
Exercise (static multilevel index, Sequential file organization) 
 
Let  r=(A,B,C,D,E), with A a key.  
Assume  
nr = 500.000   number of records in the relation 
Lr = 200 byte  size of a record (fixed length records) 
LA = 16 byte  size of attribute A 
Lp = 4 byte   size of a pointer 
Lb = 2400 byte size of a block 
Sequential file organization on search-key A 
 
1. Show the number of blocks of the file. 
 
2. Show the number of blocks of a static multilevel index on search-key A (primary index). 
 
3. Outline the steps in answering the following queries and the cost in terms of number of block 
transfers from disk: 
   1) select *  from r where A=xxx; 
 
   2) select * from r where 320.000 <= A < 330.000; 
       assuming A uniformly distributed on the interval [200.000; 800.000 ] 
 

Point 1. 
      We evaluate the blocking factor of  the relation. 

 
The number of blocks of the file is: 

 
Point 2 
Records are stored in search-key order. The primary index for the file is sparse.  
The number of search-key values in the index is equal to the number of blocks of the file. 
 

      We evaluate the  number of index records (key, point) in a block or blocking factor  
      of the index, named fI 
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Point 3.1  

 select *  from r where A=xxx; 
 

- Cost of the query using the index. 
 C = height of the index  + 1 block for the file   
 C = 3 + 1 = 4 
 
- Cost of the query using binary search.  
     C’ = log2 nb =  log2 41.667 = 16 
     
Cost of the query:  min(C, C’) = min(4, 16) =  4 
The query optimizer uses the primary index.    
  
Point 3.2 
 select * from r where 320.000 <= A < 330.000; 
  
- Cost using the index 
We evaluate the selectivity factor of the query  
fs = (330.000-320.000) /  (800.000 -200.000) = 10.000 / 600.000  = 1/60    
 
If blocks are chained together in search-key order: 
  
  C = number of the index levels  +    fs* nb  
  

          Number of file block transfers:  
                                fs* nb  =  1/60 *41667 =695 

           Cost of the query: 
           C = 3 + 695 = 698 (sequential file organization, records are stored in search-key order) 
         

If blocks are not chained: 
 
 C =    fs* nblevel3 +   fs* nblevel2  +   fs* nblevel1 +  fs* nb  
  C =    1/60* 1 +   1/60*3  +   1/60*348 +  1/60 *41667 = 1 + 1 + 6  + 695=703 
 

     The cost of the query is 703 block transfers. 
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number of blocks of the third level of the index  

nbIndex = 348 + 3+ 1 = 352 

We have a three-level sparse index. 
The number of blocks of the index is:  



 
Exercise (static multilevel index, heap file organization) 
Let’s suppose we have a heap file organization on search-key A. 
If we build an index on search-key A, the  index is dense with an entry  
for every search-key value in the file.  
A is a key of r. As a consequence, the number of search-key values in  
the index is equal to the number of records  in the file (500.000). 
 

 

 

 
 
 

 
Point 3.1  

 select *  from r where A=xxx; 
 

Cost of the query using the index 
 
 C = height of the index  + 1 block for the file   

 C = 3 + 1 = 4 
 
Point 3.2 
 select * from r where 320.000 <= A < 330.000; 
  
 - Cost of the query using the index 
    fs = 1/60   selectivity factor of the query 
   
 C =    fs* nblevel3 +   fs* nblevel2  +   fs* nblevel1 +  fs* nr     (one block transfer for each record) 
  C =    1/60* 1 +   1/60*35  +   1/60*4167 +  1/60 *500.000 =  
              1 + 1 + 70  + 8.334=8.406 
    
- Cost of sequential scan of the file 
       C = nb = 41.667 
  
Cost of the query: min(C, C’) = min (8.406, 41.667) = 8.406 
The query optimizer uses the secondary index.  
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We have a three-level dense index. 
The number of blocks of the index is:  nbIndex = 4167 + 35 + 1 = 4.203  
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