Molecular Mechanics and
Force Fields

What Kind of Modeling?

“Molecular Mechanics” refers to the description
of a molecular system as a mechanical body

Molecule = collection of particles (masses)
centered at the nuclei, connected by “springs” (bonds)

MM relies on building up a potential energy U,
function of atomic positions and tuned by empirical data
(aka “force field”, somehow improperly)

U can be used in optimizations/simulations

Such a description is usually appropriate to model molecular
structures and processes, but not bond-breaking events.




Recall: Potentials

o Potential energy U is a scalar field:
it's described by a single value at each point in space

e Force F instead is a vector quantity, related to U:
F=-0U

As in (non-linear) molecules with n atoms there are
p=3n-6 ddegrees of freedom, we expect that
U would depend on 3n-6 independent variables

Often, especially in quantum mechanics modeling,
U is also referred to as “PES” (Potential Energy Surface)

MM: Underlying Principles

e Molecular Mechanics relies on the validity
of three principles:

1. Thermodynamic hypothesis
— Many macromolecules reach their native, folded state
due to thermodynamic factors (energy minimization)
2. Additivity
— Molecular energy can be expressed
as sum of terms related to simple physical forces
3. Transferability of potentials

— Developing potentials according to experimental behavior
of specific chemical groups, makes such potentials
applicable to macromolecules composed of such groups




Force Fields: Components

e U can be expressed as a sum of potentials
derived from simple physical forces.

e Components of U can be divided into:

U= UIocal + Unonlocal

— local (bonded, i.e. related to bonds) terms

¢ Mechanical-like strains related
to displacements from ideal values of bond lengths/angles

¢ Internal torsion flexibility

— non-local (i.e. not related to bonds) terms
e Van der Waals
e Electrostatic

» Terms already present in local interactions
are not counted in non-local ones.

FFs: Accuracy vs Speed

e Force fields needs not to be perfect to be
useful! (T. Schlick)




Local Terms: Bond Length

UIocaI: UbIen + Ubang+ Utors

The bond stretching component U, is usually taken
as harmonic, so that bonds are treated as ideal springs:

Upien= 2 sy S — 1;)?

Note that, for each term,

F=-dU/dr=-%.5(r; - r;)  (Hook’s law)
Harmonic potential can be used only for smal// deviations
from reference values r;; in the set of bonds S

More accurate formulations for larger deviations
have been proposed
(e.g. Morse Term, computationally heavier)

Some force fields introduce explicit terms also for H-bonds

Local Terms: Bond Angle

UIocaI: Ublen+ U +U

bang tors

The angle bending component U, is usually taken
as harmonic in deviations from 6, or their corresponding cosines:

Ubang-harm: Zi,j, k(g K(H)ijk(eijk —Qijk)2
Upanatria = i Ky (COSO. — Ccosb., )?
ang-trig ij, kKOS " (Mijk ijk Zijk

The trigonometric form (bounded) is deemed more convenient
in numeric treatment; By expanding Uy, .., by @ Taylor series, we get

K= K SIF(Q)

Determination of reference angles is often a challenging task

For more accurate formulations, as in U, functions with odd powers
should be avoided, as U can assume negative values
during computations (nonsensical!)




Local Terms: Torsion

UIocal =U blen +U bang + Utors

Taking into account rotational flexibility
of atomic sequences is particularly important for biological reactivity
Each component in U, . is necessarily periodic,

repeating for sure every 2x radiants.

So it can be expressed as a n-truncated series of Fourier terms like

Utors = Qijki s 2n (72 Vi [1 + cos(ntyy —Tja)] )
Typically, nis taken in [1 ... 6]. The most common values are 1, 2, 3.
Sometimes, other harmonic terms are added, named “improper torsion

terms”, to account for enforcing planarity/chirality in particular groups.
Improper torsion terms are adopted also in protein force fields.

Local "Cross Terms”

Cross terms (i.e. involving simultaneously different molecular
variables) are of primary importance only in force fields
developed for small molecular systems (not proteins!).

Cross terms are aimed at modeling correlations between bond-
length/bond-angle potentials, as well as between dihedral/bond-
angle and improper/improper-dihedral terms

Cross terms typically show the following aspect:

Urr’ = S(I‘ _D (r’ - I'_')

Uy =K (0-0) (0 - ¢)
Uy = SK(r—r) (0-0)

Uy =KV, (0-0) codz—1)




Non-local: Van der Waals

For macromolecules, the Van der Waals potential is taken
in the common 6/12 Lennard-Jones form,
with attractive (6) and a repulsive (12) portions:

Uy =—Ayfr® + By/ry*  (between atoms i and j)

A and B depend on the types 100
of interacting atoms

Asr; - o,

U_; - 0 very rapidly,

it is convenient to introduce
a cutoff radius r -

only interactions within r_«
are calculated.
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Non-local: Coulombic

Coulomb’s law: F(r;) O —qgq; / ry?
SO, Ugpy=Keoud g /er; with K.,,=1/(4re,)

Asr; - o, Uy, — 0 very slowly (unlike U, ;), and this fact:
— becomes essential in stabilizing macromolecules in solvent
— creates computational problems, because evaluation of all pairwise
terms takes O(N?) (anyway, O(N) methods have been found)
Further issues come from the expression of the (distance-
dependent) dielectric function ¢ = &(r) , as in a medium like
water charges becomes somehow screened.




Parameterization

¢ One defined, a force field contains a lot of parameters,
whose values must be properly chosen.

e Theoretically, each energy term could be calibrated
according to specific experimental data from small molecules;
in practice, approximation is unavoidable because of:

— Scaling the system from small to large chemical groups
— Interactions with solvent and counterions

e In summary, many different parameterizations are possible:
anyway, only correct ones lead to reliable structural predictions

Oobatake-Crippen FF (1981)

|II

Example of 1st gen. FFs; operates on a “virtual bonds mode

It considers the positions of C’s: x; is the position of the i-th Ce
and the “virtual” bond length r, is 3.8 A

U:Ub'l‘ Unb sz%NZ_l(ri,iﬂ_ro)z
i=1

e U,=U,+U,+ U; one4/6 L] pot. + two gaussian pot.

U —eod i)

U, = & {—W(i) +n(ij} m=6,n=4 2
n-m r r _1(“%)}

U,=ge” ®

Constants ry,r,,r;,€,,€,,€5,d, and d; depends on the residue types.




Classical Force Fields

e CHARMM — www.charmm.org
— a set of FFs for many-particle systems (mainly
biomolecules) from Harvard
e AMBER — www.ambermd.org
— a set of FFs for the simulation of biomolecules,
developed at UCSF
e GROMACS - www.gromacs.org

— FF used in the efficient molecular dynamics tool
developed at University of Groningen, addressing
biochemical molecules (proteins and also
polymers)

U to Explore Vibrations (I)

e U depends on p= 3n-6 independent variables;
so far, for them we have used internal coordinates:
let’s call them collectively as vector q;
so we have U = U(q)

e Internal coordinates g can be related to the 3n
Cartesian coordinates by the Wilson matrix B:
g=BX
e Given an equilibrium point g, for the molecule, there

U(q) will present a minimum, so 0U(q)|,-q = O.
Usually, 0OU(q) is called g




U to Explore Vibrations (II)

e Calling § = (4;-Cey - A(zp-6)Ge(3p-6)) s
the Taylor expansion of U(q) aBout the point

Je IS

U(Q) U(Qe)= &' OU(Q)|g=qe + Y2 & H(A)|g=qe & +

H is the Hessian matrix of U: H; = 92U/dq;0q;
e Usually, matrix H(Q)|y-qe is called F
e At minima, eigenvalues of H are all positive.




