
 Exercise (B+-tree index)

Suppose we have a relation r = (A,B,C), with A primary key.

Assume

nr = 100.000 number of records in the relation

Lr = 50 byte size of a record (fixed length record)

LA = 6 byte size of attribute A

Lp = 4 byte size of a pointer

Lb = 1000 byte size of a block

1. Show the number of leaves of a B+-tree index on search-key A, in the case of

a. heap file organization

b. sequential file organization on A

2. Outline the steps in answering the following queries and the cost in terms of number

of block transfers from disk, assuming nodes with fill factor 70%:

 1) select * from r where A=xxx;

 2) select * from r where 2.000 <= A < 3.000;

 assuming A uniformly distributed on the interval [1; 500.000]

3) select * from r where B = xxxx;

where B is not a key

Point 1

a) Heap file organization

We have a B+-tree secondary index. The index is dense, with an entry in the leaves for every

search-key value in the file.

Since A is a key of the relation, the number of search-key values in the leaves of the B+tree

is equal to the number of records in the file (100.000).

We evaluate the maximum number of (key, point) in a node (blocking factor

of the index, named fI)

6+4

1000-4

= 99

(LA+Lp)

Lb - Lp

=

m = 100 fanout of the nodes: max number of pointers in a node
m-1 = 99 number of search-key values

k’ k k’

k

nonleaf node leaf node

fI =

structure of a node

 m/2 = 50 minimum number of pointers in a node

 m/2 - 1 = 49 number of search-key values

b) Sequential file organization

We have a B+-tree primary index. The index is sparse, with an entry in the leaves for

every block of the file.

The number of search-key values in the leaves of the B+tree is equal to the number of blocks

in the file.

We evaluate the number of blocks in the file.

= 103
5.000

49

= 5.000

100.000

nb =

20

nr
nb =

fr

50

= 20

1000

fr =

Lr

Lb
fr =

= 51
5.000

99

= 2041
100.000

49

= 1011
100.000

99

Minimum number of leaf nodes in the B+-tree

Maximum number of leaf nodes in the B+-tree

Minimum number of leaf nodes in the B+-tree

blocking factor of the relation r
max number of records in a
block of the file

number of blocks of the file

Maximum number of leaf nodes in the B+-tree

Point 2

==

Let h be the height of a B+-tree, it can be shown that

Full nodes:

 1 level 1

 |

 m level 2

 |

 m*m level 3

 ……………….

 m*m … *m => mh-1 level h

- number of blocks (nodes) is:

- number of search-key values is:

Given the number of leaves, the height of the B+tree can be computed as follows:

Half full nodes:

- number of blocks (nodes) is:

- number of search-key values is:

==

 m/2
h-1

 -1

 m/2 -1

= 1 + 2

1 + 2 + 2 m/2 + …. + 2 m/2
h-2

=

2 m/2
h-1

-1 (number of nodes * min number of values in the node)

m
h
-1 (number of nodes * number of values in the node)

1 + m + m
2
 + ... + m

h-1
= (m

h
 -1) / (m-1)

nleaves = m
h-1

h-1 = logm (nleaves)

h = 1 + logm (nleaves)

Nodes with fill factor 70%.

m’ = 70% m
m’ = 70

Heap file organization

 h = 1+ log70 (1450) = 3

Point 2.1

select * from R where A=xxx

Cost of the query:

 C = height of the B+-tree + 1 block for the file

 C = 3 + 1 = 4

Point 2.2
select * from R where 2.000 <=A<3.000

- Cost of the query using the index

 fs = 1.000/500.000 = 1/500 selectivity factor of the query

 Let h be the height of the B+-tree

 C = (h-1) + fs* nleaves + fs* nr

 Number of leaf node transfers:
 fs* nleaves = 1/500 *1450 =3

 Number of file block transfers:

 fs* nr = 1/500 *100.000 =200 (heap file organization, a block transfer for each record)

 C = 2 + 3 + 200 = 205

 - Cost of sequential scan of the file

 Number of blocks of the file: 5000

 The worst case cost is 5000 and the best case cost is 1. On average, we have:(nb + 1)/2

 C’ =

 Cost of the query: min(C, C’) = min(205, 2.500) = 205

Point 2.3

select * from r where B = xxxx;

No index on B. Moreover B is not a key. We estimate C = nb

 C = 5.000

= 1450 nleaves =
100.000

69

(nb +1) /2 = 2.500

Sequential file organization

 h = 1+ log70 (73) = 3

Point 2.1

select * from R where A=xxx

- Cost of the query using the index

 C = height of the B+-tree + 1 block for the file

 C = 3 + 1 = 4

- Cost of the query using binary search

 C’ = log2 nb = log2 5.000 = 13

Cost of the query: min(C, C’) = min(4, 13) = 4

Point 2.2
select * from R where 2.000 <=A<3.000

- Cost using the index:

 fs = 1/500

 C = (h-1) + fs* nleaves + fs* nb

Number of leaves transfers:

 fs* nleaves = 1/500 *73 =1

 Number of file block transfers:

 fs* nb = 1/500 *5000 =10

 (sequential file organization, records are stored in search-key order in the blocks)

 C = 2 + 1 +10 = 13

 Point 2.3

 select * from r where B = xxxx;

 No index on B. Moreover B is not a key. We estimate C = nb

 C = 5.000

= 73 nleaves =
5.000

69

