
Exercise (Hash index)

Let us suppose we have the following relation r=(A,B,C), with A the primary key.

Let’s A be a sequence of upper-case letters in the alphabet

Assume

nr = 10 number of records in the relation

Lr = 200 byte size of a record (fixed length record)

LA = 96 byte size of attribute A

Lp = 4 byte size of a pointer

Lb = 500 byte size of a block

Heap file organization.

1) Choose a simple hash function on search-key A, assuming blocks of the index

 with fill factor 80% .

2) Assume the file is empty and the following records are stored in the file

in the same order in which they are listed (the search-key value is shown):

AA…A, CC…C, EE…E, FF…F, BB…B, II…I, NN…N, QQ…Q, TT…T, DD…D.

Show the index and the pointers to the file.

3) Outline the steps in answering the following queries and the cost in terms of number of block

transfers from disk:

 1) select * from r where A=’XX…X’;

 2) select * from r where ‘XX…X’ <= A < ‘YY…Y’;

4) Evaluate the overflow probability.

Point 1

Number of blocks of the index

We have that the hash function distributes records into 3 blocks.

Let h denotes the hash function:

 h: A -> {0, 1, 2}

4

10

nbI = = 3

100

= 4

5 *80

f’I =

f’l

nr

nbI =

100

= 5

500

fI =

LA + Lp

Lb

fI =
blocking factor of the
index: max number of
records in a block of the
index

number of records in a block of the
index assuming fill factor 80%

number of blocks of the
index

Typical hash functions perform computation on the internal binary

representation of characters in the search key.

In the following, for simplicity, we use the first character of the key.

 h(A) = (A[0] – ’A’) %3

Point 2

 Number of blocks of the file

 Records are stored as shown below.

 Block 0

 Block 1

 Block 2

 Block 3

 Block 4

 To construct the index, we apply the hash function.

 h(AA..A)=h(DD…D)= 0

 h(EE…E)=h(BB…B)=1

 h(CC…C)=h(FF…F)=h(II…I)=h(NN…N)=h(QQ…Q)=h(TT…T)=2

 We assume overflow is handled using separate blocks.

 The index is the following:

2

= 5

10

nb =
fr

nr

nb =

200

= 2

500

fr =

Lr

Lb

fr =

AA…A

CC…C

EE…E

FF…F

BB…B

II…I

NN…N

QQ…Q

TT…T

DD…D

blocking factor of the relation r:
max number of records in a
block of the file

number of blocks of the file

 Index File

0

1

2

 Overflow block

Point 3.1

 select * from r where A=”XXXXX”

We use the index.

Best case cost: C = 2 1 block of the index + 1 block of the file

Worst case cost: C = 3 1 block of the index + 1 overflow block + 1 block of the file

On average: C =  (2 * 2 + 1* 3)/ 3  = 3

Point 3.2

 select * from R where “XXXXX” <= A <=”YYYYY”

The index is not used.

Sequential scan of the file:

 C = nb = 5

Point 4

Hash function h: K -> {0, .., nb-1}

Let’s us apply the hash function to a record.

p = 1/nb probability that the hash function generates block j

1-p probability that the hash function generates a block different from j

Given nr records, the probability that a block is generated x times is the probability

that the hash function generates the same block for x records:

 P(x)=

Overflow condition: block generated more times than the blocking factor of the index (fI)

Probability of overflow:

 x> fI
P(x)

nr

x
(p)

x
 (1 – p)

nr-x

EE…E

BB…B

CC…C

FF…F

II…I

NN…N

QQ…Q

TT…T

AA…A

CC…C

EE…E

FF…F

BB…B

II…I

NN…N

QQ…Q

TT…T

DD…D

AA…AA

DD…DD

