
Exercise (static multilevel index, Sequential file organization)

Let r=(A,B,C,D,E), with A a key.
Assume
nr = 500.000 number of records in the relation
Lr = 200 byte size of a record (fixed length records)
LA = 16 byte size of attribute A
Lp = 4 byte size of a pointer
Lb = 2400 byte size of a block
Sequential file organization on search-key A

1. Show the number of blocks of the file.

2. Show the number of blocks of a static multilevel index on search-key A (primary index).

3. Outline the steps in answering the following queries and the cost in terms of number of block
transfers from disk:
 1) select * from r where A=xxx;

 2) select * from r where 320.000 <= A < 330.000;
 assuming A uniformly distributed on the interval [200.000; 800.000]

Point 1.
 We evaluate the blocking factor of the relation.

The number of blocks of the file is:

Point 2
Records are stored in search-key order. The primary index for the file is sparse.
The number of search-key values in the index is equal to the number of blocks of the file.

 We evaluate the number of index records (key, point) in a block or blocking factor
 of the index, named fI

41667
nblevel1 =

120

= 348

20

= 120
2.400

fI =

LA +Lp

Lb

fI =

nb =
12

500.000
= 41.667

nr nb =
fr

200

= 12
2.400

fr =
Lr

Lb

fr = blocking factor of the relation r
max number of records in a
block of the file

number of blocks of the file

number of blocks of the first level of the index

Point 3.1

 select * from r where A=xxx;

- Cost of the query using the index.
 C = height of the index + 1 block for the file
 C = 3 + 1 = 4

- Cost of the query using binary search.
 C’ = log2 nb =  log2 41.667 = 16

Cost of the query: min(C, C’) = min(4, 16) = 4
The query optimizer uses the primary index.

Point 3.2
 select * from r where 320.000 <= A < 330.000;

- Cost using the index
We evaluate the selectivity factor of the query
fs = (330.000-320.000) / (800.000 -200.000) = 10.000 / 600.000 = 1/60

If blocks are chained together in search-key order:

 C = number of the index levels +  fs* nb 

 Number of file block transfers:
  fs* nb  =  1/60 *41667 =695

 Cost of the query:
 C = 3 + 695 = 698 (sequential file organization, records are stored in search-key order)

If blocks are not chained:

 C =  fs* nblevel3 +  fs* nblevel2 +  fs* nblevel1 +  fs* nb 
 C =  1/60* 1 +  1/60*3 +  1/60*348 +  1/60 *41667 = 1 + 1 + 6 + 695=703

 The cost of the query is 703 block transfers.

3
nblevel3 =

120

= 1

348
nblevel2 =

120

= 3 number of blocks of the second level of the index

number of blocks of the third level of the index

nbIndex = 348 + 3+ 1 = 352

We have a three-level sparse index.
The number of blocks of the index is:

Exercise (static multilevel index, heap file organization)
Let’s suppose we have a heap file organization on search-key A.
If we build an index on search-key A, the index is dense with an entry
for every search-key value in the file.
A is a key of r. As a consequence, the number of search-key values in
the index is equal to the number of records in the file (500.000).

Point 3.1

 select * from r where A=xxx;

Cost of the query using the index

 C = height of the index + 1 block for the file

 C = 3 + 1 = 4

Point 3.2
 select * from r where 320.000 <= A < 330.000;

 - Cost of the query using the index
 fs = 1/60 selectivity factor of the query

 C =  fs* nblevel3 +  fs* nblevel2 +  fs* nblevel1 +  fs* nr  (one block transfer for each record)
 C =  1/60* 1 +  1/60*35 +  1/60*4167 +  1/60 *500.000 =
 1 + 1 + 70 + 8.334=8.406

- Cost of sequential scan of the file
 C = nb = 41.667

Cost of the query: min(C, C’) = min (8.406, 41.667) = 8.406
The query optimizer uses the secondary index.

35
nblevel3 =

120

= 1

4167
nblevel2 =

120

= 35

500.000
nblevel1 =

120

 = 4167

fI = 120

We have a three-level dense index.
The number of blocks of the index is: nbIndex = 4167 + 35 + 1 = 4.203

number of blocks of the first level of the index

number of blocks of the second level of the index

number of blocks of the third level of the index

