Routing over Low Power and Lossy Networks

Analysis and possible enhancements of the IETF RPL routing protocol

Enzo Mingozzi Associate Professor @ University of Pisa e.mingozzi@iet.unipi.it

Where am I from?

Founded in 1343 ~50,000 students > 150 courses

yes, the tower is still up ... and leaning

Outline

- Introduction
 - IETF activities around LLNs
- The RPL routing protocol
 - Overview of basic concepts and operation
- RPL message dissemination: the Trickle algorithm
 - Issue 1: unfairness -> Trickle-F
 - Issue 2: link quality estimation -> Trickle-L^2
- Conclusions

IoT: new opportunities ...

Predictive maintenance

Enable New Knowledge

Food & H20 Quality

Smart Grid

High-Confidence Transport and assets tracking

Intelligent Building

Healthcare

Improve Productivity

Enhance Safety & Security

WAL*MART

... but also new challenges

- Scalability
 - Number of nodes in the system
 - Amount of data generated by each node
- Diversity of applications
- Diversity of communication technologies
 - Potentially lossy if wireless

- Interoperability
- Low-power consumption
- Lifetime
- Context-awareness
- Security, trust

IP for Smart Objects

- IP for Smart Objects
 - Set of IPv6-based solutions being defined by IETF
 - Supported by the IPSO alliance (<u>http://www.ipso-alliance.org/</u>)

IP(v6) for Smart Objects

Interoperability

• Layered approach for independence of underlying technologies

Scalability

- Survived the current Internet evolution
- Unique (IPv6) addressing
- Direct support for self-configuration and management

End-to-end

- No multi-protocol intermediate gateways
 - Expensive and difficult to manage
 - Lack of QoS end-to-end
 - Security holes

IEEE802.3 IEEE802.11 IEEE802.15.4

of protocols

HTTP, XML, etc.

TCP, UDP

IP

6LowPAN WG

- Adaptation layer for devices connected by IEEE 802.15.4 links [rfc4919, rfc4944]
- Fragmentation
 - 1280 byte IPv6 MTU ->
 127 byte 802.15.4 frames
- Efficient header compression
- Network autoconfiguration using neighbor discovery

Multi-hop forwarding in LLNs

Route-Over
 Host
 Application
 UDP
 ID 0

Mesh-Under

Outline

- Introduction
 - IETF activities around LLNs
- The RPL routing protocol
 - Overview of basic concepts and operation
- RPL message dissemination: the Trickle algorithm
 - Issue 1: unfairness -> Trickle-F
 - Issue 2: link quality estimation -> Trickle-L^2
- Conclusions

ROLL WG

- RPL (Routing Protocol for Low-power and Lossy Networks)
- Distance Vector algorithm
 - Destination—oriented DAG formation
 - Constrained routing based on multiple metrics
- A Layer-3 routing protocol!

6LowPAN and RPL adopted by ZigBee/IP

Routing principles

- Routes are optimized for data delivery to a selected number of destinations (MultiPoint-to-Point forwarding)
 - RPL builds a Destination-Oriented Directed Acyclic Graph (DODAG) on top of the multiple L2 broadcast domains
 - Routes are then computed based on a distance vector protocol

Routing principles (cont.)

- In case of multiple sinks, one DODAG per sink
- RPL nodes may belong to one and only one DODAG (per RPL instance)

Routing over LLNs – Hunan University, June 25, 2014 – ©2014 Enzo Mingozzi

Node rank

- A scalar representation of the node location within a DODAG instance
- The rank <u>MUST</u> monotonically decrease on each path towards the root
- Computed based on routing metrics established by an Objective Function

DODAG formation

- Presence is advertised by broadcasting DIO (DODAG Information Object) messages
 - Including the rank of the sender
- DIO advertising is started by the DODAG root
- RPL nodes listen to DIO messages to learn the set of nodes in the one-hop neighborhood

DODAG formation (cont.)

- As soon as the first DIO message is received, the node joins the DODAG
 - It computes its own rank based on received information
 - It start transmitting its own DIO messages
- The process is dynamic
 - A set of parents is maintained dynamically while receiving DIO messages
 - A preferred parent is selected

Objective Functions

 The <u>Objective Function</u> (OF) defines what metrics/constraints to use for finding minimum cost paths in a given RPL instance

- More in general, the OF defines
 - How to compute the path cost
 - How to select parents (when, who, how many)
 - How to compute the rank
 - How to advertise the path cost

Routing Metrics/Constraints

- Node metric/constraints
 - Node state and attributes
 - Node energy (power mode, remaining lifetime)
 - Hop count
- Link metrics/constraints
 - Throughput
 - Latency
 - Link reliability
 - Link colors

Outline

- Introduction
 - IETF activities around LLNs
- The RPL routing protocol
 - Overview of basic concepts and operation
- RPL message dissemination: the Trickle algorithm
 - Issue 1: unfairness -> Trickle-F
 - Issue 2: link quality estimation -> Trickle-L^2
- Conclusions

DIO message broadcasting

- DIO messages are periodically re-broadcast to maintain routing information up to date
 - Control flooding, but
 - Fast propagation when needed (e.g., routing loops)

- DIO broadcasting is regulated by the *Trickle* algorithm (rfc6206)
 - Broadcast suppression
 - Adaptive periodicity

DIO message broadcasting

DIO broadcasting is regulated by the *Trickle* algorithm (rfc6206)

Transmission

Suppressed transmission

Outline

- Introduction
 - IETF activities around LLNs
- The RPL routing protocol
 - Overview of basic concepts and operation
- RPL message dissemination: the Trickle algorithm
 - Issue 1: unfairness -> Trickle-F
 - Issue 2: link quality estimation -> Trickle-L^2
- Conclusions

Scenario

- Topology: 20x20 grid (10m node distance)
- One instance, one DODAG
- ETX routing metric (ideal)
- I_{min} and k variable
- Computer simulation
 - 200 replicated experiments

C. Vallati, E. Mingozzi, Trickle-F: fair broadcast suppression to improve energy-efficient route formation with the RPL routing protocol, *Proceedings of the 3rd IFIP Conference on Sustainable Internet and ICT for Sustainability (SustainIT 2013)*, Palermo, Italy, October 30-31, 2013.

 How much time it takes to form the first DODAG (i.e., the network is fully connected)?

- How good are paths to the gateway?
 - Path stretch: Path actual cost Best path cost
 - Network stretch: Fraction of nodes whose path stretch is greater than 1

- How much energy is consumed?
 - Constant base + variable part proportional to the number of transmissions

Distribution of path stretch values among nodes

Trickle – analysis

$\alpha = \frac{y}{I/2}, 0 \le \alpha \le 1$

y

Α

В

$$P\left\{A tranmits\right\} = 1 - \frac{1}{2}\left(1 - \frac{\alpha}{n}\right)^2, n = 1, 2, 4, 8, 16, \dots$$

Trickle – analysis

Affected scenarios

The impact is higher on route optimization

 Who is transmitting matters more!

- Router 31 (bottom) only sends 3 DIO messages in 6000 s

Only the third arrives
 correctly to router 28 (up),
 which then changes its own
 preferred parent

Countermeasures?

Transmission Suppressed transmission Reception

ppressed transmission

Listening period

C. Vallati, E. Mingozzi, **Trickle-F: fair broadcast suppression to improve energy-efficient route formation with the RPL routing protocol**, *Proceedings of the 3rd IFIP Conference on Sustainable Internet and ICT for Sustainability (SustainIT 2013)*, Palermo, Italy, October 30-31, 2013.

Better routes on average at the same energy cost

 More fair distribution of suppressed transmissions (apart from border effects)

Outline

- Introduction
 - IETF activities around LLNs
- The RPL routing protocol
 - Overview of basic concepts and operation
- RPL message dissemination: the Trickle algorithm
 - Issue 1: unfairness -> Trickle-F
 - Issue 2: link quality estimation -> Trickle-L^2
- Conclusions

Link quality estimation

- Rank computation may be based on dynamic metrics
 - Objective Function Zero (rfc6552) recommends the use of dynamic link properties such as ETX (Expected transmission Count)
- Topology stability is highly dependent on the accuracy of link metric estimation
- <u>But</u>, at network formation time, there is no available estimate for just discovered links
 - <u>Contiki</u>'s RPL implementation adopts a conservative choice: any previously unknown link is **bad**
- <u>That is</u>, long convergence time before stability while improving the accuracy of link quality estimation

Link quality estimation

- Link quality estimation and RPL
 - Routing protocol control messages
 - Not transmitted on a regular basis because of Trickle DIO message suppression
 - Active probing through unicast messages
 - Adds complexity and overhead
 - Adds much latency exp. at network formation
 - Passive monitoring through data packets transmission
 - Only applies to links in use → does not cover the full DODAG

Proposal: Trickle-*L*²

 Delay joining the DODAG until (at least) one link with minimum quality is found

 Eventually bounded by a maximum time

- 2. Introduce a fast link quality estimation mechanism at DODAG formation time
 Possibly, at no or negligible cost from an implementation point of view
- E. Ancillotti, R. Bruno, M. Conti, C. Vallati, E. Mingozzi, **Trickle-L²: Lightweight Link Quality Estimation through Trickle in RPL networks**, *Proceedings of the 15th IEEE Conference on a World of Wireless Mobile and Multimedia Networks (WoWMoM 2014)*, Sydney, AU, June 16-19, 2014.

Trickle-L²

Limited active probing: send DIO messages with sequence numbers

- Trickle-L² implemented in ContikiRPL
- Scenario
 - 100 nodes, uniformly distributed in 600x600sqm area
 - 1 sink
 - CBR traffic, 1 Pkt/minute/node
 - OF Zero with ETX, I_{min}=I_{max}= 64ms @probing phase
- Cooja emulator (actual implementation tested)
 - Tmote Sky platform
 - MRM interference model
 - 5 runs per experiment, 2 hours of simulated time per run

Numerical results

- $N_{\rm max} = 1, 8; N_{\rm p} = 5, 10, 20, 40$
- Path ETX stretch over the entire simulation (2 hours)

Numerical results

Average number of DIOs sent per minute

Numerical results

Packet loss rate per node

Outline

- Introduction
 - IETF activities around LLNs
- The RPL routing protocol
 - Overview of basic concepts and operation
- RPL message dissemination: the Trickle algorithm
 - Issue 1: unfairness -> Trickle-F
 - Issue 2: link quality estimation -> Trickle-L^2
- Conclusions

Conclusions

- RPL is by now the most promising candidate for IPv6 routing in future LLNs (i.e., the access part of the IoT)
- Good performance vs. energy efficiency trade-off is key to the operation of the protocol
 - Trickle-F improves fairness of message suppression to improve routing information dissemination
 - Trickle-L² exploits Trickle operation to enable fast active probing at network formation
- Future work
 - Impact of duty-cycling
 - Performance analysis in more dynamic scenarios

References

- RFC 6206, The Trickle Algorithm, March 2011
- RFC 6550, RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks, March 2012
- RFC 6551, Routing Metrics Used for Path Calculation in Low-Power and Lossy Networks, March 2012
- RFC 6552, Objective Function Zero for the Routing Protocol for Low-Power and Lossy Networks (RPL), March 2012
- RFC 6719, The Minimum Rank with Hysteresis Objective Function, September 2012
- J.-P. Vasseur, A. Dunkels. *Interconnecting Smart Objects with IP: The Next Internet*. Morgan Kaufmann, 2010

Thanks!

Enzo Mingozzi Associate Professor @ University of Pisa e.mingozzi@iet.unipi.it