8 GUI Event Handling

ke
a'\.-
J I Introduction to Programming 2



Topics
* The Delegation Event Model

e Event Classes

 Event Listeners
- ActionListener Method
- MouselListener Methods
- MouseMotionListener Methods
- WindowListener Methods

- Guidelines for Creating Applications Handling GUI Events

ke
a'\.-
J I Introduction to Programming 2




Topics
* Adapter Classes

* |Inner Classes

* Anonymous Inner Classes

ke
a'\.-
I Introduction to Programming 2



The Delegation Event Model

* The Delegation Event Model
- Model used by Java to handle user interaction with GUI components
— Describes how your program can respond to user interaction

* Three important components:
- Event Source
- Event Listener/Handler
- Event Object

ke
a'\..-
J I Introduction to Programming 2




The Delegation Event Model

 Event Source
- GUI component that generates the event
- Example: button, mouse, keyboard

* Event Listener/Handler
- Receives news of events and processes user’s interaction

- Example: displaying an information useful to the user, computing for
a value

ke
a'\:
I Introduction to Programming 2



The Delegation Event Model

* Event Object

- Created when an event occurs (i.e., user interacts with a GUI
component)

- Contains all necessary information about the event that has
occurred
* Type of event that has occurred
* Source of the event

- May have one of several event classes as data type

ke
a'\.-
I Introduction to Programming 2



The Delegation Event Model

* A listener should be registered with a source
* Once registered, listener waits until an event occurs

* When an event occurs
- An event object created
— Event object is fired by the source to the registered listeners

* Once the listener receives an event object from the source
— Deciphers the notification

- Processes the event that occurred.

ke
a.'\..-
I Introduction to Programming 2




The Delegation Event Model

EVE NT
SO U RCE Source
Registers
Listener
Flres an
Event
ObJect
EVE NT
LISTEN ER

@ Reacts to
the Event

Introduction to Programming 2




Registration of Listeners

* Event source registering a listener:

vold add<Type>Listener (<Type>Listener listenerObj)
where,

- <Type> depends on the type of event source
* Can be Key, Mouse, Focus, Component, Action and others

— One event source can register several listeners

* Registered listener being unregistered:

vold remove<Type>Listener (<Type>Listener listenerObj)

ke
a'\:
I Introduction to Programming 2




JEDI

Event Classes

An event object has an event class as its reference data
type

The EventObject class
- Found in the java.util package

The AWTEvent class

- An immediate subclass of EventObject

- Defined in java.awt package

- Root of all AWT-based events

- Subclasses follow this naming convention:

<Type>Event

Introduction to Programming 2




Event Classes

Event Class

Description

ComponentEvent | Extends AWT7TEvent., Instantiated when a component is moved,
resized, made visible or hidden.
InputEvent Extends ComponentEvent. The abstract root event class for all

component-level input event classes.

ActionEvent

Extends AWTEvent. Instantiated when a button is pressed, a list item
is double-clicked, or a menu item is selected.

ItemEvent Extends AWTEvent. Instantiated when an item is selected or
deselected by the user, such as in a list or a checkbox.

KeyEvent Extends InputEvent. Instantiated when a key is pressed, released or
typed.

MouseEvent Extends InputEvent. Instantiated when a mouse button is pressed,
released, or clicked (pressed and released), or when a mouse cursor
enteres or exits a visible part of a component,

TextEvent Extends AWTEvent, Instantiated when the value of a text field or a

text area is changed.

WindowEvent

Extends ComponentEvent. Instantiated when a Window object is
opened, closed, activated, deactivated, iconified, deiconified, or when
focus is transferred into or out of the window.

Introduction to Programming 2




Event Listeners

* Classes that implement the <Type>Listener interfaces

e Common <Type>Listener interfaces:

Event Listeners Description
ActionListener Receives action events.
MouseListener Receives mouse events.

MouseMotionListener |Receives mouse motion events, which include dragging and
moving the mouse.

WindowlListener Receives window events.

ke
a.'\..-
I Introduction to Programming 2




ActionListener Method

* Contains exactly one method

Actionlistener Method

public void actionPerformed (ActionEvent e]

Contains the handler for the ActionEvent e that occurred.

ke
a'\:
I Introduction to Programming 2




MouseListener Methods

Mouselistener Methods

public void mouseClicked (MouseEwvent e)

Contains the handler for the event when the mouse is clicked (i.e., pressed and
released).

public void mouseEntered (MouseEwvent e)

Contains the code for handling the case wherein the mouse enters a component.

public void mouseExited (MouseEvent e)

Contains the code for handling the case wherein the mouse exits a component.

public void mousePregsed (MouseEvent e)

Invoked when the mouse button is pressed on a component.

public void mouseReleased (MouseEvent e)

Invoked when the mouse button is released on a component.

Introduction to Programming 2




MouseMotionListener
Methods

Mouselistener Methods

public vold mouseDragged (MouseEvent e)

Contains the code for handling the case wherein the mouse button is pressed on a
component and dragged. Called several times as the mouse is dragged.

public vold mouseMoved (MouseEvent e)

Contains the code for handling the case wherein the mouse cursor is moved onto a
component, without the mouse button being pressed. Called multiple times as the
mouse is moved.

Introduction to Programming 2




WindowListener Methods

Windowlistener Methods

public void windowOpened (WindowEwvent &)

Contains the code for handling the case when the Window object is opened (i.e., made
visible for the first time).

public void windowClosing (WindowEvent e)

Contains the code for handling the case when the user attempts to close Window object
from the object's system menu.

public void windowClosed (WindowEvent e)

Contains the code for handling the case when the Window object was closed after
calling dispose (i.e., release of resources used by the source) on the object.

public void windowActivated (WindowEvent e)

Invoked when a Window object is the active window (i.e., the window in use).

public void windowDeactivated (WindowEvent e]

Invoked when a Window object is no longer the active window,

public void windowIconified (WindowEwvent e)

Called when a Window object is minimized.

public volid windowDelconified (WindowEvent e)

Called when a Window object reverts from a minimized to a normal state.

Introduction to Programming 2




Creating GUI Applications
with Event Handling

Guidelines:
1. Create a GUI class

» Describes and displays the appearance of your GUI application

2. Create a class implementing the appropriate listener interface
* May refer to the same class as step 1

3. In the implementing class

* Override ALL methods of the appropriate listener interface

» Describe in each method how you would like the event to be handled

* May give empty implementations for methods you don’t need
4. Register the listener object with the source

* The object is an instantiation of the listener class in step 2
» Use the add<Type>Listener method

Introduction to Programming 2




|_\

N

w

10

Mouse Events Example

import java.awt.?*;
import Java.awt.event.*;

public class MouseEventsDemo extends Frame 1mplements
Mouselistener, MouseMotionlListener {

TextFileld tf;

public MouseEventsDemo (String title) {
super (title);
tf = new TextField(60);
addMouselListener (this);

}

//continued. ..

Introduction to Programming 2




11

12

13

14

15

16

17

18

19

20

21

Mouse Events Example

public void

/* Add components to the frame */
add (tf, BorderLayout.SOUTH);

launchFrame () {

setSize (300, 300);

setVisible (true) ;

}

public void mouseClicked (MouseEvent me)

String msg = "Mouse clicked.";

tf.setText (msqg) ;

}

//continued. ..

Introduction to Programming 2

{




22

23

24

25

26

277

28

29

30

31

32

33

//continued. ..

Mouse Events Example

public void mouseEntered (MouseEvent me)
String msg = "Mouse entered component.";
tf.setText (msqg);

}

public void mouseExited (MouseEvent me) {

String msg = "Mouse exited component.";
tf.setText (msqg);
}

public void mousePressed (MouseEvent me) |

String msg = "Mouse pressed.";

tf.setText (msqg) ;
}

Introduction to Programming 2



35

36

37

38

39

40

41

42

43

44

Mouse Events Example

public void mouseReleased (MouseEvent me) {

String msg = "Mouse released.";

tf.setText (msqg) ;

}

public void mouseDragged (MouseEvent me) {

String msg = "Mouse dragged at "

+ "," + me.getY () ;

tf.setText (msqg);

}

//continued. ..

Introduction to Programming 2

+ me.getX ()




45

46

477

48

49

50

51

52

53

54

Mouse Events Example

public void mouseMoved (MouseEvent me) {

String msg = "Mouse moved at " + me.getX()
+ "," + me.getY¥Y();

tf.setText (msqg) ;

}

public static void main(String args([]) {
MouseEventsDemo med =

new MouseEventsDemo ("Mouse Events Demo");

med.launchFrame () ;

Introduction to Programming 2




Close Window Example

|_\

import java.awt.*;

2 1lmport java.awt.event.¥*;

4 class CloseFrame extends Frame

5 implements WindowListener
6 Label label;

7 CloseFrame (String title) {

8 super (title);

9 label = new Label ("Close the frame.");

10 this.addWindowlListener (this);
11 }

W12 //continued. ..

-~

a'\.-

JEDI

Introduction to Programming 2



Close Window Example

13 vold launchFrame () {

14 setSize (300, 300);

15 setVisible (true);

16 ¥

17 public void windowActivated (WindowEvent e) {
18 }

19 public void windowClosed (WindowEvent e) {
20 }

21 public void windowClosing (WindowEvent e) {
22 setVisible (false);

23 System.exit (0);

24 }

25 //continued. ..
k

-~

a'\.-

JEDI

Introduction to Programming 2



26

277

28

29

30

31

32

33

34

35

36

37

Close Window Example

public void windowDeactivated (WindowEvent e) {
}

public void windowDelconified (WindowEvent e) {
}

public void windowIconified (WindowEvent e) {

}

public void windowOpened (WindowEvent e) {

}

public static void main(String args([]) {

CloseFrame cf =

cf.launchFrame () ;

new CloseFrame ("Close Window Example");

Introduction to Programming 2




Adapter Classes

* Why use Adapter classes?

- Implementing all methods of an interface takes a lot of work

- Interested in implementing some methods of the interface only

* Adapter classes
- Built-in in Java

- Implement all methods of each listener interface with more than one
method

- Implementations of the methods are all empty

ke
a'\.-
I Introduction to Programming 2



Adapter Classes:
Close Window Example

import java.awt.?*;

|_\

2 1lmport java.awt.event.*;

4 class CloseFrame extends Frame({

5 Label label;

6 CFListener w = new CFListener (this);

.

8 CloseFrame (String title) {

9 super (title);

10 label = new Label ("Close the frame.");
11 this.addWindowListener (w) ;

12 }

"k13 //continued...
a'\-’

JEDI

Introduction to Programming 2



Adapter Classes:
Close Window Example

14 vold launchFrame () {

15 setSize (300, 300);

16 setVisible (true);

17 }

18

19 public static void main(String args([]) {
20 CloseFrame cf =

21 new CloseFrame ("Close Window Example");
22 cf.launchFrame () ;

23 }

24 '}

ll25//continued...
iy =
J I Introduction to Programming 2



Adapter Classes:
Close Window Example

25 class CFListener extends WindowAdapter {

26 CloseFrame ref;

27 CFListener ( CloseFrame ref ) {

28 this.ref = ref;

29 }

30

31 public void windowClosing (WindowEvent e) {
32 ref.dispose();

33 System.exit (1) ;

34 }

35 }

Introduction to Programming 2




Inner Classes

e (Class declared within another class

* Why use inner classes?
— Help simplify your programs
- Especially in event handling

ke
a'\.-
J I Introduction to Programming 2




Inner Classes:
Close Window Example

import java.awt.?*;

|_\

2 1lmport java.awt.event.¥*;

4 class CloseFrame extends Frame/{

5 Label label;

6

7 CloseFrame (String title) {

8 super (title);

9 label = new Label ("Close the frame.");

10 this.addWindowListener (new CFListener());

11 }

W12 //continued. ..

-~

a'\.-

JEDI

Introduction to Programming 2



Inner Classes:
Close Window Example

13 vold launchFrame () {

14 setSize (300, 300);

15 setVisible (true);

16 }

17

18 class CFListener extends WindowAdapter ({
19 public void windowClosing (WindowEvent e) {
20 dispose () ;

21 System.exit (1) ;

22 }

23 }

ll24//continued...
iy =
J I Introduction to Programming 2



25

26

277

28

29

Inner Classes:

Close Window Example

public static void main(String args|[])
CloseFrame cf =
new CloseFrame ("Close Window

cf.launchFrame () ;

Introduction to Programming 2

Example");




Anonymous Inner Classes

e Unnamed inner classes

 Why use anonymous inner classes?
- Further simplify your codes
- Especially in event handling

ke
a'\.-
I Introduction to Programming 2




|_\

Anonymous Inner Classes:
Close Window Example

import java.awt.?*; import java.awt.event.*;
class CloseFrame extends Frame/{
Label label;

CloseFrame (String title) {

10

11

12

a'\.-
13

super (title);

label = new Label ("Close the frame.");
this.addWindowlListener (new WindowAdapter () {
public void windowClosing (WindowEvent e) {
dispose () ;

System.exit (1) ;

Introduction to Programming 2



éj
a'\-

Anonymous Inner Classes:

14
15
16
17
18
19
20
21
22
23

24 }

Close Window Example

vold launchFrame () {
setSize (300, 300) ;

setVisible (true) ;

public static void main (String args[]) {
CloseFrame cf =
new CloseFrame ("Close Window Example");

cf.launchFrame () ;

Introduction to Programming 2




Summary

* The Delegation Event Model

Register listeners

volid add<Type>Listener (<Type>Listener listenerObj)
Listeners wait for an event to occur

When event occurs:

* Event object created

* Object is fired by source to registered listeners
When listener receives event object:

* Deciphers notification

* Processes the event

Introduction to Programming 2




Summary

* The Delegation Event Model Components
- Event Source
- Event Listener/Handler
- Event Object

* Event Classes
- The EventObject Class

- The AWTEvent Class

* Root of all AWT-based events
» Subclasses follow this naming convention:

<Type>Event
k
iy =
I Introduction to Programming 2




Summary

 Event Listeners
- ActionListener Method
- Mouselistener Methods
- MouseMotionListener Methods
- WindowListener Methods

ke
a'\.-
J I Introduction to Programming 2




Summary

* Creating GUI Applications with Event Handling
1. Create a GUI class
2. Create a class implementing the appropriate listener interface
3. In the implementing class

* Override ALL methods of the appropriate listener interface
» Describe in each method how you would like the event to be handled

4. Register the listener object with the source
» Use the add<Type>Listener method

* Simplifying your code:
- Adapter Classes
- Inner Classes

g - Anonymous Inner Classes
I

Introduction to Programming 2




