_name  ((branch_city = “Brooklyn” (branch)) 

                                        (account     depositor)) 

 Could compute   account     depositor   first, and join result with  

  branch_city = “Brooklyn” (branch) 

but   account     depositor   is likely to be a large relation. 

 Only a small fraction of the bank’s customers are likely to have 

accounts in branches located in Brooklyn 

  it is better to compute 

   branch_city = “Brooklyn” (branch)    account 

        first.  

 



Measures of Query Cost 
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Measures of Query Cost 

 Cost is the total elapsed time for answering query 

 Many factors contribute to time cost 

 disk accesses, CPU, or even network communication 

 Typically disk access is the predominant cost, and is also 

relatively easy to estimate.   Measured by taking into account 

 Number of seeks 

 Number of blocks read 

 Number of blocks written 

 Cost to write a block is greater than cost to read a block  

– data is read back after being written to ensure that 

the write was successful 
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Measures of Query Cost (Cont.) 

 In this course, for simplicity we just use the number of block transfers  

from disk as the cost measures (we ignore other costs for simplicity) 

 tT – time to transfer one block 

 we do not include cost to writing output of the query to disk  

in our cost formulae 

 

 Several algorithms can reduce disk IO by using extra buffer space  

 Amount of real memory available to buffer depends on other concurrent 

queries and OS processes, known only during execution 

 Required data may be buffer resident already, avoiding disk I/O 

 But hard to take into account for cost estimation 
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Selection Operation 

File scan – search algorithms that locate and retrieve records in the file 

that fulfill a selection condition. 

 

 Linear search.  Scan each file block and test all records to see 

whether they satisfy the selection condition. 

 Cost estimate = br block transfers 

br  number of blocks containing records from relation r 

 

If selection is on a key attribute, can stop on finding record 

 cost = (br /2) block transfers 

 

Linear search can always be applied regardless of  

E.g., balance<2500(account) 
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Selection Operation (Cont.) 

 Binary search.  Applicable if selection is an equality comparison on 

the attribute on which file is ordered.  

 Assume that the blocks of a relation are stored contiguously  

 Cost estimate (number of disk blocks to be scanned): 

 cost of locating the first tuple by a binary search on the 

blocks 

– log2(br) 

 

 If there are multiple records satisfying selection 

– Add transfer cost  of the number of blocks containing 

records that satisfy selection condition  

E.g., balance=2500(account) 
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Selections Using Indices 

 Index scan – search algorithms that use an index 

 selection condition must be on search-key of index. 

 

 Primary index on candidate key, equality.  Retrieve a single record that satisfies 
the corresponding equality condition   

 Cost = (hi + 1)  

 

 Primary index on nonkey, equality. Retrieve multiple records.  

 Records will be on consecutive blocks 

 Let b = number of blocks containing matching records 

   Cost = (hi  +  b) 

 

 Equality on search-key of secondary index. 

 Retrieve a single record if the search-key is a candidate key 

 Cost = (hi + 1)  

 Retrieve multiple records if search-key is not a candidate key 

 each of n matching records may be on a different block   

 Cost =  (hi + n) 

– Can be very expensive! 

E.g., balance=2500(account) 
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Selections Involving Comparisons 
    AV (r)   or   A  V(r)  

 By using  

  a linear file scan or binary search, 

  or by using indices in the following ways: 

 Primary index, comparison. (Relation is sorted on A) 

 For A  V(r)  use index to find first tuple  v  and scan relation  

sequentially  from there 

 For AV (r) just scan relation sequentially till first tuple > v; do not use index 

 Secondary index, comparison.  

 For A  V(r)  use index to find first index entry  v and scan index 

sequentially  from there, to find pointers to records. 

 For AV (r) just scan leaf pages of index finding pointers to records, till first 

entry > v 

 In either case, retrieve records that are pointed to 

– requires an I/O for each record 

–  Linear file scan may be cheaper 
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Implementation of Complex Selections 

  Conjunction:  1 2. . . n(r)   

 

 Conjunctive selection using one index.   

 Select a combination of i and algorithms A1 through A7 that 

results in the least cost for i (r). 

  Test other conditions on tuple after fetching it into memory buffer. 

 Conjunctive selection using multiple-key index.   

 Use appropriate composite (multiple-key) index if available. 

 Conjunctive selection by intersection of identifiers).  

 Use corresponding index for each condition, and take intersection 

of all the obtained sets of record pointers.  

 Then fetch records from file 

 If some conditions do not have appropriate indices, apply test in 

memory. 
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Algorithms for Complex Selections 

   Disjunction:1 2 . . . n (r).  

 Disjunctive selection by union of identifiers.  

 Applicable if all  conditions have available indices.   

 Otherwise use linear scan. 

 Use corresponding index for each condition, and take union of all the 

obtained sets of record pointers.  

 Then fetch records from file 

 

   Negation:  (r) 

 Use linear scan on file 

 If very few records satisfy , and an index is applicable to  

  Find satisfying records using index and fetch from file 
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Sorting 

Sorting plays an important role in DBMS: 

 1) query can specify that the output be sorted 

 2) some operations can be implemented efficiently if the input 

   relations are ordered (e.g., join) 

 

 We may build an index on the relation, and then use the index to read 

the relation in sorted order.  Records are ordered logically rather than 

physically. May lead to one disk block access for each tuple. 

Sometimes is desirable to order the records physically 

 

 For relations that fit in memory, techniques like quicksort can be used.  

For relations that don’t fit in memory, external  

sort-merge is a good choice.  
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External Sort-Merge 

1. Create sorted runs.   

Let i be 0 initially.  

 Repeat  

     (a)  Read M blocks of relation into memory 

     (b)  Sort the in-memory blocks 

     (c)  Write sorted data to run file Ri;  

     (d) increment i. 

   until  the end of the relation  

 

       Let the final value of i be N 

Let M denote the number disk blocks whose  

contents can be buffered in main memory 

Sorting records in a file 
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External Sort-Merge (Cont.) 

2. Merge the runs (N-way merge). We assume (for now) that N < 

M.  

1. Use N blocks of memory to buffer input runs, and 1 block to 

buffer output. Read the first block of each run into its buffer 

page 

2. repeat 

1. Select the first record (in sort order) among all buffer 

pages 

2. Write the record to the output buffer.  If the output buffer 

is full write it to disk. 

3. Delete the record from its input buffer page. 

If the buffer page becomes empty then 

   read the next block (if any) of the run into the buffer.  

3. until all input buffer pages are empty: 
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External Sort-Merge (Cont.) 

 If N  M, several merge passes are required. 

 In each pass, contiguous groups of M - 1 runs are merged.  

 A pass reduces the number of runs by a factor of M -1, and 

creates runs longer by the same factor.  

E.g.  If M=11, and there are 90 runs, one pass reduces 

the number of runs to 9, each 10 times the size of the 

initial runs 

 Repeated passes are performed till all runs have been 

merged into one. 
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Example: External Sorting Using Sort-Merge 
fr = 1 M = 3 

- tranfer 3 blocks 

- sort records  

- store in a run  
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External Merge Sort (Cont.) 

 Cost analysis: 

 Initial number of runs: br/M 

 Number of runs decrease of a factor M-1 in each merge pass. 
Total number of merge passes required: logM–1(br/M). 
 

 Block transfers for initial run creation as well as in each pass is 2br 

 for final pass, we don’t count write cost  

– we ignore final write cost for all operations since the output of 
an operation may be sent to the parent operation without 
being written to disk 

 Thus total number of block transfers for external sorting: 

 
  br ( 2 logM–1(br / M) + 1) 

In the example:  

12 ( 2 log2 (12 / 3) + 1) = 12 (2*2 + 1) = 60 block transfers 
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Join Operation 

 Several different algorithms to implement joins 

 Nested-loop join 

 Block nested-loop join 

 Indexed nested-loop join 

 Merge-join 

 Hash-join 

 Choice based on cost estimate 

 Examples use the following information 

 Number of records of customer:  10,000     depositor: 5000 

 Number of blocks of   customer:       400     depositor:   100 
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Nested-Loop Join 

 To compute the theta join         r      s 

for each tuple tr in r do begin 

 for each tuple ts  in s do begin 

  test pair (tr,ts) to see if they satisfy the join condition   

  if they do, add tr • ts to the result. 

 end 

end 

 r  is called the outer relation and s the inner relation of the join. 

 Requires no indices and can be used with any kind of join condition. 

 Expensive since it examines every pair of tuples in the two relations.  

r s 
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Nested-Loop Join (Cont.) 

 In the worst case, if there is enough memory only to hold one block of each 
relation, the estimated cost is  

                nr  bs + br     block transfers 

 

 If the smaller relation fits entirely in memory, use that as the inner relation. 

  Reduces cost to br  + bs block transfers 

 

 Assuming worst case memory availability cost estimate is 

 with depositor as outer relation: 

 5000  400 + 100 = 2,000,100 block transfers, 

 with customer  as the outer relation  

 10000  100 + 400 = 1,000,400 block transfers 

 

 If smaller relation (depositor) fits entirely in memory, the cost estimate will be  
500 block transfers. 

 

 Block nested-loops algorithm (next slide) is preferable. 
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Block Nested-Loop Join 

 Variant of nested-loop join in which every block of inner relation is 

paired with every block of outer relation. 

  for each block Br of r do begin 

  for each block Bs of s do begin 

   for each tuple tr in Br  do begin 

    for each tuple ts in Bs do begin 

     Check if (tr,ts) satisfy the join condition  

     if they do, add tr
 • ts to the result. 

    end 

   end 

  end 

 end 

r s 
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Block Nested-Loop Join (Cont.) 

 Worst case estimate (if there is enough memory only to hold one 

block of each relation):  br  bs + br  block transfers 

 Each block in the inner relation s is read once for each block in 

the outer relation (instead of once for each tuple in the outer 

relation 

 

 Best case (the smaller relation fits entirely in memory ): 

 br + bs block transfers. 

 

 Improvements to nested loop and block nested loop algorithms: 

 Use index on inner relation if available (next slide) 
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Indexed Nested-Loop Join 

 Index lookups can replace file scans if 

 join is an equi-join or natural join and 

 an index is available on the inner relation’s join attribute 

 Can construct an index just to compute a join. 

 For each tuple tr in the outer relation r, use the index to look up tuples in s 

that satisfy the join condition with tuple tr. 

 Worst case:  buffer has space for only one page of r, and, for each tuple 

in r, we perform an index lookup on s. 

 Cost of the join:  br + nr  c 

 Where c is the cost of traversing index and fetching all matching s 

tuples for one tuple or r 

 c can be estimated as cost of a single selection on s using the join 

condition. 

 If indices are available on join attributes of both r and s, 

use the relation with fewer tuples as the outer relation. 

r 
s 

index 
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Example of Nested-Loop Join Costs 

 Compute depositor     customer, with depositor as the outer relation. 

 Let customer have a primary B+-tree index on the join attribute 

customer-name, which contains 20 entries in each index node. 

 Since customer has 10,000 tuples, the height of the tree is 4, and one 

more access is needed to find the actual data 

 depositor has 5000 tuples 

 Cost of block nested loops join 

 400*100 + 100 =  40,100 block transfers  

 assuming worst case memory  

 may be significantly less with more memory 

  Cost of indexed nested loops join 

 100 + 5000 * 5 = 25,100  block transfers 
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Merge-Join 

1. Sort both relations on their join attribute (if not already sorted on the join 

attributes). 

2. Merge the sorted relations to join them 

1. Join step is similar to the merge stage of the sort-merge algorithm.   

2. Main difference is handling of duplicate values in join attribute — every 

pair with same value on join attribute must be matched 

3. Detailed algorithm in book 
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Merge-Join (Cont.) 

 Can be used only for equi-joins and natural joins 

 Each block needs to be read only once (assuming all tuples for any given 

value of the join attributes fit in memory 

 Thus the cost of merge join is:  

         br + bs  block transfers 

 + the cost of sorting if relations are unsorted. 
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Hash-Join 

 Applicable for equi-joins and natural joins. 

 A hash function h is used to partition tuples of both relations  

 h maps JoinAttrs values to {0, 1, ..., n}, where JoinAttrs denotes the 

common attributes of r and s used in the natural join.  

 r0, r1, . . ., rn denote partitions of r tuples 

 Each tuple tr  r is put in partition ri where i = h(tr [JoinAttrs]). 

 s0,, s1. . ., sn denotes partitions of s tuples 

 Each tuple ts s is put in partition si, where i = h(ts [JoinAttrs]). 

 

 Note: In book,  ri   is denoted as Hri, si is denoted as Hsi  and 

 n is denoted as nh.  
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Hash-Join (Cont.) 
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Hash-Join (Cont.) 

 r  tuples in ri need only to be compared with s tuples in si Need 

not be compared with s tuples in any other partition, since: 

 an r tuple and an s tuple that satisfy the join condition will 

have the same value for the join attributes. 

 If that value is hashed to some value i, the r tuple has to be in 

ri and the s tuple in si. 
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Hash-Join Algorithm 

1. Partition the relation s using hashing function h.  When partitioning a 

relation, one block of memory is reserved as the output buffer for 

each partition. 

2. Partition r similarly. 

3. For each i: 

(a) Load si into memory and build an in-memory hash index on it 

using the join attribute.  This hash index uses a different hash 

function than the earlier one h. 

(b) Read the tuples in ri from the disk one by one.  For each tuple 

tr locate each matching tuple ts in si using the in-memory hash 

index.  Output the concatenation of their attributes. 

The hash-join of r and s is computed as follows. 

Relation s is called the build input and  

         r  is called the probe input. 
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Hash-Join algorithm (Cont.) 
 The value n and the hash function h is chosen such that each si should fit 

in memory(build relation). 

 The probe relation partitions ri (probe relation)need not fit in memory 

 Use the smaller relation as the build relation  

 Recursive partitioning required if number of partitions n is greater than 

number of pages M of memory. Rarely required. 

Partitioning of the relations requires complete reading and  

 writing of r and s:  2(br + bs) block transfers 

Read and probe phases read each of the partitions once: 

  (br + bs) block transfers  

Number of blocks of the partition could be more than (br + bs) as result 

of partially filled blocks that must be written and read back : 

 2n block transfers for each relation 

If recursive partitioning is not required: cost of hash join is 

          3(br + bs) + 4  n   block transfers  

          

Cost of Hash-Join 
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Example of Cost of Hash-Join 

 Assume that memory size is 20 blocks 

 bdepositor= 100 and bcustomer = 400. 

 depositor is to be used as build input.  Partition it into five partitions, each 

of size 20 blocks.  This partitioning can be done in one pass. 

 Similarly, partition customer into five partitions,each of size 80.  This is also 

done in one pass. 

 Therefore total cost, ignoring cost of writing partially filled blocks: 

 3(100 + 400) = 1500 block transfers 

customer     depositor 
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Complex Joins 

 Join with a conjunctive condition: 

  r     1  2...   n s 

 Either use nested loops/block nested loops, or 

 Compute the result of one of the simpler joins r     i s 

 final result comprises those tuples in the intermediate result 

that satisfy the remaining conditions 

   1  . . .  i –1  i +1  . . .  n 

 Join with a disjunctive condition  

   r      1  2 ...  n s  

 Either use nested loops/block nested loops, or 

 Compute as the union of the records in individual joins r       i s: 

  (r      1 s)  (r     2  s)  . . .  (r     n  s)  
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Other Operations 

 Duplicate elimination can be implemented via hashing or sorting. 

 On sorting duplicates will come adjacent to each other, and all but 

one set of duplicates can be deleted.   

 Optimization: duplicates can be deleted during run generation as 

well as at intermediate merge steps in external sort-merge. 

 Hashing is similar – duplicates will come into the same bucket. 

 Projection: 

 perform projection on each tuple  

 followed by duplicate elimination.  
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Other Operations : Aggregation 

 Aggregation can be implemented in a manner similar to duplicate 

elimination. 

 Sorting or hashing can be used to bring tuples in the same group 

together, and then the aggregate functions can be applied on each 

group.  

 Optimization: combine tuples in the same group during run 

generation and intermediate merges, by computing partial 

aggregate values 

 For count, min, max, sum: keep aggregate values on tuples 

found so far in the group.   

– When combining partial aggregate for count, add up the 

aggregates 

 For avg, keep sum and count, and divide sum by count at the 

end 
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Other Operations : Set Operations 

 Set operations (,  and ):  can either use variant of merge-join after 
sorting, or variant of hash-join. 

 E.g., Set operations using hashing: 

1. Partition both relations using the same hash function 

2. Process each partition i as follows.   

1. Using a different hashing function, build an in-memory hash index 
on ri. 

2. Process si as follows 

 r  s:   

1. Add tuples in si to the hash index if they are not already in it.   

2. At end of si add the tuples in the hash index to the result. 

 r  s:  

1. output tuples in si to the result if they are already there in the 
hash index 

  r – s:  

1. for each tuple in si, if it is there in the hash index, delete it 
from the index.  

2.  At end of si add remaining tuples in the hash index to the 
result.  
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Evaluation of Expressions 

 So far: we have seen algorithms for individual operations 

 Alternatives for evaluating an entire expression tree 

 Materialization:  generate results of an expression whose inputs 

are relations or are already computed, materialize (store) it on 

disk.  Repeat. 

 Pipelining:  pass on tuples to parent operations even as an 

operation is being executed 
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Materialization 

 Materialized evaluation:  evaluate one operation at a time, 

starting at the lowest-level.  Use intermediate results 

materialized into temporary relations to evaluate next-level 

operations. 

 E.g., in figure below, compute and store 

 

 

then compute the store its join with customer, and finally 

compute the projections on customer-name.  

)(2500 accountbalance
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Materialization (Cont.) 

 Materialized evaluation is always applicable 

 Cost of writing results to disk and reading them back can be quite high 

 Our cost formulas for operations ignore cost of writing results to 

disk, so 

 Overall cost  =  Sum of costs of individual operations +  

                         cost of writing intermediate results to disk 
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Pipelining 
 Pipelined evaluation :  evaluate several operations simultaneously, 

passing the results of one operation on to the next. 

 E.g., in previous expression tree, don’t store result of 

 

  

 instead, pass tuples directly to the join..  Similarly, don’t store result of 

join, pass tuples directly to projection.  

 Much cheaper than materialization: no need to store a temporary relation 

to disk. 

 

 Pipelining may not always be possible – e.g., sort, hash-join. 

The inputs to the operations are not available all at once for processing. 

Each operation at the bottom of a pipeline continually generates output 

tuples and put them in its output buffer, until the buffer is full. When an 

operation uses tuples from its input buffer, removes tuples from the buffer.  

)(2500 accountbalance



Statistics for Cost Estimation 
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Statistical Information for Cost Estimation 

 nr:  number of tuples in a relation r. 

 br: number of blocks containing tuples of r. 

 lr: size of a tuple of r. 

 fr: the number of tuples of r that fit into one block (blocking factor of r) with 
    lb size of a block 

 

 

 

 V(A, r): number of distinct values that appear in r for attribute A.  
This value is the same as the size of A(r). 
If A is a key for relation r, V(A, r)= nr 

 

 If tuples of r are stored together physically in a file, then:  
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The DBMS catalog stores the following statistical information.  

For each relation r,  

lr 

lb 
fr = 
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Selection Size Estimation 

 A=v(r)   equality predicate 

 c = nr / V(A,r)  

 c = 1     if equality condition on a key attribute  

 

 AV(r) (case of A  V(r) is symmetric) 

 If min(A,r) and max(A,r) are available in catalog 

 c = 0 if v < min(A,r) 

 

 c = 

 

 In absence of statistical information c is assumed to be nr / 2. 

 

),min(),max(

),min(
.

rArA

rAv
nr





The size estimate of the result of a selection operation depends on the  

selection predicate. 

 Let c denote  the estimated number of tuples satisfying the condition.  
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Size Estimation of Complex Selections 

 The selectivity of a condition i is the probability that a tuple in the 

relation r satisfies i .  

  If si  is the number of satisfying tuples in r, the selectivity of  i is 

given by si /nr. 

 Conjunction:  1 2. . .  n (r).  Assuming indepedence, estimate of  

  

tuples in the result is: 
 

 Disjunction:1 2 . . .  n (r).   Estimated number of tuples: 

 

 

 

 Negation:  (r).  Estimated number of tuples: 

 nr – size((r)) 
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Join Operation:  Running Example 

Running example:     depositor     customer      natural join  

 

Catalog information for join examples: 

 ncustomer = 10,000. 

 fcustomer  = 25, which implies that  

 bcustomer =  10000/25  = 400. 

 ndepositor = 5000. 

 fdepositor   = 50, which implies that  

 bdepositor =  5000/50  = 100. 
 

 V(customer_name, depositor) = 2500, which implies that , on average, each 
customer has two accounts. 
 

 Also assume that customer_name in depositor is a foreign key on customer. 
 

 V(customer_name, customer) = 10000 (primary key!) 
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Estimation of the Size of Joins 

 The Cartesian product r  x s contains nr .ns tuples; each tuple occupies sr + ss 
bytes. 

 If R  S = , then r     s is the same as r  x s.  
 

 If R  S is a key for R, then a tuple of s will join with at most one tuple from r 

 therefore, the number of tuples in r     s is no greater than the number of 
tuples in s: 
  tuples in  r     s <=  ns 

 

 If R  S  is a foreign key in S referencing R, then the number of tuples in  
r     s is exactly the same as the number of tuples in s. 

 

 The case for R  S being a foreign key referencing S is symmetric. 

 

 In the example query depositor     customer, customer_name in  depositor is a 
foreign key of customer 

  hence, the result has exactly ndepositor tuples, which is 5000 

  tuples in  r     s  =  ns 
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Estimation of the Size of Joins (Cont.) 

 If R  S = {A} is not a key for R or S. 

 

If we assume that every tuple t in R produces tuples in R    S, the 

number of tuples in R     S is estimated to be: 

 

 

 

 

If the reverse is true, the estimate obtained will be: 

 

 

 

 

The lower of these two estimates is probably the more accurate one. 

),( sAV

nn sr 
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Estimation of the Size of Joins (Cont.) 

 Compute the size estimates for depositor    customer without using 

information about foreign keys: 

 

 V(customer_name, depositor) = 2500, and 

V(customer_name, customer) = 10000 

 The two estimates are 5000 * 10000/2500 = 20,000  

and 5000 * 10000/10000 = 5000 

 We choose the lower estimate, which in this case, is the same as 

our earlier computation using foreign keys. 
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Size Estimation for Other Operations 

 Projection:  estimated size of A(r)   =   V(A,r) 

 Aggregation : estimated size of AgF(r)   = V(A,r) 

 Set operations 

  For unions/intersections of selections on the same relation: 

rewrite and use size estimate for selections 

 E.g. 1 (r)  2 (r)  can be rewritten as 1 2 (r) 

 For operations on different relations: 

 estimated size of r  s  = size of r + size of s.    

 estimated size of r  s  = minimum size of r and size of s. 

 estimated size of r – s   = r. 

 All the three estimates may be quite inaccurate, but provide 

upper bounds on the sizes. 
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Estimation of Number of Distinct Values 

of an attribute: V(A, r’) 

Selections:  (r)  

 If  forces A to take a specified value: V(A, (r)) = 1. 

 e.g., A = 3 

 If  forces A to take on one of a specified set of values:  

        V(A, (r)) = number of specified values. 

 (e.g., (A = 1 V A = 3 V A = 4 )),  

 If the selection condition  is of the form A op r 

 estimated V(A, (r)) = V(A.r) * s 

 where s is the selectivity of the selection. 

 In all the other cases: use approximate estimate of 

  min(V(A,r), n (r) ) 

 More accurate estimate can be got using probability theory, but 

this one works fine generally 
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Estimation of Distinct Values (Cont.) 

Joins: r      s 

 If all attributes in A are from r 

     estimated  V(A, r     s) = min (V(A,r), n r    s) 

 If A contains attributes A1 from r and A2 from s, then estimated  

V(A,r     s) =  

  min(V(A1,r)*V(A2 – A1,s), V(A1 – A2,r)*V(A2,s), nr     s) 

  More accurate estimate can be got using probability theory, but 

this one works fine generally 
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Estimation of Distinct Values (Cont.) 

 Estimation of distinct values are straightforward for projections. 

 They are the same in A (r) as in r.  

 

 The same holds for grouping attributes of aggregation. 

 

 For aggregated values  

 For min(A) and max(A), the number of distinct values can be 

estimated as min(V(A,r), V(G,r))  where G denotes grouping attributes 

 For other aggregates, assume all values are distinct, and use V(G,r) 

 



Choice of evaluation plans 
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Enumeration of Equivalent Expressions 

 Query optimizers use equivalence rules to systematically generate 

expressions equivalent to the given expression 

 Can generate all equivalent expressions as follows:  

  Repeat 

 apply all applicable equivalence  rules on every equivalent 

expression found so far 

 add newly generated expressions to the set of equivalent 

expressions  

Until no new equivalent expressions are generated above 

 The above approach is very expensive in space and time 

 Two approaches 

 Optimized plan generation based on transformation rules 

 Special case approach for queries with only selections,  

projections and joins 
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Implementing Transformation Based 

Optimization 

 Space requirements reduced by sharing common sub-expressions 

 

 E.g. when applying join commutativity, subtrees below are the 

same and can be shared using pointers 

 

 

 

 

 

 

 

 

 

 Time requirements are reduced by not generating all expressions 

 Dynamic programming  

E1 E2 
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Choice of Evaluation Plans 

 Must consider the interaction of evaluation techniques when choosing 

evaluation plans 

 choosing the cheapest algorithm for each operation independently 

may not yield best overall algorithm.  E.g. 

 merge-join may be costlier than hash-join, but may provide a 

sorted output which reduces the cost for an outer level 

aggregation. 

 nested-loop join may provide opportunity for pipelining 

 Practical query optimizers incorporate elements of the following two 

broad approaches: 

1. Search all the plans and choose the best plan in a  

cost-based fashion. 

2. Uses heuristics to choose a plan. 
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Cost-Based Optimization 

 Consider finding the best join-order for r1    r2      . . . rn. 

 There are (2(n – 1))!/(n – 1)! different join orders for above expression.  

With n = 7, the number is 665280, with n = 10, the number is greater 

than 176 billion! 

 No need to generate all the join orders.  Using dynamic programming, 

the least-cost join order for any subset of  

{r1, r2, . . . rn} is computed only once and stored for future use.  
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Dynamic Programming in Optimization 

 To find best join tree for a set of n relations: 

 To find best plan for a set S of n relations, consider all possible 

plans of the form:  S1     (S – S1) where S1 is any non-empty 

subset of S. 

 Recursively compute costs for joining subsets of S to find the cost 

of each plan.  Choose the cheapest of the 2n – 1 alternatives. 

 Base case for recursion:  single relation access plan 

 Apply all selections on Ri using best choice of indices on Ri 

 When plan for any subset is computed, store it and reuse it when it 

is required again, instead of recomputing it 

 Dynamic programming 
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Join Order Optimization Algorithm 

procedure findbestplan(S) 

if (bestplan[S].cost  ) 

 return bestplan[S] 

// else bestplan[S] has not been computed earlier, compute it now 

if (S contains only 1 relation) 

         set bestplan[S].plan and bestplan[S].cost based on the best way  

         of accessing S  /* Using selections on S and indices on S */ 

     else for each non-empty subset S1 of S such that S1  S 

 P1= findbestplan(S1) 

 P2= findbestplan(S - S1) 

 A = best algorithm for joining results of P1 and P2 

 cost = P1.cost + P2.cost + cost of A 

 if cost < bestplan[S].cost  

   bestplan[S].cost = cost 

  bestplan[S].plan = “execute P1.plan; execute P2.plan; 

         join results of P1 and P2 using A” 

return bestplan[S] 
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Left Deep Join Trees 

 In left-deep join trees, the right-hand-side input for each join is 

a relation, not the result of an intermediate join. 
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Cost of Optimization 

 With dynamic programming time complexity of optimization with bushy 
trees is O(3n).   

 With n = 10, this number is 59000 instead of 176 billion! 

 Space complexity is O(2n)  

 To find best left-deep join tree for a set of n relations: 

 Consider n alternatives with one relation as right-hand side input 
and the other relations as left-hand side input. 

 Modify optimization algorithm: 

 Replace “for each non-empty subset S1 of S such that S1  S” 

 By:   for each relation r in S 
               let S1 = S – r . 

 If only left-deep trees are considered, time complexity of finding best join 
order is O(n 2n) 

 Space complexity remains at O(2n)  

 Cost-based optimization is expensive, but worthwhile for queries on 
large datasets (typical queries have small n, generally < 10) 
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Interesting Sort Orders 

 Consider the expression (r1     r2)     r3     (with A as common attribute) 

 An interesting sort order  is a particular sort order of tuples that could 

be useful for a later operation 

 Using merge-join to compute r1     r2   may be costlier than hash join 

but generates result sorted on A 

 Which in turn may make merge-join with r3 cheaper, which may 

reduce cost of join with r3 and minimizing overall cost  

 Sort order may also be useful for order by and for grouping 

 Not sufficient to find the best join order for each subset of the set of n 

given relations 

 must find the best join order for each subset,  

for each interesting sort order 

 Simple extension of earlier dynamic programming algorithms 

 Usually, number of interesting orders is quite small and doesn’t 

affect time/space complexity significantly 
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Heuristic Optimization 

 Cost-based optimization is expensive, even with dynamic programming. 

 Systems may use heuristics to reduce the number of choices that must 

be made in a cost-based fashion. 

 Heuristic optimization transforms the query-tree by using a set of rules 

that typically (but not in all cases) improve execution performance: 

 Perform selection early (reduces the number of tuples) 

 Perform projection early (reduces the number of attributes) 

 Perform most restrictive selection and join operations (i.e. with 

smallest result size) before other similar operations. 

 Some systems use only heuristics, others combine heuristics with 

partial cost-based optimization. 
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Structure of Query Optimizers 

 Many optimizers considers only left-deep join orders. 

 Plus heuristics to push selections and projections down the query 

tree 

 Reduces optimization complexity and generates plans amenable to 

pipelined evaluation. 

 Heuristic optimization used in some versions of Oracle: 

 Repeatedly pick “best” relation to join next  

 Starting from each of n starting points.  Pick best among these 

 Intricacies of SQL complicate query optimization 

 E.g. nested subqueries 
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Structure of Query Optimizers (Cont.) 

 Some query optimizers integrate heuristic selection and the 

generation of alternative access plans. 

 Frequently used approach 

 heuristic rewriting of nested block structure and aggregation 

 followed by cost-based join-order optimization for each block 

 Some optimizers (e.g. SQL Server) apply transformations to 

entire query and do not depend on block structure 

 Even with the use of heuristics, cost-based query optimization 

imposes a substantial overhead. 

 But is worth it for expensive queries 

 Optimizers often use simple heuristics for very cheap queries, 

and perform exhaustive enumeration for more expensive 

queries  
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 The process of finding a good strategy for processing a query is called query 
optimization 

 There are a number of equivalence rules that can be used to transform an 
expression into an equivalent one (execution plan of a query).  

 For evaluating cost of a query the system stores statistics for each relation  
(these statistics allow to estimate size and cost of intermediate results): 

 Number of tuples in the relation 

 Size of records in the relation 

 Number of distinct values that appera in the relation for a particular 
attribute 

 Presence of indices has a signigficant influence on the choice of a query 
processing strategy 

 Heuristics are used to reduce the number of plans considered. Heuristics 
include Push selection down and Push projection down rules 

 

 Query optimizer finds a “good” solution for processing the query 

 MySQL  

 update statistics 

 EXPLAIN select attributes  from tables where condition;  

Summary 


