
Exercise (Hash index) 

 

Let us suppose we have the following relation r=(A,B,C), with A the primary key.  

Let’s A be a sequence of upper-case letters in the alphabet 

Assume 

nr = 10   number of records in the relation 

Lr = 200 byte  size of a record (fixed length record) 

LA = 96 byte  size of attribute A 

Lp = 4 byte   size of a pointer 

Lb = 500 byte  size of a block 

Heap file organization. 

 

1) Choose a simple hash function on search-key A, assuming blocks of the index  

    with fill factor  80% .  

 

2) Assume the file is empty and the following records are stored in the file  

in the same order in which they are listed  (the search-key value  is shown): 

AA…A, CC…C, EE…E, FF…F, BB…B, II…I, NN…N, QQ…Q, TT…T, DD…D. 

Show the index and the pointers to the file. 

 

3) Outline the steps in answering the following queries and the cost in terms of number of block 

transfers from disk: 

   1) select *  from r where A=’XX…X’; 

 

   2) select * from r where ‘XX…X’  <= A < ‘YY…Y’;        

   

4) Evaluate the overflow probability. 

 

Point 1 

 

Number of blocks of the index 

 

 
  

 
 

We have that the hash function distributes records into 3 blocks. 

Let h denotes the hash function: 

    h: A -> {0, 1, 2} 
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Typical hash functions perform computation on the internal binary  

representation of characters in the search key. 

In the following, for simplicity, we use the first character of the key.  

 

    h(A) = (A[0] – ’A’ ) %3  

 

Point 2 

       

     Number of blocks of the file 

 

 
 

 Records are stored as  shown below.  

 

 

 Block 0      

 

 Block 1 

 

 

 Block 2 

 

 

 Block 3 

 

 

 Block 4 

 

 

 To construct the index, we apply the hash function.  

 

 h(AA..A)=h(DD…D)= 0                           

 h(EE…E)=h(BB…B)=1   

       h(CC…C)=h(FF…F)=h(II…I)=h(NN…N)=h(QQ…Q)=h(TT…T)=2 

 

       

             We assume overflow is handled using separate blocks. 

  The index is the following:  
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          Overflow block 

Point 3.1 

 select * from r where A=”XXXXX” 

 

We use the index. 

Best case cost:  C = 2            1 block of the index + 1 block of the file  

Worst case cost:  C = 3         1 block of the index + 1 overflow block + 1 block of the file                         

On average:  C =    (2 * 2 + 1* 3)/ 3  = 3 

 

Point 3.2 

 select * from R where “XXXXX” <= A <=”YYYYY” 

     

The index is not used.     

Sequential scan of the file:     

    C = nb = 5     

Point 4 

Hash function h: K -> {0, .., nb-1} 

Let’s us apply the hash function to a record.   

 

p = 1/nb    probability that the hash function generates block j 

1-p   probability that the hash function generates a block different from j 

 

Given nr records, the probability that a block is generated x times is the probability  

that the hash function generates the same block for x records: 

   

  P(x)=  

 

 

Overflow condition: block  generated more times than the blocking factor of the index  (fI)  

 

Probability of overflow:    
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P(x) 

nr 

x 
(p)

x
  (1 – p) 

nr-x
 

EE…E 

BB…B 

CC…C 

FF…F 

II…I 

NN…N 

QQ…Q 

TT…T 

 
AA…A 

CC…C 

EE…E 

FF…F 

BB…B 

II…I 

NN…N 

QQ…Q 

TT…T 

DD…D 

AA…AA 

DD…DD 


