Molecular Dynamics

Molecular Simulation
Methods

< stochastic deterministic >

General
Langevin
Dynamics

Molecular
Dynamics

Metropolis || Force-Biased || Brownian

Montecarlo || Montecarlo

Dynamics




What's MD?

e Molecular Dynamics: methods to compute trajectories
of timely-linked states in the phase space of a system of n

particles.

e The position for the i-th particle is x;
and the linear momentum p; (p,=mv,)

e The phase state for the whole system is given by both

the position vector X and the linear momentum vector P :

e Collective velocity:

X, P OON
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Diagonal Matrix mass: MOO3N<3N for each part., rep. 3 times

e MD simulations are used to estimate systems behaviors
that cannot be obtained analytically.

e MD represents the computer approach to statistical mechanics.
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Equations of Motion

The MD approach is very simple in principle:
to simulate the system evolution under the influence of a FF,
according to Newton’s equations of motion.

For each particle, mv. (t) = F(x,) =-0U (x; (t)) +...
X; (t) = v;(t)

Collectively, MV (t) = F(X) ==0U (X(t)) +...
X (t) =V (t)

These eq. must be integrated numerically, obtaining
e.g. a sequence of pairs {X", V} for integers n that represent
discrete times t=nAt at intervals (timesteps) At (=10-1> sec)

Hamilton's Eq.s of Motion

An alternative way to tackle the dynamics of a
system is by the Hamilton’s Equations of Motions
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with
H(X,P) =%PTM P+U(X)




Algorithmic Stability

An important characteristic of algorithms

for finite-difference methods is stability,

i.e. the capacity to avoid the amplification of errors
from one step to the next.

An algorithm is conditionally stable
if it is stable for small At, but it becomes unstable
when At goes beyond a critical threshold.

Stability depends both on the used algorithm
and the kind of differential equations.

With nonlinear differential equations,
no general analytical stability analysis is possible.
After linearization,-> Lyapunov etc.

Stable solutions are not necessarily accurate ones!

Finite-Difference Methods

Among all FD methods,
Runge-Kutta (RK) are the most popular.

They are based on the Euler’'s method:
X(t+At) = X(t) + Xy At

Each RK method has its own way to estimate X .,

RKs generally show good stability,
but are not suitable to MD because require too many
force evaluations (usually 4) per atom per step!




Verlet Algorithm

e Shows exceptional stability over long times.
o Update for trajectory positions:

Xt 80 =X, (6 +X ()], B8+, (0] (B +...

Xt = B) =X, (1) =X, (0], B+ 25, (0], (207 +...

summingup,
Xi(to + ) = 2x;(t) =X, (tg ~ &) +%, (1), (A" ...
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Verlet Algorithm (collective)

e Let’s call the “acceleration”
F(X(t) =M F(X(t)) =-M 0OU (X (1))

e Update for trajectory positions:
X (to +At) = X(t,) + X (0] _ At +% F(t)

2
- (At)“ +...

X (t, =Bt = X (t,) = X (1), At +% F (t)\m (A2 ..

summingup,
X (t, +At) = 2X (t,) = X (t, — At) + F (1)

t (AL) +...

t=
velocitycanbeobtainedas
X(t, + At) — X (t, — At)

V(t,)=
(t,) AL




e Velocity is defined at “half-steps”.

V(t, +%) =V (t, —%) +AtF (1)

t=t,

then thenextposition: AN\ ™\
At —0—0—0—=0 fo—»
X(to+ ) = X (t) + AtV (t + ) . o/f&oho o
This canbederivedtakinginto account tht _ \Jm \Jm
At, At = oo °
V(t,) =V(t, —7) = F), t,
follows that V/(t, +%) =V (t, —%) +AtF(t) g
Predictor-Corrector
Algorithms
o Steps:
1. Predict X(t+At) and V(t+At) at the end of the
next step

2. With such results, evaluate forces at t+At

3. Use the values computed so far to correct the
predictions

e Steps 2-3 could be iterated

e Used in MD:
Gear - higher order, requires up to X)




Algorithm Quality Evaluation

A finite-difference algorithm in MD can be evaluated
by its ability in conserving the system energy E

e A possible index is the rms global error per step,
computed over M steps:

M
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Hamiltonian: System Energy

e The overall system energy is usually computed by
means of the Hamiltonian

— In terms of collective velocity:
H(t) =1V (t) M V(t) +U (X(t))
— In terms of collective linear momentum:

H(t) =3 P'() M ™ P(t) +U (X(t))




Symplectic Integrators

e Symplectic Integrators are numerical integration schemes,
designed for the solution of Hamilton’s equations of motions.

e SI hold the property of conserving
the Hamiltonian of the system (apart some perturbations).

e Simple Euler and RK schemes are not SI; Verlet is a SI.
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Reduced Units

e To reduce the risk of encountering values
outside the representation range, often
reduced units are used




Periodic Boundary Conditions

e The simulation considers

the system in a 0 0 0 0 0 o |
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e Wraparound effect

Steps in MD Simulations

e A MD simulation goes through 3 phases:

1) Initialization — to specify initial coordinates and
velocities (according to Maxwell-Boltzmann
distribution, given T)

2) Equilibration — initial round to accommodate
exchanges between kinetic and potential energies
up to a mean value for them

3) Actual run (production)

e (lecture 3a on desktop)




Dealing with Constraints

Possible approach to increase timesteps:
introduction of constraints on bonds

Basic idea:
by adding such constraints,
the highest-frequencies vibrations do not show up

Problem:
in macromolecules, different kinds of vibrations
are “tangled” in complex ways

...anyway, bonds involving H
can be usually taken as rigid

...conversely, rigid bond angles
do not usually deliver realistic/reliable models

Lagrange Multipliers (I)

Some significant (“holonomic”, i.e. “rigid”) constraints
can be (collectively) expressed as

g(X(t)) =C or,with nolossin generality g(X(t))=0
E.g. a rigid bond between atom i and j as the k-th constraint:
g =r’()-r*=0 with r =x —x
Collectively, also the all h constraints can be represented as a
vector G, whose elements are always O:

G(X(t)=0 GOO*




Lagrange Multipliers (1)

e To consider the constraints within the equations of motions,
we can add another term (always 0) to the potential energy:

U(X(t) M- UX@E)+G(X@E)'A  GAOO*

. MV (t) = -0 (X (1)) + G(X (1)) A
MV (1) =-0U (X)) _ X(t):V(t)( )

XO=V0) G(X(1) =0

e I.e., each constraint can be sustained by a “fictitious” force
e A corresponding FD method will look something like

X (t, +At) = X (t, +At) + M 0(G(X (t,))T AJAt)?
G(X (t, +At) = G(X (t, + At) + M ~0(G(X (t,))T AXAt)?)=0

Lagrange Multipliers: Issues

Typical possible change in At : from At=1fs to At=2fs.

e At each step, additional work is required to deal with constraints
(iterative solution of a nonlinear system in the A, unknowns)

e Fortunately, working with constraints
usually means working with sparse matrices
(in fact not all particles are involved in all constraints)
and efficient numeric methods are available for them

e Any proposal for a constrained model
is related to specific, proper algorithms for it

e Examples: SETTLE, SHAKE, RATTLE...




Reducing At:
MTS (Multi-TimeStep) Methods

Basic idea.
forces due to long-distance interactions change at a lower pace
than the others, - they could be evaluated less frequently

E.g. we can split force components in  Fq, Freq @Nd Fyqs
with corresponding timesteps Aty <At <Aty ow

(At o=k Atrg, At,,,=kKAt with k;, k, ON )

Between updates, the slower components can be inserted
in the integration scheme either by extrapolation (kept
constant) or by impulses (delta functions)

Problems:

simple extrapolation schemes are not symplectic;

symplectic impulse MTS schemes have been found, but spurious
behaviors occur as At~ natural system frequency

med

Statistical Ensembles

What said so far is valid for the so-called
Micro-Canonical ensemble

(constant NVE, i.e. number of particles, volume and total
energy), with total energy (E) as a constant of motion.

The micro-canonical ensemble is used
for studying adiabatic conditions

A statistical ensemble is an ideal collection of (infinite) copies
of a system fof particles), each able to eventually assume
every possible state/configuration under given conditions

A statistical ensemble can be viewed as
an (infinite) number of observations
over the same physical systems under the same conditions




Other Ensembles

o It can be important studying molecular properties
as functions of other quantities
(not necessarily volume and energy).

e Up to this extent, other ensembles are needed

— Canonical ensemble or NVT,
i.e. constant volume and temperature

— Isothermal-isobaric ensemble or NPT,
i.e. constant pressure and temperature

— NPH, i.e. constant pressure and enthalpy
e We shall skip the discussion
on methods for such ensembles.




