

Enabling IPv6 in constrained networks

Enzo Mingozzi Associate Professor @ DII – University of Pisa enzo.mingozzi@unipi.it

Outline

• Intro

- the IETF vision about Low Power and Lossy Networks
- 6LowPAN/6lo
 - Motivation and (brief) overview
- The RPL routing protocol
 - Motivation and protocol overview
 - The Trickle algorithm
 - Link Quality Estimation
- The Constrained Application Protocol (CoAP)
 - Motivation and protocol overview
 - QoS support with asynchronous communication

IoT: new opportunities ...

Defense

Predictive maintenance

Enable New Knowledge

Food & H20 Quality

Smart Grid

High-Confidence Transport and assets tracking

Global Sensor

Network

USER

Senilarve Central Enloces Security

Intelligent Building

Healthcare

Enhance Safety &

Improve Productivity

... but also new challenges

- Scalability
 - Number of nodes in the system
 - Amount of data generated by each node
- Diversity of applications
- Diversity of communication technologies
 - Potentially lossy if wireless

- Interoperability
- Low-power consumption
- Lifetime
- Context-awareness
- Security, trust

How to achieve? The IETF vision **Business Business Business** Application Application Application COAP Web of Things Service infrastructure 6LOWPAN **Converged Network** IP(v6) for Smart Objects Infrastructure 000 IP for Smart Objects Set of IPv6-based solutions have devices devices devices been defined by IETF (6LowPAN, ROLL, COAP) **Distributed intelligence & actions across** Supported by the IPSO Alliance

standardized networks & interfaces

IP(v6) for IoT – Why?

IPv6 for IoT – What?

- Packet adaptation
- Network auto-configuration procedures (neighbor discovery)
- Routing protocols accounting for specific constraints
 - Energy-efficiency
 - Limited resources on each node (memory, computation)
 - Lossyness of the communication media
- Application protocols enabling **RESTful** architectures

Outline

• Intro

- the IETF vision about Low Power and Lossy Networks
- 6LowPAN/6lo
 - Motivation and (brief) overview
- The RPL routing protocol
 - Motivation and protocol overview
 - The Trickle algorithm
 - Link Quality Estimation
- The Constrained Application Protocol (CoAP)
 - Motivation and protocol overview
 - QoS support with asynchronous communication

Target link-layer technologies

Low power and Lossy Networks (LLN)

- consist of constrained nodes (with limited processing power, memory, and sometimes energy when they are battery operated or energy scavenging)
- lossy links, typically supporting only low data rates, that are usually unstable with relatively low packet delivery rates
- may potentially comprise up to thousands of nodes
- Wireless
 - Wireless Personal Area Networks (IEEE 802.15.4, ZigBee, Bluetooth LE, ITU-T G.9959, DECT LE)
 - Low-power WiFi (GainSpan, IEEE 802.11ah (WiFi Halow))
 - Low-power WANs (LoRaWAN, Sigfox)
- Wired
 - Power Line Communication (PLC)

IETF 6LoWPAN WG

- IPv6 over Low-power Wireless Personal Area Networks
 - started 2005, concluded 2014
 - rfc4919, rfc4944, rfc6282, rfc6775, ...
- General architecture for 6LoWPANs
- Adaptation layer for devices connected by IEEE 802.15.4
 - Efficient header compression
 - IPv6 base and extension headers, UDP header
 - Fragmentation
 - 1280-byte IPv6 MTU → 127-byte 802.15.4 frame
- Optimized neighbor discovery procedures

IETF 6lo WG

IPv6 over Networks of Resource-constrained Nodes

- started 2013, ongoing
- to facilitate IPv6 connectivity over constrained node networks with the characteristics of
 - limited power, memory and processing resources
 - hard upper bounds on state, code space and processing cycles
 - optimization of energy and network bandwidth usage
 - lack of some layer 2 services like complete device connectivity and broadcast/multicast

rfc7668: IPv6 over BLUETOOTH(R) Low Energy

Outline

• Intro

- the IETF vision about Low Power and Lossy Networks
- 6LowPAN/6lo
 - Motivation and (brief) overview
- The RPL routing protocol
 - Motivation and protocol overview
 - The Trickle algorithm
 - Link Quality Estimation
- The Constrained Application Protocol (CoAP)
 - Motivation and protocol overview
 - QoS support with asynchronous communication

Multi-hop forwarding in LLNs

Host IPv6 Host Application Application Edge Router Router UDP UDP IPV6 IPv6 IPv6 IPV6 LoWPAN LoWPAN _oWPAN DLL DLL DLL DLL DLL PHY PHY PHY PHY PHY 6LoWPAN IPv6 Network (0) **DLL Mesh FIB** {dest, next hop} Application Application UDP UDP IP₂6 IPv6 IPv6 LoWPAN LoWPAN LoWPAN DLL/Mesh **DLL/Mesh** DLL/Mesh PHY. PHY PHY interface0 2001:a::/32

Mesh-Under

Route-Over

ROLL WG

- RPL (Routing Protocol for Low-power and Lossy Networks)
- Distance Vector algorithm
 - Destination—oriented DAG formation
 - Constrained routing based on multiple metrics
- A Layer-3 routing protocol!

6LowPAN and RPL adopted by ZigBee/IP

Routing principles

- Routes are optimized for data delivery to a selected number of destinations (MultiPoint-to-Point forwarding)
 - RPL builds a *Destination-Oriented Directed Acyclic Graph* (*DODAG*) on top of the multiple L2 broadcast domains
 - Routes are then computed based on a distance vector routing protocol

- **Node rank**
 - A scalar representation of the node location within a **DODAG** instance
 - Not meant to represent a path cost
 - The rank must monotonically decrease on each path towards the root
 - Computed based on routing metrics established by an **Objective Function**

DODAG formation

- Presence is advertised by broadcasting DIO (DODAG Information Object) messages
 - Including the rank of the sender
- DIO advertising is started by the DODAG root
- RPL nodes listen to DIO messages to learn the set of nodes in the one-hop neighborhood

DODAG formation (cont.)

- As soon as the first DIO message is received, the node **joins** the DODAG
 - It computes its own rank based on received information
 - It start transmitting its own DIO messages
- The process is dynamic
 - A set of parents is maintained dynamically while receiving DIO messages
 - A preferred parent is selected

Objective Functions

 The Objective Function (OF) defines what metrics/constraints to use for finding minimum cost paths in a given RPL instance

- More in general, the OF defines
 - How to compute the path cost
 - How to select parents (when, who, how many)
 - How to compute the rank
 - How to advertise the path cost

Routing Metrics/Constraints

- Node metric/constraints
 - Node state and attributes
 - Node energy (power mode, remaining lifetime)
 - Hop count
- Link metrics/constraints
 - Throughput
 - Latency
 - Link reliability
 - Link colors

DIO message broadcasting

- DIO messages are periodically re-broadcast to maintain routing information up to date
 - Control flooding, but
 - Fast propagation when needed (e.g., routing loops)

- DIO broadcasting is regulated by the *Trickle* algorithm (rfc6206)
 - Broadcast suppression
 - Adaptive periodicity

DIO message broadcasting

• DIO broadcasting is regulated by the *Trickle* algorithm (rfc6206)

Transmission

Suppressed transmission

- Scenario
 - Topology: 20x20 grid (10m node distance)
 - One instance, one DODAG
 - ETX routing metric (ideal)
 - I_{min} and k variable
- Computer simulation
 - 200 replicated experiments

C. Vallati, E. Mingozzi, **Trickle-F: fair broadcast suppression to improve energy-efficient route formation with the RPL routing protocol**, *Proceedings of the 3rd IFIP Conference on Sustainable Internet and ICT for Sustainability (SustainIT 2013)*, Palermo, Italy, October 30-31, 2013.

- How much good are paths to the BR?
 - Path stretch: Path actual cost minus Best path cost
 - Network stretch: Fraction of nodes whose path stretch is greater than 1

Distribution of path stretch values among nodes

Trickle – analysis

Enabling IPv6 in constrained networks for the IoT – July 5, 2017 – ©2017 Enzo Mingozzi

32

n

64

Affected scenarios

The impact is higher on route optimization
 Who is transmitting matters more!

- I = 7, K = 5

- Router 31 (bottom) only sends 3 DIO messages in 6000 s

 Only the third DIO arrives correctly to router 28 (up), which then changes its own preferred parent

Countermeasures? Trickle-F

AZIONE 30

Transmission

Suppressed transmission

Reception

Listening period

Better routes on average at the same energy cost

 More fair distribution of suppressed transmissions (apart from border effects)

Routing metrics in RPL

- Rank computation may be based on dynamic metrics
 - Objective Function Zero (OF0) [rfc6552]
 recommends the use of dynamic link properties such as ETX (Expected Transmission Count)

 Topology stability is highly dependent on the accuracy of Link Quality Estimation (LQE)

Link monitoring for LQE

- Link monitoring defines a strategy to have traffic over the link allowing for link measurements
 - Passive monitoring exploits existing data traffic without incurring additional communication overhead
 - monitoring idle links is not possible without generating additional traffic
 - Active monitoring requires nodes to monitor links to their neighbours by sending probe packets
 - Probe packets are generally sent periodically but event-based approaches are also possible
 - The lower the probing rate, the higher the energy efficiency but the lower the accuracy, especially for links with frequent link-quality fluctuations

	Pros	Cons
Unicast probing	accurate link measurements	 overhead increases with the number of neighbours slow reaction to topology changes
Broadcast probing	 simple to implement less overhead multiple measurements 	 no link-level acknowledgments differences between unicast and broadcast link properties

LQE in RPL?

- RPL DIOs are not transmitted on a regular basis (Trickle), hence they cannot be exploited for link monitoring
- Alternatively, use data traffic to measure link quality
- Example: LQE in Contiki OS v3.0 RPL implementation
 - (default) passive monitoring with optimistic link estimation
 - A node can only assess the quality towards the current preferred parent
 - To test all potentially good neighbours, optimistic link estimation is used (i.e., prefer recent discovered neighbours) -> implies that the next hop frequently changes
 - (optional) active monitoring with periodic unicast probes (DIOs) to the nodes in the parent set

Experimental testbed @DII

- For troubleshooting and data collection, all the nodes are connected to a dedicated backbone network using the Raspberry PI Ethernet adapter
 - TelosB (MSP430 microcontroller, Texas CC2420 IEEE 802.15.4 wireless transceiver, 5dBi external antenna
 - Raspberry Pi 2 Model B (ARM Cortex-A7 CPU)

Experimental testbed @DII

- 22 nodes installed in offices and laboratories at DII (two-floor) premises
- Two topologies for different transmission powers (and ranges)

 $P_{tx} = 0 \text{ dBm}$

Passive vs. Active LQE in RPL

- Active probe mechanism can help many nodes in significantly mitigating the packet loss ratio
- Benefit is dependent on the topology (central nodes benefit more)
- Active probe allows a node to:
 - discover all the neighbours
 - rapidly detect variations in the channel quality

C. Vallati, E. Ancillotti, R. Bruno, E. Mingozzi, G. Anastasi, Interplay of Link Quality Estimation and RPL performance: an Experimental Study, Proc. of the 13th ACM Int. Symp. on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks (ACM PE-WASUN 2016), Valletta, Malta, November 13-17, 2016.

Enabling IPv6 in constrained networks for the IoT – July 5, 2017 – ©2017 Enzo Mingozzi

• With active probing more packets are sent by each node

Passive vs. Active LQE in RPL

- Efficiency of active probing is topologydependent
- A lower transmission power reduces the number of neighbours for each node, thus reducing the number of potential preferred parent
- There is less margin of improvement

LQE at DODAG formation

- At network formation time, there is **no available estimate** for just discovered links
 - <u>That is</u>, long convergence time before stability while improving the accuracy of link quality estimation
- 1. Delay joining the DODAG until (at least) one link with minimum quality is found
 - Eventually bounded by a maximum time
- 2. Introduce a **fast** link quality estimation mechanism at DODAG formation time
 - Possibly, at no or negligible cost from an implementation point of view

E. Ancillotti, R. Bruno, M. Conti, C. Vallati, E. Mingozzi, **Trickle-L²: Lightweight Link Quality Estimation through Trickle in RPL networks**, *Proceedings of the 15th IEEE Conference on a World of Wireless Mobile and Multimedia Networks (WoWMoM 2014)*, Sydney, AU, June 16-19, 2014.

Trickle-L²

ZIONE 42

Limited active probing: send DIO messages with sequence numbers

Numerical results

- $N_{\rm max} = 1, 8; N_{\rm p} = 5, 10, 20, 40$
- Path ETX stretch over the entire simulation (two hours)

Hybrid approach – RL-Probe

- Synchronous active probing
 - Unicast probes with adaptive frequency (selected as a result of a Multi-Armed Bandit problem)
 - And different probing priority (per neighbour cluster), which depends on RPL route maintenance
- Asynchronous active probing
 - Broadcast probes for rapid LQE assessment adaptively triggered
 - Isolation of faulty nodes, preferred parent unavailability

E. Ancillotti, C. Vallati, R. Bruno, E. Mingozzi, A Reinforcement Learning-based Link Quality Estimation Strategy for RPL and its Impact on Topology Management, under review, 2017.

Outline

• Intro

- the IETF vision about Low Power and Lossy Networks
- 6LowPAN/6lo
 - Motivation and (brief) overview
- The RPL routing protocol
 - Motivation and protocol overview
 - The Trickle algorithm
 - Link Quality Estimation
- The Constrained Application Protocol (CoAP)
 - Motivation and protocol overview
 - QoS support with asynchronous communication

How to achieve? The IETF vision **Business Business Business** Application Application Application COAP Web of Things Service infrastructure 6LOWPAN **Converged Network** IP(v6) for Smart Objects Infrastructure 000 **IP for Smart Objects** Set of IPv6-based solutions have devices devices devices been defined by IETF (6LowPAN, ROLL, COAP) **Distributed intelligence & actions across** Supported by the IPSO Alliance

standardized networks & interfaces

Web for IoT – Why?

ZIONE 49

Integration between IoT and Cloud Computing

Web for IoT – Why?

one 50

 What protocol to use at the application-layer to integrate device components into (cloud-based) IoT applications?

IoT applications

ONE 51

Constrained Application Protocol

 IETF CoRE WG – RFC 7252 (June 2014)

Constrained Application Protocol

 Generic web protocol for the special requirements of constrained environment (LLNs), especially considering Machine-to-Machine (M2M) applications

- Binding to UDP transport protocol
- Request/response communication (RESTful)
- support for asynchronous message exchanges
- Low header overhead and parsing complexity
- Simple proxy and caching capabilities
- Support for **discovery** of resources

CoAP interaction model

- Request/Response communication, on top of
- Asynchronous Messages (w/ optional reliability)
 - Confirmable (CON), Non-confirmable (NON)
 - Acknowledgement (ACK), Reset (RST)

Request Method definitions

- **GET**: retrieves a representation of the state of the resource (safe and idempotent)
- **POST**: requests that the representation enclosed be processed (neither safe nor idempotent)
 - It usually results in a new resource being created or the target resource being updated
- **DELETE**: requests the resource to be deleted (not safe but idempotent)
- PUT: requests that the resource be created or updated with the enclosed representation (not safe but idempotent)

Message format

- Binary format
- Fixed-size four bytes header

2 0 3 12345678901234567890123456789 TKL Code | Message ID |Ver| Т Token (if any, TKL bytes) ... Options (if any) ... |1 1 1 1 1 1 1 1 | Payload (if any) ...

Proxy translation

- Cross-protocol proxy (Cross-Proxy): a proxy that translates between different protocols
 - CoAP-to-HTTP proxy
 - HTTP-to-CoAP proxy

CoAP resource observing

- What if a client is interested in being *indefinitely* updated about a resource?
 - Continuous polling: Period? Overhead? ⁽³⁾
 - Observer pattern: Resembles PUB/SUB like interaction ⁽²⁾

GET /temperature [Observe]

2.05 Content { "T" : 22.5 }

2.05 Content { "T" : 22.5 }

2.05 Content { "T" : 22.5 }

1. 0 M 1. 0 M

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE 57

Observer

Enabling IPv6 in constrained networks for the IoT – July 5, 2017 – ©2017 Enzo Mingozzi

Serve

CoAP observing

Serve

- Problem: a constrained endpoint may manage a limited number of simple (i.e., periodic) observe relationships, but
 - Clients are potentially unlimited
 - Client requirements are different

CoAP observing

Servei

- Multiple clients: use a **Proxy** as an intermediary
 - Establish observe relationships with as many clients

Proxv

- Establish one observe relationship per device
- One-to-Many notifications

CoAP observing

- Not all client requirements are equal: ???
 - State-related parameters: change step, greater then, less then
 - Time-related parameters: minimum period (pmin), maximum period (pmax)

CoAP observing – QoS

 Optimization problem: minimize the period P while satisfying all observers' requirements

max P $\left[\frac{p_{min}^{i}}{P}\right]P \leq p_{max}^{i} \,\forall i$

[there is at least a multiple of P in between p_{min} and p_{max}]

G. Tanganelli, E. Mingozzi, C. Vallati, M. Kovatsch, Efficient Proxying of CoAP Observe with Quality of Service Support, Proceedings of the IEEE 3rd World Forum on Internet of Things (IEEE WF-IoT 2016), Reston (VA), USA, December 12-14, 2016.

$$\begin{array}{c} max \ P \\ \left[\frac{p_{min}^{i}}{P} \right] P \leq p_{max}^{i} \ \forall i \end{array}$$

[there is at least a multiple of P in between p_{min} and p_{max}]

 There is always a solution (Worst Case Period)

$$P = \min_{i} \{ p_{max}^{i} - p_{min}^{i} \}$$

 Simple and elegant iterative procedure that finds the optimum solution

Thanks!

Enzo Mingozzi DII – University of Pisa enzo.mingozzi@unipi.it