Information Systems Master of Science in Computer Engineering -----

Exercise 1 (9 points)

Let's consider the following relational schema for an insurance company, customers and policies:

CUSTOMER(Cust_Id, Name, Age, City) BRANCH(Branch Id, Branch name, nEmployee, Branch city) POLICY(Policy_number, Cust_Id, Branch_Id, expiry_date) Primary keys are underlined in the relations. Moreover, Cust Id in POLICY is foreign key of CUSTOMER and Branch_Id in POLICY is foreign key of BRANCH. A customer can have more than one policy in the same or in different branches.

Assume that:	
$n_{\text{CUSTOMER}} = 50.000$	$V(Cust_Id, POLICY) = 50.000$
n _{BRANCH} = 10	$V(Branch_Id, POLICY) = 10$
$n_{\text{POLICY}} = 100.000$	V(City, CUSTOMER) = 15
	$V(Branch_city, BRANCH) = 5$
	$V(expiry_date, POLICY) = 20$

Given the query:

A gauma that

"Branch name of branches located in Florence holding policies with expiry date = 2018 stipulated by customers leaving in Pisa."

- 1) express the query as a relational-algebra expression;
- 2) show the basic steps of the query optimization process in terms of relational-algebra expression transformations
- 3) give an efficient strategy for computing the query.

Exercise 2 (6 points)

Consider the following schedule of concurrent transactions:

S: r1(x) r1(v) r3(z) w2(z) r3(x) w3(y) w1(y) w2(v)

1) Show if it is conflict serializable (CSR) or view serializable (VSR). Explain why. If serializable, show equivalent serial schedules.

2) Apply the rigorous two-phase locking protocol to the schedule. Is the schedule accepted?

3) Apply the timestamp-ordering protocol to the schedule, assuming that aborted transactions are immediately restarted. Is the schedule accepted?

Exercise 3 (6 points)

Consider an empty B+-tree with m= 4.

1) Show the B+-tree after the insertion of the following values of the search key: 36 12 18 25 3 70 19 5 40 30

2) Show the form of the B+-tree after the following operation: Delete 70.

Exercise 4 (9 points)

Let $r=(A,B,C)$, with A a key.	
Assume	
nr = 1.000.000	number of records in the relation
Lr = 50 byte	size of a record (fixed length records)
LA = 6 byte	size of attribute A
Lp = 4 byte	size of a pointer
Lb = 1000 byte	size of a block
Heap file organization.	

1. Show the number of blocks of a B+-tree index on search-key A, assuming that each block contains 70% of the records that can fit in a block.

2. Outline the steps in answering the following queries, showing **the best strategy** and **the cost** in terms of number of block transfers from disk:

1) select * from r where A=xxx;

2) select * from r where 50.000 <= A < 250.000; assuming A uniformly distributed on the interval [1; 10.000.000]

3) select * from R where B=xxx;