Protein Structure Prediction

The Genes/Proteins Gap

- Large-scale DNA-sequencing initiatives have produced impressive information output on gene sequences -> protein 1D structure
- On the other hand, experimental determination of protein 3D structure is far more difficult (limited information output)
- As a consequence, the knowledge gap between genes and 3D structure of the corresponding proteins is widening...

Rationale

- Why protein structure prediction is important?
- In medicine
 - Comprehension of molecular basis of diseases
 - Drug design
- In biotechnology (e.g. for the design of new enzymes)
 - Emerging discipline: Protein Engineering
- Protein structure prediction is considered today the most important and challenging problem in computational biology (and bioinformatics as well)

The Leventhal Paradox

- Let's consider a small protein with 100 residues
- For the sake of simplicity, let's assume that each peptide bond could assume 3 possible positions:
 - -3^{99} ≈ 1.7 × 10⁴⁷ conformations
- Fastest motions $\approx 10^{-15}$ s , so: sampling all conformations would take 1.7×10^{32} sec
- How much time is it?
 - $-60 \times 60 \times 24 \times 365 = 31536000$ seconds in a year
- Sampling all conformations will take 5.5× 10²⁴ years!!!
- But...
 each protein folds quickly into a single stable native conformation!

Approaches: Classification

- Ab initio → only basic physics/geometry principles are used
- Comparative Methods (aka template-based methods)
 - → exploitation of information on experimentally known 1D/3D structures
 - Homology Modeling
 - Protein Threading

Ab Initio: Limitations

- Some particular proteins can assume different conformations, depending on the environmental conditions
- Some proteins reach their native state after binding other molecular partners (not known a priori)
- Some proteins reach their native state through the operation of external agents (e.g. chaperons)
- Not always the biologically significant conformation corresponds to a global energy minimum

Comparative Methods: Rationale

- The number of unique structural folds is small (currently <2000, possibly a few thousand)
- 90% of new structures submitted to PDB in the last years have similar folds in PDB

Homology Modeling

- Based on the observation that: significant levels of sequence similarity usually imply significant structural similarity.
- It try in the first place to identify one/multiple known protein structures likely to resemble the structure of the target sequence
- Upon the identification of "homologous" proteins, an alignment is obtained that maps the target sequence onto the template one.
- The sequence alignment and template structure are then used to produce a structural model of the target.
- With poor alignment score (<25%), the overall approach fails.

Homology Modeling: Steps

- The first two steps are critical, and usually are based on alignment techniques like FASTA and BLAST, or multiple alignment
- The model construction starts with dealing with "conserved regions", and then performing loop modeling.
- Model assessment can be done in different ways, e.g. by exploiting physical potentials or statistical potentials (e.g. based on observed residue-residue contact frequencies)

What's "Threading"?

- "Threading" in this context means placing, aligning each aa in the target sequence onto a position in a template structure
- Main difference between homology modeling and protein threading:
- Threading uses the structure to compute energy function during alignment

Protein Threading: Steps

- Construction of a structural template database
- Definition of a **scoring function**, e.g. a sequence—structure energy function
- Threading alignment, i.e. alignment of the target sequence with each of the structure templates
- Threading prediction, i.e. based on the best-fit selected template, perform local refinements on the target (e.g. on secondary structure, loop prediction, side chains, etc.)
- Report best resulting structural model

PT: Template DB

- How to build up a structural template DB?
- By inspecting PDB, FSSP, SCOP, CATH, select protein structures from the protein structure databases as structural templates.
- Remove pairs of proteins with highly similar structures.
- In some approaches, a template is split into cores, i.e. structurally conserved regions, to be used in the alignment algorithms.

PT: Energy Function

The scoring function has to take into account:

- mutation potential
- environment fitness potential
- pairwise potential
- secondary structure compatibilities
- gap penalties

PT: Energy Function

MTYKLILNGKTKGETTTEAVDAATAEKVFQYANDNGVDGEWTYTE

how preferable to put two particular residues nearby: **E**_n

alignment gap penalty: **E**_g

compatibility with local secondary structure prediction: **E**_{ss}

how well a residue fits a structural environment: **E**_s

how often a residue mutates to the template residue: E_m

total energy: $\mathbf{w}_{m}\mathbf{E}_{m} + \mathbf{w}_{s}\mathbf{E}_{s} + \mathbf{w}_{p}\mathbf{E}_{p} + \mathbf{w}_{g}\mathbf{E}_{g} + \mathbf{w}_{ss}\mathbf{E}_{ss}$

Exploration of the Threading Search Space

- The alignment is performed for each template in the DB, optimizing the chosen scoring function.
- This is the most tough task in the approach, and it has been implemented via dynamic programming and/or integer programming.
- Identification of cores may play an important role.

Protein Treading Tools

 One of the most sophisticated tools (RAPTOR) exploit a threading module based on integer programming for best performance

Benchmarking: CASP Contest

- CASP: Critical Assessment of Techniques for Protein Structure Prediction
- It is a community-wide experiment for protein structure prediction taking place every two years since 1994
- Several prediction categories are included:
 - tertiary structure prediction,
 - secondary structure prediction,
 - prediction of structure complexes (CAPRI),
 - residue-residue contact prediction,
 - disordered regions prediction,
 - domain boundary prediction,
 - function prediction,
 - model quality assessment,
 - model refinement

Ab Initio Methods

- Ab initio methods deal with prediction by leveraging physics/geometry principles
- Regular MD is computationally unfeasible in this context
- The problem solution relies on some kind of global optimization procedure, to be used for conformational search
- The search must start from one or more feasible conformations, obtained by a **build-up method** Possible forms:
 - Attach one residue after the other, minimize at each step
 - Minimize after the attachment of all residues

Buildup Method (simple backtracking)

```
GenerateStructure(n, L)
  if (n==N) return
  else if (n==0)
        L=AppendVectorToList(L, 0)
       GenerateStructure(n+1, L)
                                             Probabilistic
  else
       w=LastElementOfList(L)
        v=GenerateAdjacentVectorOf(w)
        if IsStructureStericallyFeasible (v, L) then
                GenerateStructure(n-1, L)-
                                                     BACKTRACKING
        else
                L=AppendVectorToList(v, L)
                                                          ADVANCE
                GenerateStructure(n+1, L)
```

Heuristic Methods: Simulated Annealing

```
SAConformationalSearch(V, T0, Tf, DT)
          T=T0
          Phi= GenerateStructure(N, 0)
          while T>Tf
                Psi=GenerateMutant(Phi)
                                                            Boltzmann factor
               if V(Psi) < V(Phi) then
                                                            for acceptance
                                                            of higher-energy
                        Phi=Psi
                                                             conformation
                else
                        r=randomZeroOne()
                        b=exp(-(V(Psi)-V(Phi))/T)
                        if r < b then
METROPOLIS
                                 Phi=Psi
  STEP
                T=T*DT
                                             TD is a % decrease,
                                                e.g. 0.99
```

Heuristic Methods: Genetic Algorithm

```
#Pop members (p) are
    GenConformationalSearch(V, beta, Pop, M, pm, pc)
                                                                          selected with probability
                                                                             exp(-beta*V(p<sub>0</sub>)) /
        P = GeneratePopulation (Pop)
                                                                            \Sigma_{Pop} \exp(-beta*V(p))
        for i in range(M)
                                                                        - the lower V, the more likely
               P=SelectionOfConformations(P, Pop, V, beta)
              foreach Phi in P
                                                                         Mutants are "neighbors",
                                                                        obtained applying changes
                         Phi=GenerateMutant(Phi, pm) -
                                                                           with probability pm
               P2=GeneratePairsOfConformations(P)
               foreach (Phi1, Phi2) in P2
                         (Phi1,Phi2)=GenerateDescendsWithProb((Phi1,Phi2), pc)
                         P.add((Phi1, Phi2))
CROSSOVER
```