
Hashing file organization

These slides are a modified version of the slides of the book

“Database System Concepts” (Chapter 12), 5th Ed., McGraw-Hill,

by Silberschatz, Korth and Sudarshan.

Original slides are available at www.db-book.com

http://www.mhcollege.com/
http://www.mhcollege.com/
http://www.mhcollege.com/
http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

1.2

Hashing

 A bucket is a unit of storage (typically a disk block).

 In a hash file organization we obtain the bucket of a record directly

from its search-key value using a hash function.

 Hash function h is a function from the set of all search-key values K

to the set of all bucket addresses

 h:K->{0,1,…,br-1}

 Hash function is used to locate records for access, insertion as well

as deletion.

 Records with different search-key values may be mapped to the

same bucket (h(ki)=h(kj)); thus entire bucket has to be searched

sequentially to locate a record.

1.3

Example of Hash File Organization

 There are 10 buckets,

 The binary representation of the ith letter in the alphabet is assumed to be
the integer i

 The hash function returns the sum of the binary representations of the
characters of a key modulo 10

 E.g. h(Perryridge) = 5 h(Round Hill) = 3 h(Brighton) = 3

 (125%10)=5 (113%3)=3 (93%3) = 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

a - b - c - d - e - f - g - h - i - j - k - l - m - n - o - p - q - r - s - t

21 22 23 24 25 26

- u – v - w - x - y - z

Hash file organization of account file, using branch_name as key

 (See figure in next slide.)

http://it.wiktionary.org/wiki/a
http://it.wiktionary.org/wiki/b
http://it.wiktionary.org/wiki/c
http://it.wiktionary.org/wiki/d
http://it.wiktionary.org/wiki/e
http://it.wiktionary.org/wiki/f
http://it.wiktionary.org/wiki/g
http://it.wiktionary.org/wiki/h
http://it.wiktionary.org/wiki/i
http://it.wiktionary.org/wiki/j
http://it.wiktionary.org/wiki/k
http://it.wiktionary.org/wiki/l
http://it.wiktionary.org/wiki/m
http://it.wiktionary.org/wiki/n
http://it.wiktionary.org/wiki/o
http://it.wiktionary.org/wiki/p
http://it.wiktionary.org/wiki/q
http://it.wiktionary.org/wiki/r
http://it.wiktionary.org/wiki/s
http://it.wiktionary.org/wiki/t
http://it.wiktionary.org/wiki/u
http://it.wiktionary.org/wiki/v
http://it.wiktionary.org/wiki/w
http://it.wiktionary.org/wiki/x
http://it.wiktionary.org/wiki/y
http://it.wiktionary.org/wiki/z

1.4

Example of Hash File Organization

Hash file organization

of account file, using

branch_name as key

(see previous slide for

details).

1.5

Hash Functions

 Worst hash function maps all search-key values to the same bucket;

this makes access time proportional to the number of search-key

values in the file.

 An ideal hash function is uniform, i.e., each bucket is assigned the

same number of search-key values from the set of all possible values.

 Ideal hash function is random, so each bucket will have the same

number of records assigned to it irrespective of the actual distribution of

search-key values in the file.

 Typical hash functions perform computation on the internal binary

representation of the search-key.

 For example, for a string search-key, the binary representations of

all the characters in the string could be added and the sum modulo

the number of buckets could be returned. .

1.6

Handling of Bucket Overflows

 Bucket overflow can occur because of

 Insufficient buckets

 Skew in distribution of records. This can occur due to two

reasons:

 multiple records have same search-key value

 chosen hash function produces non-uniform distribution of key

values

 Although the probability of bucket overflow can be reduced, it cannot

be eliminated; it is handled by using overflow buckets.

 Hash function must be chosen at implementation time. Number of

buckets is fixed, but the database may grow.

 If number is too large, we waste space. If number is too small, we get

too many ``collisions'', resulting in records of many search key values

being in the same bucket (space/performance tradeoff)

1.7

Handling of Bucket Overflows (Cont.)

 Overflow chaining – the overflow buckets of a given bucket are chained

together in a linked list.

 Above scheme is called closed hashing.

 An alternative, called open hashing, which does not use overflow

buckets, is not suitable for database applications.

1.8

Measures of Query Cost

Relation R. Fixed length records

Lr record length

Lb block length

nr total number of records that will be stored

fr = maximum number of records in a block

 fr = IntInf(Lb/Lr)

br = IntSup(nr/fr)

Cost of query evaluation measured in terms of number of disk accesses

(the cost to access data from disk is usually the most important cost,

since disk accesses are slow compared to in memory operations)

1.9

 Hash organization

 if selection is an equality comparison on the attribute of the hash

function

 Cost estimate

cost of access to the block

 1

 add an extra cost for the number of blocks of the

overflow chain, if the record is not in the block

or the attribute is not a key

 Using more blocks to store records reduced the overflow chain

 br >= IntSup(nr/fr)

 Overflow condition: more than fr records in a block

branch=Downtown(account)

Measures of Query Cost

Hash indices

1.11

Hash Indices

 Hashing can be used not only for file organization, but also for index-

structure creation.

 A hash index organizes the search keys, with their associated record

pointers, into a hash file structure.

 Strictly speaking, hash indices are always secondary indices

 if the file itself is organized using hashing, a separate primary

hash index on it using the same search-key is unnecessary.

 However, we use the term hash index to refer to both secondary

index structures and hash organized files.

1.12

Example of Hash Index

1.13

Overflow of Static Hashing

 Hash function h: K -> {0, .., nb-1}

Let’s us apply the hash function to a record.

p = 1/nb probability that the hash function generates block j

1-p probability that the hash function generates a block different from j

Given nr records, the probability P(x) that a block is generated x times is the

probability that the hash function generates the same block for x records:

 P(x) = (p)x (1 – p) nr-x

Overflow condition: block generated more times than the blocking factor of

the index (fI)

Overflow probability: S x> fi
P(x)

nr

x

1.14

Deficiencies of Static Hashing

 In static hashing, function h maps search-key values to a fixed set of B

of bucket addresses. Databases grow or shrink with time.

 If initial number of buckets is too small, and file grows, performance

will degrade due to too much overflows.

 If space is allocated for anticipated growth, a significant amount of

space will be wasted initially (and buckets will be underfull).

 If database shrinks, again space will be wasted.

 One solution: periodic re-organization of the file with a new hash

function

 Expensive, disrupts normal operations

 Better solution: allow the number of buckets to be modified dynamically.

1.15

Dynamic Hashing

 Good for database that grows and shrinks in size

 Allows the hash function to be modified dynamically

 Extendable hashing – one form of dynamic hashing

 Hash function generates values over a large range — typically b-bit
integers, with b = 32.

 At any time use only a prefix of the hash function to index into a
table of bucket addresses.

 Let the length of the prefix be i bits, 0 i 32.

 Bucket address table size = 2i. Initially i = 0

 Value of i grows and shrinks as the size of the database grows
and shrinks.

 Multiple entries in the bucket address table may point to a bucket
(why?)

 Thus, actual number of buckets is < 2i

 The number of buckets also changes dynamically due to
coalescing and splitting of buckets.

1.16

General Extendable Hash Structure

In this structure, i2 = i3 = i, whereas i1 = i – 1 (see next

slide for details)

1.17

Use of Extendable Hash Structure

 Each bucket j stores a value ij

 All the entries that point to the same bucket have the same values on

the first ij bits.

 To locate the bucket containing search-key Kj:

1. Compute h(Kj) = X

2. Use the first i high order bits of X as a displacement into bucket

address table, and follow the pointer to appropriate bucket

 To insert a record with search-key value Kj

 follow same procedure as look-up and locate the bucket, say j.

 If there is room in the bucket j insert record in the bucket.

 Else the bucket must be split and insertion re-attempted (next slide.)

 Overflow buckets used instead in some cases (will see shortly)

1.18

Insertion in Extendable Hash Structure (Cont)

 If i > ij (more than one pointer to bucket j)

 allocate a new bucket z, and set ij = iz = (ij + 1)

 Update the second half of the bucket address table entries originally
pointing to j, to point to z

 remove each record in bucket j and reinsert (in j or z)

 recompute new bucket for Kj and insert record in the bucket (further
splitting is required if the bucket is still full)

 If i = ij (only one pointer to bucket j)

 If i reaches some limit b, or too many splits have happened in this
insertion, create an overflow bucket

 Else

 increment i and double the size of the bucket address table.

 replace each entry in the table by two entries that point to the
same bucket.

 recompute new bucket address table entry for Kj
Now i > ij so use the first case above.

To split a bucket j when inserting record with search-key value Kj:

1.19

Deletion in Extendable Hash Structure

 To delete a key value,

 locate it in its bucket and remove it.

 The bucket itself can be removed if it becomes empty (with

appropriate updates to the bucket address table).

 Coalescing of buckets can be done (can coalesce only with a

“buddy” bucket having same value of ij and same ij –1 prefix, if it is

present)

 Decreasing bucket address table size is also possible

 Note: decreasing bucket address table size is an expensive

operation and should be done only if number of buckets becomes

much smaller than the size of the table

1.20

Use of Extendable Hash Structure:

Example

Initial Hash structure, bucket size = 2

1.21

Example (Cont.)

 Hash structure after insertion of one Brighton and two Downtown

records

1.22

Example (Cont.)

Hash structure after insertion of Mianus record

1.23

Example (Cont.)

Hash structure after insertion of three Perryridge records

1.24

Example (Cont.)

 Hash structure after insertion of Redwood and Round Hill records

1.25

Extendable Hashing vs. Other Schemes

 Benefits of extendable hashing:

 Hash performance does not degrade with growth of file

 Minimal space overhead

 Disadvantages of extendable hashing

 Extra level of indirection to find desired record

 Bucket address table may itself become very big (larger than
memory)

 Cannot allocate very large contiguous areas on disk either

 Solution: B+-tree structure to locate desired record in bucket
address table

 Changing size of bucket address table is an expensive operation

 Linear hashing is an alternative mechanism

 Allows incremental growth of its directory (equivalent to bucket
address table)

 At the cost of more bucket overflows

1.26

Comparison of Ordered Indexing and Hashing

 Cost of periodic re-organization

 Relative frequency of insertions and deletions

 Is it desirable to optimize average access time at the expense of

worst-case access time?

 Expected type of queries:

 Hashing is generally better at retrieving records having a specified

value of the key.

 If range queries are common, ordered indices are to be preferred

