
 1

Computation and Tightness Assessment of

End-to-end Delay Bounds in FIFO-multiplexing Tandems1
Luca Bisti, Luciano Lenzini, Enzo Mingozzi, Giovanni Stea

Dipartimento di Ingegneria dell’Informazione, University of Pisa, Italy
Via Diotisalvi, 2 56122 Pisa, Italy - Ph. +39 050 2217599

{l.bisti, l.lenzini, e.mingozzi, g.stea}@iet.unipi.it

Technical Report, May 2010

1 Part of the content of this report has appeared as [1] and [2].

ABSTRACT
This paper addresses the problem of estimating the worst-case end-
to-end delay for a flow in a tandem of FIFO multiplexing nodes,
following up our previous work [14]. We consider the state-of-the-
art method for computing delay bounds, i.e. upper bounds on the
worst-case delay, called the Least Upper Delay Bound (LUDB)
methodology, and we describe efficient numerical techniques to
compute the LUDB. The latter allow good delay bounds to be
computed for tandems of several tens of nodes within minutes of
computation time. Furthermore, we show that, unlike what happens
in some specific sub-classes of FIFO tandems analyzed in the pre-
vious work, the LUDB may actually be larger than the worst-case
delay, even when end-to-end analysis is possible. Therefore, in
order to assess how close the derived bounds are to the actual, still
unknown, worst-case delays, we devise a method to compute lower
bounds on the worst-case delay. Our analysis shows that the gap
between the upper and lower bounds is reasonably small, at least
when end-to-end analysis is possible, which implicitly validates the
upper bounds themselves.

Keywords
Network Calculus, FIFO-multiplexing, Delay Bound.

1. INTRODUCTION
Network calculus ([5], [7]-[10]) is a theory for deterministic net-
work performance analysis. Originally devised to address Quality
of Service problems in IP networks, it has also found fields of
applications in several other areas, including wireless sensor net-
works [22]-[23], Ethernet installations [24], and Systems-on-Chip
[25]. Its main feature is its ability to compute performance bounds,
such as delay bounds, which are useful to assess the capabilities of
a network architecture to support real-time applications. As far as
IP networks are concerned, Network Calculus has been used in the
previous decade to compute delay bounds for networks employing
per-flow resource management, the most notable case being that of
the IETF Integrated Services (IntServ) architecture (see, for exam-
ple, [5], Chapter 2). More recently, network architectures employ-
ing per-aggregate resource management have become a reality, due
to their better scalability. Two noticeable examples of architectures

employing per-aggregate resource management are Differentiated
Services (DiffServ [4]), and Multi-Protocol Label Switching
(MPLS, [6]), both standardized by the IETF. In the former, flows
traversing a domain are aggregated (or multiplexed) in a small
number of classes or Behavior Aggregates (BA), whose forwarding
treatment is standardized, and QoS is provisioned on a per-
aggregate basis at each node. In the latter, flows are aggregated into
Forwarding Equivalence Classes (FECs) and forwarding and rout-
ing are performed on a per-FEC basis.
Computing good delay bounds in networks employing per-
aggregate resource management is however particularly challeng-
ing. Obviously enough, a delay bound is as good as it is tight, i.e.
close to the actual maximum delay that can theoretically be experi-
enced by a bit of the flow. We refer to the latter as the worst-case
delay (WCD). While it is fairly simple to compute the WCD under
per-flow resource management, computing it in networks employ-
ing per-aggregate resource management appears to be considerably
more complex. During the last decade, several results have ap-
peared in the literature on this subject. The aim of these works is to
compute delay bounds in feed-forward networks, which are known
to be stable for any utilization below 100% [5]. For instance, [18]
presents tools and techniques for computing end-to-end delay
bounds for flows in feed-forward networks of blind multiplexing
nodes. “Blind” means that no assumption is made regarding the
flow multiplexing criterion: for instance, both a FIFO multiplexing
scheme and a strict priority multiplexing scheme in which the
tagged flow (i.e., the one being analyzed) is always multiplexed at
the lowest priority fit this definition. Smaller bounds can be ob-
tained by explicitly assuming that a FIFO multiplexing scheme is in
place at the node. As regards FIFO multiplexing, some recent
works [11]-[14] describe a methodology for computing per-flow
delay bounds in tandem networks of rate-latency nodes traversed
by leaky-bucket shaped flows. The method, called Least Upper
Delay Bound (LUDB), is based on the well-known Network Calcu-
lus theorem that allows a parametric set of per-flow service curves
to be inferred from a per-aggregate service curve at a single node.
It entails: i) applying the above theorem iteratively, so as to obtain
a parametric set of end-to-end service curves for a flow, ii) com-
puting a parametric expression for the delay bound, and iii) mini-
mizing over the set of parameters so as to obtain, in fact, the least
upper bound. The term “least”, of course, refers to the bounds that

 2

can be found using this method. End-to-end analysis and global
minimization are the two points of strength of LUDB. As shown in
[14], we are actually able to derive end-to-end service curves only
for a particular class of tandems, called nested tandems, where the
path traversed by a flow a is either entirely included into the path
of another flow b or has a null intersection with it. Non-nested
tandems, instead, have to be cut into a number of nested sub-
tandems, which have to be analyzed separately using LUDB. Then,
per sub-tandem delay bounds are computed and summed up to
obtain the end-to-end delay bound. In this case, there are always
several ways for cutting a tandem, and there is no way to state a
priori whether one leads to better results than the others.
There are currently two open issues related to the LUDB method-
ology. The first one is that, except for a very limited number of
(nested) tandem topologies, no closed-form solution for the LUDB
exists. More specifically, [11] presents a closed-form solution
LUDB for a tagged flow traversing a tandem of nodes with one-hop
persistent cross traffic, while [12] presents a formula for sink-tree
tandems. While it is theoretically possible that the formulas com-
puted in [11]-[12] can be generalized, in this paper we follow a
numerical approach. As shown in [14], the computation of the
LUDB is a piecewise linear problem, since it exhibits a piecewise
linear objective function and a number of linear constraints. In this
paper we show that the problem can be solved by decomposing it
recursively into a number of simplexes. However, the number of
simplexes to be solved may grow very fast, making a brute-force
approach computationally infeasible when the number of flows
approaches few tens. Therefore, we first identify properties that
greatly reduce the amount of computations for these medium-sized
problems (i.e., up to few tens of nodes), and then we present an
effective heuristics to obtain good approximated solutions at a low
computational cost for larger-scale problems (i.e., several tens of
nodes). For non-nested tandems, we first identify a much smaller
number of sets of cuts that are candidate to produce the best delay
bounds, called the Primary Sets of Cuts (PSCs). Since it is impos-
sible to define a priori which PSC will produce the tightest delay,
we need to compute the delay bound for all of them. However, we
exploit the problem structure to obtain an efficient implementation,
where the number of operations to be computed grows sublinearly
with the number of PSCs. Our analysis shows that delay bound
computation in non-nested tandems is generally more complex than
in nested ones, but still computationally affordable for paths of 30
nodes or slightly more, i.e. as long as the longest paths in today’s
planetary Internet [26]. Furthermore, our bounds are much smaller
than cumulative per-node delay bounds, the gap between them
increasing exponentially with the number of nodes, which justifies
the increased complexity.
The second open issue is tightness. LUDB is shown to yield tighter
bounds with respect to both per-node analysis, and another end-to-
end methodology, described in [15], which does not use global
minimization. However, it is still unknown, in the general case,
how far the bounds thus computed are from the WCD. For sink-tree
tandems, which are nested ones, it was proved in [12] that the
LUDB is actually equal to the WCD. However, whether this is true
in more general settings is still an open question, made particularly
challenging by the fact that no better computation method is avail-
able. In particular, since it is commonly believed that end-to-end
analysis is a necessary condition for computing good delay bounds,

one might wonder if it is also sufficient, i.e. whether the LUDB is
tight in all nested tandems. In this paper, we provide a negative
answer to the above question. The LUDB method may actually
yield loose bounds even in very simple nested tandems. We prove
this by counterexample: we devise a method, called Flow Exten-
sion, that can be used in conjunction to the LUDB methodology, so
as to compute smaller delay bounds than those computed through
LUDB alone, at least in some cases. This result is significant for
two reasons: on one hand, it may sometimes lead to improved delay
bounds; on the other hand, its significance from a theoretical
standpoint lies in proving that the Network Calculus theorem that is
at the core of the LUDB method is not always sufficient to describe
the worst-case behavior of FIFO networks. This said, assessing how
tight the computed bounds are becomes an important issue. Being
unable so far to identify a provable worst-case scenario, we propose
heuristics to approximate it. More specifically, we construct a set of
scenarios where a flow experiences a large delay, which is itself a
lower bound on the WCD, and we provide an algorithm to effi-
ciently compute this lower bound. The interval between the lower
and the upper bounds serves as an estimate of the tightness of the
upper bound itself.
The algorithms described in this paper for computing upper and
lower bounds on the WCD have been implemented in a software
tool, called DEBORAH (DElay BOund Rating AlgoritHm, [20]),
which is publicly available. This is the first software of this kind, to
the best of our knowledge.
The rest of the paper is organized as follows: Section 2 reports
some background on Network Calculus, also introducing some of
the notation that will be used throughout the paper. In Section 3 we
give a formal problem statement; we describe the LUDB methodol-
ogy and efficient numerical methods to solve it in Section 4. In
Section 5 we prove that the LUDB may actually be larger than the
WCD, also describing how to compute smaller bounds than the
LUDB. In Section 6, we present an algorithm for computing a
lower bound on the WCD, using which we assess the tightness of
the LUDB in some non-trivial case studies. Section 7 briefly de-
scribes how to use the DEBORAH tool. Finally, conclusions are
reported in Section 8.

2. NETWORK CALCULUS BACKGROUND
This section introduces basic Network Calculus concepts, using the
same notation as in [5]. Subsection 2.1 explains the framework for
modeling FIFO rate-latency nodes traversed by leaky-bucket
shaped flows that we developed in [12]-[14].
In Network Calculus, data flows are described by means of a wide-
sense increasing cumulative function ()R t , defined as the number
of bits seen on the flow in time interval []0,t . Specifically, let

()A t and ()D t be the Cumulative Arrival and Cumulative Depar-
ture functions (CDA and CDF) characterizing the same data flow
before and after a network element, respectively. Then, the network
element can be modeled by the service curve ()tβ if

 () () (){ }
0
inf

s t
D t A t s sβ

≤ ≤
≥ − + (1)

for any 0t ≥ . The flow is said to be guaranteed the (minimum)
service curve β . The infimum on the right side of (1), as a func-
tion of t , is called the min-plus convolution of A and β , and is
denoted by ()()A tβ⊗ . Min-plus convolution is commutative and
associative. Furthermore, convolution of concave curves is equal to

 3

their minimum. Several network elements, such as delay elements,
links, and regulators, can be modeled by corresponding service
curves. For example, network elements which have a transit delay
bounded by ϕ can be described by the following service curve:

 ()
0

t
t

tϕ

ϕ
δ

ϕ
+∞ ≥

=  <

Many packet schedulers can be modeled through rate-latency ser-
vice curves, defined as follows:

 () [],R t R tθβ θ += ⋅ −

for some 0θ ≥ (the latency) and 0R ≥ (the rate). Notation []x
+

denotes { }max 0,x . A fundamental result of Network Calculus is
that the service curve of a tandem of network elements traversed by
a data flow is obtained by convolving the service curves of each
network element.
Guaranteeing performance bounds to traffic flows requires that the
arrivals be constrained through arrival curves. A wide-sense in-
creasing function α is an arrival curve for a flow characterized by
a CAF A if it is:
 () () ()A t A tτ α τ− ≤ − , for all tτ ≤ .

As an example, a flow regulated by a leaky-bucket shaper, with
sustainable rate ρ and burst size σ , is constrained by the affine
arrival curve
 () () { }, 01 tt tσ ργ σ ρ >= + ⋅ ⋅ .

Function { }1 expr is equal to 1 if expr is true, and 0 otherwise.
By combining together arrival and service curve characterizations
of data traffic and network elements, respectively, it is possible to
derive relevant performance bounds. In fact, assume that an ele-
ment (or tandem of elements) is characterized by a service curve β
and that a flow traversing that node is constrained by the arrival
curve α . Then, if the node serves the bits of this flow in FIFO
order, the delay is bounded by the horizontal deviation

 () () (){ }
0

, sup inf 0 :
t

h d t d tα β α β
≥
 ≥ − ≤ ≜ (2)

Intuitively, h is the amount of time the curve α must be shifted
forward in time so that it lies below β . From (2) it follows that

() ()1 2 1 2, ,h hβ β α β α β≤ ⇒ ≥ . Notation 1 2β β≤ means that
() ()1 2t t tβ β∀ ≤ .

A well-known result related to a tandem of N rate-latency nodes

,i iRθβ , 1 i N≤ ≤ , traversed by a ,σ ργ -constrained flow follows
from (2), i.e., the end-to-end delay bound is given by

 { }1 1

N i i

i i N
d Rθ σ

= ≤ ≤
= + ∧∑ (3)

provided that iRρ ≤ for any i . Notation ∧ denotes the minimum
operation. It is shown in [5] that bound (3) is actually achievable
(i.e., it is the worst-case delay), at least if the arrival curve of the
flow and the service curves of all the nodes are actually tight char-
acterizations. Henceforth, we will always assume that this hypothe-
sis is verified.

2.1 FIFO Multiplexing
Regarding FIFO multiplexing, a fundamental result, first derived in
[9], is reported in [5], Chapter 6. Assume that two flows are FIFO
multiplexed into the same network element, characterized by ser-
vice curve β . Assume that 2α is an arrival curve for flow 2. Then,
the service received by flow 1 can be determined by computing its
equivalent service curve ()1 ,eq tβ τ , as follows.

Theorem 2.1 (FIFO Minimum Service Curves [5]).
Consider a lossless node serving two flows, 1 and 2, in FIFO or-
der. Assume that packet arrivals are instantaneous. Assume that
the node guarantees a minimum service curve β to the aggregate
of the two flows. Assume that flow 2 has 2α as an arrival curve.
Define the family of functions:

 () () () { }1 2, 1eq
tt t t τβ τ β α τ +

>=  − −  ⋅ 

For any 0τ ≥ such that ()1 ,eq tβ τ is wide-sense increasing, then
flow 1 is guaranteed the (equivalent) service curve ()1 ,eq tβ τ .
Theorem 2.1 describes an infinity of equivalent service curves, each
instance of which (obtained by selecting a specific value for the τ
parameter), is a service curve for flow 1, provided it is wide-sense
increasing. For ease of notation, we write ()(), ,E tβ α τ to denote
the equivalent service curve obtained from applying Theorem 2.1
to a service curve ()tβ , by subtracting from it arrival curve

()tα τ− . Hereafter, we omit repeating that curves are functions of
time (and, possibly, of other parameters such as τ) whenever do-
ing so does not generate ambiguity.
As an example, if the node is a rate-latency one, i.e. (),R tθβ β= ,
and flow 2 is leaky-bucket shaped, i.e. () ()

2 22 ,t tρ σα γ= , then
Theorem 2.1 yields the following set of equivalent service curves
for flow 1.

 ()() () ()
{ }

2 2
2 2

2

, , 1 tE t R t
R τ

σ ρ θ τ
β α τ ρ θ

ρ

+

>

  + − 
= − − +  −   

 (4)

The curves are also shown in Figure 1, from which the following
two observations can be made:
a) ()2, ,E β α τ is not necessarily a rate-latency curve. More specifi-
cally, it can be either a rate-latency curve (if 2 Rτ θ σ≤ +) or a
different kind of curve, namely an affine curve shifted to the right
(if 2 Rτ θ σ> +).
b) not all the curves obtained from Theorem 2.1 are actually rele-
vant. For instance, all the curves obtained for 2 Rτ θ σ< + lie
entirely below the one obtained for 2 Rτ θ σ= + , and are there-
fore useless for computing performance bounds.
It has been proved in [12]-[14] (to which the interested reader is
referred for more details and proofs) that pseudoaffine curves effec-
tively describe the service received by single flows in FIFO multi-
plexing rate-latency nodes. We call a pseudoaffine curve one which
can be described as:

 ,
1

x xD
x n

σ ρπ δ γ
≤ ≤

 = ⊗  
 
⊗ (5)

i.e., as a multiple affine curve shifted to the right. Note that, since
affine curves are concave, (5) is equivalent to:

 ,
1

x xD
x n

σ ρπ δ γ
≤ ≤

 = ⊗  
 

∧ (6)

We denote as offset the non negative term D , and as leaky-bucket
stages the affine curves between square brackets. We denote with

*
πρ (long-term rate) the smallest sustainable rate among the leaky-

bucket stages belonging to the pseudoaffine curve π , i.e.
()*

1,...,
min xx nπρ ρ
=

= . A rate-latency service curve is in fact pseudoaf-
fine, since it can be expressed as , 0,R Rθ θβ δ γ= ⊗ . A three-stage
pseudoaffine curve is shown in Figure 2.
The alert reader will notice that, for any value of τ , all the curves
obtained from (4) are pseudoaffine. Although more general than
rate-latency curves, pseudoaffine curves are still fairly easy to man-
age from a computational standpoint. The following two properties,

 4

proved in [12], will be used throughout this paper:
Property 2.2 (closeness with respect to convolution):
The convolution of two pseudoaffine curves is a pseudoaffine curve,
whose offset is the sum of the offsets of the operands, and whose
leaky-bucket stages are the union of the leaky-bucket stages of both
operands.
Property 2.3 (delay bound):
Let π be a pseudoaffine curve, with offset D and n leaky-bucket
stages ,x xσ ργ , 1 x n≤ ≤ , and let ,σ ρα γ= . If *

πρ ρ≥ , then:
() ()1,h α π π σ−= , where ()1π − i denotes the pseudo-inverse of
()π i , defined in [5]. Moreover:

 () ()1

1
, x

x n
x

h D
σ σα π π σ

ρ

+
−

≤ ≤

 −
= = + ∨  

 
, (7)

where ∨ denotes the maximum operator.

θ 2
R

σ

2

R

στ θ< +

2

R

στ θ> +

2

R

στ θ= +

τ

()2 2

2R

σ ρ θ τ
θ

ρ
+ −

+
−

2R
R

στ θ  − +  
  

R

2R ρ−

Figure 1 - The set of equivalent service curves for flow 1

D

1σ

2σ

3σ

1ρ

2ρ

3ρ

()tπ

Figure 2 - Example of a three-stage pseudoaffine curve

Finally, Theorem 2.1 can be specialized for the case of pseudoaffine
service curves and leaky-bucket arrival curves as follows:
Corollary 2.4 ([12]):
Let π be a pseudoaffine service curve, with offset D and n leaky-
bucket stages ,x xσ ργ , 1 x n≤ ≤ , and let ,σ ρα γ= , with *

πρ ρ≥ . If a
node guarantees a minimum service curve π to the aggregate of
the two flows, which are served in FIFO order, and flow 2 has α
as an arrival curve, then the family of functions

(){ }, , , 0E s sπ α ≥ , with:

 ()
1 1

1 ,

, ,
i i x

x x
i n i ni i x

D s x n s

E s
σ σ σ σ σ σρ ρ ρ

ρ ρ ρ

π α δ γ+ +

≤ ≤ ≤ ≤

  −  − − + ∨ + ≤ ≤ + ∨ − −    
     

 
 = ⊗  
  

⊗ , (8)

or, equivalently,

 () () (){ } (), , ,
1

, ,
x x xh s s h D

x n

E s α π ρ α π σ σ ρ ρπ α δ γ+ + − − − −
≤ ≤

 = ⊗  
 
⊗ (9)

are pseudoaffine equivalent service curves for flow 1.

It can be proved that the set (){ }, , , 0S E s sπ α ≥≜ is a proper
subset of (){ }, , , 0E β α τ τΤ = ≥ , i.e. it does not include some
equivalent service curve that would be computed through Theorem
2.1. However, it does include those equivalent service curves which
are relevant for computing delay bounds. More specifically, for
each curve \x S∈ Τ , there exists a curve y S∈ such that y x≥ .
Therefore, all the “good” performance bounds that can be found by
applying Theorem 2.1 can also be found by applying Corollary 2.4.
With reference to the example of Figure 1, Corollary 2.4 yields:

 ()
2 22 ,, , R s R

s
R

E s σ ρθ
β α δ γ ⋅ −

+ +
= ⊗ (10)

i.e., all the equivalent service curves obtained from Theorem 2.1
with 2 Rτ θ σ≥ + .

3. SYSTEM MODEL
We analyze a tandem of N nodes, connected by links. The tandem is
traversed by flows, i.e. distinguishable streams of traffic. We are
interested in computing a tight end-to-end delay bound for a specific
flow, i.e. the tagged flow, which traverses the whole tandem from
node 1 to N . At each node, FIFO multiplexing is in place, meaning
that all flows traversing the node are buffered in a single queue
First-Come-First-Served. Furthermore, the aggregate of the flows
traversing a node is guaranteed a minimum service, in the form of a
rate-latency service curve, with rate kR and latency kθ ,
1 k N≤ ≤ . In the above framework, a flow can be identified by the
couple (),i j , 1 i j N≤ ≤ ≤ , where i and j are the first and last
node of the tandem at which the flow is multiplexed with the ag-
gregate. We model a flow as a stream of fluid, i.e. we assume that it
is feasible to inject and service an arbitrarily small amount of traffic
at a node. We assume that flows are constrained by a ,σ ρ leaky-
bucket arrival curve at their ingress node. Leaky-bucket curves are
additive, i.e. the aggregate of two leaky-bucket shaped flows is a
leaky-bucket shaped flow whose arrival curve is the sum of the
two. Hence, without any loss of generality, we assume that at most
one flow exists along a path and we identify it using the path as a
subscript. Based on how the paths of its flows are interleaved, we
classify tandems as being either nested or non-nested. In a nested
tandem, flows are either nested into one another, or they have null
intersection. This means that no two flows (),i j , (),h k exist for
which i h j k< ≤ < . Said in other words, let us consider two flows
(),i j , (),h k , with () (), ,i j h k≠ and i h≤ . Then either j h< , or
k j≤ . In the first case, the two flows span a disjoint set of nodes.
In the second case, we say that (),h k is nested within (),i j . For
example, Figure 3 represents a nested tandem of three nodes. Flow
()3,3 is nested within flow ()2,3 . Furthermore, flows ()1,1 ,
()3,3 and ()2,3 are nested within ()1,3 , that is the tagged flow.
Given a flow (),i j , we denote its level of nesting (),l i j as the
number of flows (),h k into which it is nested. For instance, with
reference to Figure 3, it is () ()1,1 2,3 2l l= = , and ()3,3 3l = . The
level of nesting of the tagged flow is therefore equal to one. The
level of nesting of the tandem is the maximum level of nesting of
one of its flows, which can be easily recognized to be the maximum
number of flows crossing a single node. Note that a tandem of N

 5

nodes has a level of nesting no greater than N , and that the maxi-
mum number of flows insisting on an N -node nested tandem is
2 1N − .

()1,3

()1,1

()2,3

()3,3

1 2 3

Figure 3 – A nested tandem

A particular case of n -level nested tandem is the one in which
() (),1 , ! , : ,x x n i j l i j x∀ ≤ ≤ ∃ = , i.e. we have only one flow at each

level of nesting. We call such a tandem a fully nested tandem. For
instance, a sink-tree tandem, i.e. a tandem in which there are ex-
actly N flows, whose path is (),i N , 1 i N≤ ≤ (see Figure 4,
above), is a fully nested tandem (whose level of nesting is N). On
the other hand, a tandem is non-nested if it does not verify the
above definition, as the one shown in Figure 4, below. In that case,
we say that flow ()1,2 and ()2,3 are interdependent.

()1,3

()1,2

()2,3

1 2 3

()1,3

()2,3

()3,3

1 2 3

Figure 4 – A fully nested tandem (above) and a non-nested tandem (below)

Finally, as far as rate provisioning is concerned, we assume that a
node’s rate is no less than the sum of the sustainable rates of the
flows traversing it, i.e. for every node 1h N≤ ≤ ,
 ()

()
,

, :

h
i j

i j i h j

Rρ
≤ ≤

≤∑ (11)

Note that this allows a node’s rate to be utilized up to 100%, and it
is therefore a necessary condition for stability. Moreover, we as-
sume that the buffer of a node is large enough as to guarantee that
traffic is never dropped.

4. THE LEAST UPPER DELAY BOUND
METHODOLOGY
In this paragraph, we describe the Least Upper Delay Bound
(LUDB) methodology and propose numerical techniques for com-
puting delay bounds. We first explain the problem and our solu-
tions for nested tandems, and then extend it to non-nested tandems
later on.
At a first level of approximation, LUDB entails computing all the
service curves for the tagged flow: we start from the aggregate
service curves at each node, we apply Corollary 2.4 iteratively in
order to remove one flow (),i j ≡ ()1,N from the tandem, and we
convolve the service curves of nodes traversed by the same set of
flows. Every time Corollary 2.4 is used, a new free parameter (),i js
is introduced. Therefore, we compute in fact a multi-dimensional
infinity of service curves. From each of these we can compute a
delay bound for the tagged flow, hence the minimum among all the
delay bounds is the least upper delay bound.

For instance, let us consider again the three-node nested tandem
shown in Figure 3. Figure 5 shows how to compute the set of end-
to-end service curves for the tagged flow (1,3). We start from the
aggregate service curves at each node, and we apply Corollary 2.4,
starting from nodes 1 and 3. Then we convolve the service curves
obtained for nodes 2 and 3, which are now traversed by the same
aggregate of flows (1,3) and (2,3). We remove flow (2,3) by apply-
ing once more Corollary 2.4, and we obtain the set of end-to-end
service curves for the tagged flow through convolution. The set of
service curves { }

() () ()()1,3

1,1 3,3 2,3, ,s s sπ depend on three parameters,

()1,1s , ()2,3s , ()3,3s , and they are pseudoaffine for each instance of
the three parameters.

2β

()2,3α

()1,3α () ()()1
1,1 1,1, ,E sβ α () ()()3

3,3 3,3, ,E sβ α

1β 2β 3β

()2,3α

()1,1α ()3,3α

()1,3α

()2,3α

()1,3α () ()()1
1,1 1,1, ,E sβ α () ()()2 3

3,3 3,3, ,E sβ β α⊗

()1,3α () ()()1
1,1 1,1, ,E sβ α () ()() () ()()2 3

3,3 3,3 2,3 2,3, , , ,E E s sβ β α α⊗

()1,3α () ()() () ()() () ()()1 2 3
1,1 1,1 3,3 3,3 2,3 2,3, , , , , ,E s E E s sβ α β β α α⊗ ⊗

Figure 5 – An example of application of the LUDB methodology

More generally, let us consider a nested tandem of N nodes,
whose level of nesting is 2n ≥ (otherwise the problem is trivial).
The algorithm for computing the delay bound for the tagged flow
can be described as follows.
As a first step, we build the nesting tree of the tandem, which is in
fact a simplified representation of the tandem. Let us define two sets:

 () () () (){ }, , : and , , 1h kS i j h i j k l i j l h k= ≤ ≤ ≤ = + ,

i.e. the set of flows which are nested right into (),h k , and:

 () () (){ }, ,: and , , or h k h kC l h l k i j S l i l j= ≤ ≤ ∀ ∈ < > ,

i.e. the set of nodes in path (),h k that are not in the path of any
flow in (),h kS . Note that, if (),h kS = ∅ , then () { }, , 1,...,h kC h h k= + .
For the sake of clarity, hereafter the nodes in the nesting tree are
called t-nodes, in order to distinguish them to the nodes in the path
of the tagged flow. In the nesting tree, there are two kinds of t-
nodes: non-leaf t-nodes represent flows, and leaf t-nodes represent
sets of nodes in the path. More specifically:
1. Each non-leaf t-node contains a flow (),h k . The root t-node

contains ()1,N .
2. Each t-node whose content is (),h k has all flows

() (),, h ki j S∈ as direct descendants. Furthermore, if

(),h kC ≠ ∅ , (),h k has one more direct descendant represent-
ing (),h kC (which is a leaf t-node).

The level of nesting of a flow is the level of the corresponding t-
node in the nesting tree. Accordingly, we henceforth write that
() (), ,i j h k→ iff. () (),, h ki j S∈ , (),h kS being the set of non-leaf
direct descendants of (),h k , and that () ()*, ,i j h k→ to denote

 6

that (),i j is a (possibly non-direct) descendant of (),h k . Figure 6
shows the nesting tree of the tandem of Figure 3. Leaf t-nodes are
shown as circles, while non-leaf nodes are ellipses. For instance, it
is () ()3,3 2,3→ and () ()*3,3 1,3→ , whereas () *1,1 → ()2,3 .
For non-leaf t-nodes, we also define the height (),H i j as the
length of the longest path to a leaf t-node, i.e. ()2,3 2H = ,

()1,3 3H = . Once the nesting tree has been constructed, the set of
end-to-end service curves for ()1,N is computed by visiting the
nesting tree from the leaves to the root as follows:
1. For each leaf t-node representing (),h kC for some parent t-node

(),h k , compute

 ()

()

,

,

h k

h k

C j

j C

π β
∈

= ⊗

2. at a non-leaf t-node (),h k , compute a service curve as

 { } ()

() ()

{ }
() ()(),

,

, ,

, ,
,

, ,h k

h k

Ch k i j

i j i j
i j S

E sπ π π α
∈

 
= ⊗  

  
⊗ (12)

i.e. as the convolution of:
i) The (pseudoaffine) service curves obtained by applying

Corollary 2.4 to the service curve computed at all child t-nodes;
ii) The (rate-latency, hence pseudoaffine) service curve (),h kCπ , if

(),h kC ≠ ∅ (otherwise assume for completeness that
(),

0 0,
h kCπ δ β +∞= =).

The set of end-to-end service curves for ()1,N , call it { }1,Nπ , is
obtained by computing the service curve at the root t-node. The
least upper end-to-end delay bound for the tagged flow is the fol-
lowing:

()

() ()
()

{ }
() () ()()(){ }

,
*

1, *
1, ,0,

, 1,

min , : , 1,
i j

N

N i js

i j N

V h s i j Nα π
≥

→

= → (13)

We now discuss how to to solve (13) numerically. After that, we
show how to adapt LUDB to compute delay bounds in non-nested
tandems. This section terminates with a wrap-up discussion show-
ing the practicability of the presented algorithms and their im-
provement over per-node analysis.

()1,3

()1,1 ()2,3

()3,3

()1,3

()1,1

()2,3

()3,3

1 2 3

Figure 6 – a nested tandem and the related nesting tree

4.1 Computing the LUDB in nested tandems
Since { } ()1,Nπ is pseudoaffine and ()1,Nα is an affine curve, prob-
lem (13) is an optimization problem with a piecewise linear objec-
tive function of M variables and M linear constraints, M being
the number of distinguished flows in the tandem (or, equivalently,
the number of non-leaf t-nodes in the nesting tree) minus one,

2M N< . Therefore, (13) is a piecewise-linear programming (P-
LP) problem. Closed-form solutions have been derived through ad-
hoc methods for special cases of problem (13), i.e. for a 2-level

nested tandem of arbitrary length [11], i.e. one where one-hop
persistent cross flows traverse the tandem, and for a sink-tree tan-
dem [12]. In [14] we showed that problem formulation (13) is the
same for all tandems whose nesting trees are tree-equivalent, i.e.
have the same shape. As a consequence, any closed-form solution
computed for a given tandem can be generalized to all tree-
equivalent tandems. For instance, the solution for any fully nested
tandem can be computed in a closed form starting from the one
computed for the tree-equivalent sink-tree tandem via simple vari-
able substitution. However, a closed-form solution for a generic
nested tandem is still missing as of today.
As far as numerical methods are concerned, P-LP problems are
normally dealt with either by exploding them into a number of
simplexes, by considering each linear piece at a time, or through
ad-hoc algorithms that exploit some known properties, e.g., the
convexity of the objective function (see, for instance, [10]). Since
we have no proof that the objective function is convex, we use a
simplex approach to solve (13). Assume for ease of notation that

 { }1,
,

1
x x

N
D

x n
σ ρπ δ γ

≤ ≤

 = ⊗  
 

∧ .

By Property 2.3, problem (13) can be formulated as follows:

()

() () ()

1,

1

*
,

min

. .

0, , 1,

xN

x n
x

i j

V D

s t

s i j N

σ σ
ρ

+

≤ ≤

 −  = + ∨   
    

≥ ∀ →

Problem (13) has a non linear objective function, due to the maxi-
mum operator. It can however be decomposed into 1n + problems,
as many as the terms in the max operator between curly brackets
(i.e., all the n leaky bucket stages of { }1,Nπ , plus the null term
given by []+

). In each sub-problem, the max is assumed to be
achieved either for generic term x , 1 x n≤ ≤ , or for the null term,
and the inequalities which are required for these assumptions to
hold are added accordingly. We henceforth call each of those in-
stances a decomposition of the original (P-LP) LUDB problem. A
generic decomposition x , 1 x n≤ ≤ is formulated as follows:

()

() () ()
() ()

()

1,

*
,

1, 1,

1,

min

. .

0, , 1,

,1

0

xN

x
x

i j

x yN N

x y

xN

x

V D

s t

s i j N

y y n

σ σ
ρ

σ σ σ σ
ρ ρ
σ σ

ρ

−  = + 
  

≥ ∀ →

− −
≥ ∀ ≤ ≤

−
≥

 (14)

While the 1n + th one is:

{ }

() () ()
()

1

*
,

1,

min

. .

0, , 1,

0 ,1

n

i j

yN

y

V D

s t

s i j N

y y n
σ σ

ρ

+ =

≥ ∀ →

−
≤ ∀ ≤ ≤

 (15)

Then, the LUDB is computed as:

 7

 { }
1 1
min xx n

V V
≤ ≤ +

= .

Now, if the offset D and the bursts xσ of the n leaky-bucket
stages of { }1,Nπ are affine functions of () () ()*

, 0, , 1,i js i j N≥ → ,
then all the decompositions (14)-(15) are simplexes. This happens,
for instance, in a tandem with one-hop persistent cross flows, as in
[11]. Otherwise, D and xσ are itself piecewise linear functions of

() () ()*
, 0, , 1,i js i j N≥ → . However, through (12) and Property 2.2,

they are obtained by composing sum and maximum operations
recursively according to the nesting tree structure. Therefore, each
problem can be recursively decomposed into a number of other
problems, working out maxima and adding constraints at each
recursive step, until the resulting problems turn out to be simplexes
themselves. We call each simplex originating from a LUDB prob-
lem a recursive simplex decomposition (RSD) of that LUDB prob-
lem. A first solution algorithm for the LUDB problem (13) entails
expanding the LUDB formula as explained and solving all the
resulting RSDs. We instantiate the RSD algorithm on the nested
tandem of Figure 3.
Example 4.1
For the nested tandem of Figure 3 (whose nesting tree is reported in
Figure 6) the LUDB problem is the following:

()
()

()
() () () ()

()

()

()

3 1,1 3,3

1,1 3,3 2,3 2,3 1,31 31

1,1

2,3

3,3

min

. .

0

0

0

i

i
V s s s

R R

s t

s

s

s

σ σ
θ

=

   = + + + + + Σ + + Σ  
    

≥

≥

≥

∑

, (16)

where the term between square brackets in (16) is the offset of the
pseudoaffine service curve for the tagged flow ()1,3 , and:

 ()

() ()() () ()
() ()

()

() ()

() () ()
()

()

() ()

()

3
2,3 3,33

1,3 3,3 2,3 2,3 3
3,3

3
3,3 2,3

1,3

2,32
11,3 2,3 2,3 2

1,3 1,1

2 1
2,3 1,1

,

,

R s
R s

R

R

R s
R sR

R R

σ
σ ρ

ρ

ρ ρ

σ
σ σ

ρ ρ

+
  − ⋅  − − ⋅ + Σ − −    

− − 
Σ = ∨  

   − ⋅ + Σ −  − ⋅   
 − −
 

,

 ()
() ()

()

()
3

2,3 3,3 2,3

2,3 3 2
3,3

,
R s

R R

σ σ
ρ

+
 − ⋅
 Σ = ∨

−  

.

At a first glance, twelve RSD can be obtained from (16), as many
as the cross product of the terms in the two maxima expressions

()1,3Σ and ()2,3Σ , i.e. four and three respectively. Note that, while all
the three terms within square brackets in ()1,3Σ can be negative, in
which case the null term []+

 would be the maximum one, the
second term in ()2,3Σ is non negative by definition, and therefore
the null term is not necessary. This reduces by one the number of
combinations for ()2,3Σ and brings the total number of RSDs to
4 2 8× = .
For the sake of completeness, hereafter we write down the RSD
obtained assuming that the maximum is achieved in the first term
of both ()1,3Σ and ()2,3Σ . Our assumptions yield the following:

 ()
() ()

()

3
2,3 3,3

2,3 3
3,3

R s

R

σ
ρ

− ⋅
Σ =

−
, ()

() ()() ()

() ()

3
1,3 3,3 2,3

1,3 3
3,3 2,3

R s

R

σ ρ

ρ ρ

− − ⋅
Σ =

− −

And they are obtained under the following inequalities (the first
one related to ()2,3Σ , the following three related to ()1,3Σ):

() ()

()

()

() ()() ()

() ()

() ()
() ()

()

()

()

() ()() ()

() ()

() ()

()

() ()() ()

() ()

3
2,3 3,3 2,3

3 2
3,3

3
2,3 3,3 2,32

1,3 2,33 3 2
1,3 3,3 2,3 3,3

3 2
3,3 2,3 2,3

3 1
1,3 3,3 2,3 1,3 1,1

3 1
3,3 2,3 1,1

3
1,3 3,3 2,3

3
3,3 2,3

0

R s

R R

R s
R s

R s R R

R R

R s R s

R R

R s

R

σ σ
ρ

σ σ
σ

σ ρ ρ

ρ ρ ρ

σ ρ σ
ρ ρ ρ

σ ρ

ρ ρ

− ⋅
≥

−

 − ⋅ − ⋅ + − − − ⋅ −  ≥
− − −

− − ⋅ − ⋅
≥

− − −

− − ⋅
≥

− −

Accordingly, after a few straightforward algebraic manipulations
we obtain the following RSD:

()
()

()
()

() ()

()
()

() ()() ()

() ()

()

()

()

() ()

()

()

() ()() ()

() ()

()

3
3 1,1 3,3 2,3 3,3

1,1 3,3 2,31 3 31
3,3

1
3

1,3 3,3 2,3

3
3,3 2,3

1,1

2,3

3,3

3
2,3 3,3 2,3

3 2
3,3

1,33
1,3 3,3 2,3

3
3,3 2,3

min

. .

0

0

0

i

i

R s
s s s

R R R
V

R s

R

s t

s

s

s

R s

R R

R s

R

σ σ σ
θ

ρ

σ ρ

ρ ρ

σ σ
ρ

σ
σ ρ

ρ ρ

=

  − ⋅
  + + + + + +

−    =  
− − ⋅ 

+ 
− −  

≥

≥

≥

− ⋅
≥

−

− − ⋅
≥

− −

∑

()
() ()

()

()

()

() ()() ()

() ()

() ()

()

() ()() ()

() ()

3
2,3 3,3 2,32

2,3 3 2
3,3

2
2,3

3 1
1,3 3,3 2,3 1,3 1,1

3 1
3,3 2,3 1,1

3
1,3 3,3 2,3

3
3,3 2,3

0

R s
R s

R R

R

R s R s

R R

R s

R

σ σ
ρ

ρ

σ ρ σ
ρ ρ ρ

σ ρ

ρ ρ

 − ⋅ − ⋅ + − −  
−

− − ⋅ − ⋅
≥

− − −

− − ⋅
≥

− −

The other seven are obtained through the same procedure, assum-
ing different maxima and related inequalities.
€
In general, each RSD of an LUDB with M cross flows has M
variables and a number of constraints C as follows:

 ()
()

1,
1

1
2

N
M M

C M L M
+ ⋅

= + ≤ + − , (17)

where:

 ()
()

()
(){ }() ()

()
,

,

,
, ,

, ,

1

1 1
i j

h k

h k
i j h kC

i j h k

S

L
L S

=∅
→

= ∅
=   + − ≠ ∅   

∑
 (18)

The first M constraints are simply (), 0i js ≥ for each cross flow.
The other ()1,NL constraints are those required to isolate a single
term of the nested sequence of maxima, and they are always no
more than the sum of the first M naturals (although our experi-
ments show that their actual number is much smaller on average).
Note that (),h kL is the number of leaky-bucket stages in the pseu-

 8

doaffine service curve computed at node (),h k .
However, although a simplex with M variables and ()2O M con-
straints may look tractable from a computational standpoint in
practical cases, the overall number of required RSDs may instead
grow very fast. In fact, the number Ω of RSDs to be solved can be
recursively computed as ()1,NGΩ = , with:

 ()
()

() ()
() ()

()

,

,
, , ,

, ,

1 h k

h k
h k i j h k

i j h k

S
G L G S

→

= ∅
=  ⋅ ≠ ∅


∏ (19)

It is easy to see from (18) and (19) that Ω depends on both the
number of flows M and their level of nesting, a deeper nesting
tree yielding more RSDs than a shallower one due to the product
operator. In fact, Ω ranges between M , achieved in a two-level
tandem (i.e. one with one-hop persistent cross-flows), to !M ,
achieved in a sink-tree tandem (although the LUDB can actually be
computed in a closed-form in both cases, without actually going
through the RSD process).
A much more efficient solution algorithm can be obtained by ob-
serving that many of the Ω RSDs are infeasible and can be identi-
fied as such at a small cost. In fact, thanks to the recursive structure
of the LUDB problem, it is fairly easy to identify small sets of
infeasible constraints, each one of which may appear in possibly
many RSDs. Once a set of constraints is identified as infeasible, all
the RSDs which include that set can be safely skipped, reducing the
overall number of simplexes to be solved to a much smaller figure.
With reference to the previous example, one can easily check that,
if ()

3 2
3,3R Rρ− ≥ , then the following inequality is infeasible for

any ()3,3 0s ≥ .

 () ()

()

()
3

2,3 3,3 2,3

3 2
3,3

R s

R R

σ σ
ρ

− ⋅
≥

−
 (20)

As a consequence, all the RSDs which include (20), i.e. four out of
eight (included the one described in the above example), are infea-
sible too, and can be safely skipped. Thus, the key to a faster solu-
tion algorithm is to work bottom-up in the nesting tree: starting
from the t-nodes (),i j such that (), 2H i j = (e.g., node (2,3) in
the above example), we compute the LUDB for the sub-tree rooted
at each of them. In doing so, we check the feasibility of each result-
ing RSD, and we mark infeasible constraints or sets thereof. Mov-
ing upwards towards the root, at each father t-node we solve the
LUDB problem, this time considering only those RSDs which do
not include infeasible (sets of) constraints of child t-nodes. Note
that this does not guarantee that the resulting RSDs will be feasible
themselves, since the subset of constraints causing infeasibility may
be sparse among several child t-nodes. However, as soon as new
infeasible RSDs are identified, they are marked and ruled out from
then on.
The bottom-up algorithm is considerably faster than a brute-force
recursive simplex decomposition. For instance, in sink-tree tan-
dems it reduces the number of simplexes from !M to ()2O M . As
another example, for a case-study tandem with 30 nodes and 31
flows, nested up to level five, we obtain 91.5 10Ω = ⋅ . The bottom-
up algorithm brings the overall number of RSDs which have to be
solved or proved infeasible (including those at intermediate t-
nodes) to 61.67 10⋅ . In this last case, DEBORAH finds the solution
in less than 20 minutes on a 2.4GHz Intel Core2 E6600 processor.
It is however evident that, as the scale of the LUDB problem gets
larger in both the number of flows and their nesting level, the com-

putation times become impractical also in a bottom-up approach.
For this reason, we propose a heuristic method for computing an
approximate LUDB in larger scale nested tandems.

4.2 Heuristic approximation of the LUDB
When computing the LUDB at a t-node (),i j , each RSD (),i jS
includes a set of constraints. Some of these are related to child t-
nodes () (), ,h k i j→ . For instance, with reference to Example 5.1,
all the RSDs for the tagged flow (1,3) include one constraint stating
which term in ()2,3Σ is the largest, with () ()2,3 1,3→ . We say that
an RSD (),i jS includes another (),h kS , with () ()*, ,h k i j→ , if the
set of constraints of (),i jS includes that of (),h kS . Define a n optimal
RSD for a t-node (),i j , ()

*
,i jS , as one whose optimum is the LUDB

for (),i j . In general, there can be more than one optimal RSDs for
a t-node. Based on experimental observations, it turns out that an
optimal RSD often includes some optimal RSDs of its children t-
nodes () (), ,h k i j→ . In other words, the constraints of optimal
RSDs for children t-nodes are good candidates for being included
in the optimal RSD at a parent t-node. With reference again to
Example 5.1, if one finds that the optimal RSD at (2,3) is obtained
with the following constraint:

 () ()

()

()
3

2,3 3,3 2,3

3 2
3,3

R s

R R

σ σ
ρ

− ⋅
≥

−

then the optimal RSD for the tagged flow (1,3) often includes the
same constraint.
We capitalize on this in order to devise an effective heuristic tech-
nique for approximating the LUDB. The key to efficiency is to limit
the explosion in the number of the RSDs. In order to do that, we
traverse the tree bottom-up, identify the few best RSDs for each t-
node (i.e., those leading to the best approximate LUDB) and dis-
card the others. Going upwards to parent t-nodes, we force the
RSD algorithm to keep into account only the surviving RSDs of
children t-nodes. More specifically, the algorithm is as follows:
1) compute the (exact) LUDB at all t-nodes (),i j such that

(), 2H i j = ; memorize all the optimal RSDs and discard the
others.

2) going bottom-up towards the root t-node, compute an approxi-
mate LUDB at a t-node (),i j with (), 2H i j > using the RSD
algorithm. However, when the recursion gets to decomposing a
term related to a child t-node () (), ,h k i j→ , instead of explor-
ing all possible RSDs, pick only the best RSDs for that t-node,
up to a maximum of 1n ≥ . When more than n are available,
select n at random among them. After computing the ap-
proximate LUDB at (),i j , memorize all the best RSDs, and
discard the others.

The above heuristics allows one to control the number of RSDs
which are passed on to a parent t-node, and, as a consequence, the
overall computation time. Generally speaking, the smaller n is, the
faster an approximated solution is computed, but the less likely it is
that the latter is equal to the LUDB. However, we show that the
trade-off is very favorable, i.e. we can compute very good ap-
proximations solving few simplexes. We start with observing that,
as far as sink-trees are concerned, the above heuristics always com-
pute an exact solution even with 1n = . In fact, in this case there is
only one feasible simplex at each t-node. In order to evaluate the
trade-off between accuracy and computational overhead in more
general settings, we create nested tandems whose nesting trees are

 9

balanced k -ary trees with a level of nesting equal to l , i.e. having
() ()1 1lk k− − flows and 1lk − nodes. For each flow, we randomly
select a burst and sustainable rate, and for the tandem nodes we
select a null latency and a rate equal to:
 () ()

()
,

, :

1h
i j

i j i h j

R x ρ
≤ ≤

= + ⋅ ∑ ,

where x is a random variable uniformly distributed in []0.01,1 , so
as to verify (11). The results are plotted as a function of n for a
given set of balanced nesting trees, varying their level of nesting
and -arity (i.e., l and k). For each selected value of l and k , we
generate 50 problems with different data sets.
Figure 7 shows the percentage of scenarios where the heuristic
solution matches the LUDB. The figure shows that a relatively
small value of n is enough in most cases, the performance worsen-
ing when the level of nesting gets higher. More interestingly, even
when the heuristics does not achieve the LUDB, the relative error is
small to negligible. Figure 8 shows the maximum relative error in
the LUDB estimate in the same scenarios. Both figures show that,
with 5n = , you are very likely to attain the LUDB, or a solution
less than 1% apart. The heuristics is however considerably faster, as
shown in Figure 9. The latter reports the ratio between the number
of simplexes solved in the heuristics and those solved for the exact
LUDB computation (using the bottom-up approach). The figure
shows that the larger the size of the problem gets, the larger the
improvement is.

0

0,2

0,4

0,6

0,8

1

2 4 6 8 10

k=2, l=3
k=2, l=4
k=2, l=5
k=3, l=3

%
 o

f
ex

ac
t m

at
ch

e
s

n
Figure 7 – Percentage of exact matches of the LUDB through the heuristics

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

2 4 6 8 10

k=2, l=3
k=2, l=4
k=2, l=5
k=3, l=3

m
a

xi
m

um
 r

e
la

tiv
e

 e
rr

or

n
Figure 8 - Maximum relative error in the LUDB approximation

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

2 4 6 8 10

k=2, l=3
k=2, l=4
k=2, l=5
k=3, l=3

ra
tio

 o
f s

im
pl

e
xe

s
a

ct
ua

lly
 c

om
pu

te
d

n
Figure 9 - Fraction of simplexes solved in the heuristics with respect to
those required for the exact LUDB computation

In order to give a tangible figure, for the same case study described
at the end of the previous subsection, the heuristic solution with

312n = (i.e., with virtually no limit to the number of combinations
carried to the parent level) completes on the same system in 1.6s,
returning the same result.
Within the limits of the considered scenarios, the heuristics appear
to be very fast and accurate, allowing good estimates of the LUDB
to be obtained in reasonable computation times even in large nested
tandems. We now move to considering non-nested tandems.

4.3 Non-nested tandems
The LUDB methodology cannot be applied directly to non-nested
tandems, such as the one shown in Figure 4. As shown in [14], a
non-nested tandem has to be partitioned into a number of nested
sub-tandems, each of which can then be analyzed in isolation using
LUDB. Whenever two flows (),i j , (),h k exist for which
i h j k< ≤ < , they are said to be interdependent, and cutting the
tandem at (i.e., before) any node in [], 1h j + will sever their inter-
dependency. For instance, with reference to Figure 10, flows ()1,2
and ()2,3 are interdependent, and their interdependency is severed
by cutting at any node in []2,3 . In order to analyze such tandems,
two problems need be solved: first of all, finding sets of cuts that
partition a tandem so as to sever all the interdependencies (thus
creating only nested sub-tandems); then, computing the delay
bound for each sub-tandem. With respect to the latter issue, in [14]
we have shown that, once a suitable set of cuts is identified, the
delay bound can be computed iteratively: starting from the first
sub-tandem, we compute the LUDB for the tagged flow and the
output arrival curve for each flow that crosses the cut (i.e. that is
also present in the next sub-tandem); then we move to the next sub-
tandem, for which we have just computed all the arrival curves, and
so on. We have also shown that computing an output arrival curve
implies solving a separate LUDB problem, which is as complex as
(or less complex than) the one for delay computation in the sub-
tandem. With respect to the first issue, i.e. computing a set of cuts,
[14] mentions that there are, in general, many ways to do so for a
tandem, as there are always at least two nodes to cut at in order to
solve a single interdependency. As a consequence, one should – in
principle – try all possible sets of cuts (optimal ones being hard to
identify a priori) and select the best delay bound among them a
posteriori. A fast heuristic is also proposed for computing one such
set. Hereafter, we delve deeper into both the above problems.

 10

1 2 3 4

1

2

3

4

F

× × ×
×

×

()
()

()
()

()
()

1,2 1,3 2,3

2,3 3,4 3,4

1

2

3

4

DM

×
× × ×

× ×

321 4

()1,2

()2,3

()3,4()1,3

()1,4

Figure 10 – A sample non-nested tandem, and related flow matrix (left) and

dependency matrix (right)

Given a tandem { }:1T i i N= ≤ ≤ of N nodes, we partition it into
m disjoint sub-tandems { }1: 1i i iT k c k c−= ≤ ≤ − , 1 i m≤ ≤ , with

1mc N= + , 1i ic c +< (and 0 1c = for ease of notation). ic is a node
index, and is accordingly called a cut. Furthermore, we call a set of
cuts a set of nodes { }:1iSC c i m= ≤ ≤ such that

1 ii m
T T

≤ ≤
≡∪ and

i jT T∩ = ∅ for i j≠ . Note that the possible sets of cuts for an N -
node tandem in the order of the subsets of a set of N elements, i.e.

()2NΘ . We are interested in Nesting SC (NSC), i.e. those for
which each iT is a nested sub-tandem. In the above example,
{ } { } { }3,5 , 2,4,5 , 2,3,4,5 are some NSC. However, cutting a tan-
dem entails assuming separate worst-case scenarios for each sub
tandem, which are not necessarily possible simultaneously. There-
fore, the less often we cut, the tighter the result is going to be.
Hence we define a Primary SC (PSC) as one NSC X such that

,j∀ { }\ jX c is not an NSC. Broadly speaking, PSCs are non-
redundant NSCs, and thus the only ones worth considering. With
reference to the above example, { }3,5a = and { }2,4,5b = are
PSCs, which originate two different end-to-end delay bounds aV
and bV . The alert reader can check that aV can be either larger or
smaller than bV , depending on the actual values of the nodes and
flows parameters, despite the fact that a has one cut less. Hence
the safest choice is to compute a bV V V= ∧ .
The first problem to solve is therefore how to compute all the PSCs
in a tandem. In fact, their number grows with the number of nodes
and flows in the tandem. We present an efficient algorithm to do
this. In a non-nested tandem, the number of flows M is upper
bounded by ()1 2N N⋅ + , i.e. all the couples (),i j with
1 i j N≤ ≤ ≤ . These flows can be represented in an N N× binary
flow matrix F , such that , 1i jF = is flow (),i j exists. Interde-
pendencies can be efficiently located by exploring F using simple
bitwise operations. For instance, for flow (),i j the interdependent
flows are the 1s in the following blocks of the matrix:
 [] [] [] []1, 1 , 1 1, 1,i i j i j j N− × − ∪ + × +

Let d be the number of such dependencies. As a first step, an
N d× binary Dependency Matrix (DM) is computed. For the
above example, F and DM are also shown in Figure 10. For each
couple of interdependent flows (),i j and (),h k , the dependency
is severed if we cut the tandem at any node in [], 1h j + . Accord-
ingly, the matrix has a 1 at all the rows [], 1h j + for that depend-
ency. Building such matrix requires at most 2 / 2M comparisons.
Row n of the DM is thus the set of dependencies nD severed by a
cut at node n . Note that a set of cuts is an NSC if and only if it
satisfies all the dependencies in

1

N

nn
D D

=
=∪ .

As a second step, all the candidate NSCs are recursively computed
as follows (see the pseudocode in Figure 11). First we initialize the

following variables: the global list of valid sets of cuts VSC= ∅ ,
the current set of cuts found SC= ∅ and the set of severed de-
pendencies SD= ∅ . Then, at each recursive step, a new node

' { 1,..., }n n N∈ + is considered for inclusion into SC (we assume
1n = initially). The node is discarded if either all the dependencies

in 'nD are already in SD, or if we are cutting at three consecutive
nodes. In this last case, in fact, since any two-node tandem is by
definition a nested one, removing one cut would still yield an NSC.
On the other hand, if the inclusion test is passed then we update the
set of dependencies as '' nSD SD D= ∪ ; now if 'SD D= , then SC
is a valid NSC, hence it is added to VSC and the current recursive
iteration terminates. Otherwise a new recursion step is started from
the current node and so on, until the last node is reached. The algo-
rithm exits when the top-level iteration terminates, leaving all the
possible NSCs stored intoVSC.
As a final step, VSC is scanned to eliminate redundant sets of cuts,
so as to leave only PSCs. Note that the number of PSCs still grows
exponentially with the number of nodes, however with a reduced
exponent: for a tandem including all possible flows, our experi-
ments show that the number of PSCs grows as 0.40.73 2 N⋅ , i.e.
about 33 10⋅ for 30N = .

VSC= ∅ ; SC= ∅ ; SD= ∅ ; 1;n =

void compute_sets (SC , SD , n) {

 for ' 1n n= + to N {

 if 'nD SD⊆ or { ' 2, ' 1}n n SC− − ⊆

 then continue; //skip to next node

 ' { '}SC SC n= ∪ ; //add n to the set of cuts

 '' nSD SD D= ∪ ; //update set of depend.

 if 'SD D= then 'VSC VSC SC= ∪ ;

 else compute_sets('SC , 'SD , 'n);
 }
}

Figure 11 - Pseudo-code for recursive cuts sets computation

Once all the PSCs are computed, we are faced with the problem of
computing the related delay bounds. As already observed, one
delay bound should be computed per PSC, using repeated LUDB
computation. To this aim, one may note that cutting a long tandem
into shorter sub-tandems actually reduces the overall complexity: in
other words, computing the delay bound for a PSC entails solving a
linear number of exponentially simpler problems, which is gener-
ally much faster. However, this would obviously be computation-
ally expensive as the number of PSCs grows large. In order to
obtain an efficient implementation, we can again exploit the prob-
lem structure. Since an interdependency between two flows can be
severed by cutting at least at two different nodes, there will be in
general several PSCs where the first n cuts are the same. For
these, the delay bounds and output arrival curves in the first n
sub-tandems can be computed once, and reused in the subsequent
computations. This can easily be done by arranging all the PSCs in
a tree, whose ()1

th
j + level nodes are the thj cuts in every PSC.

The end-to-end delay bounds for all the PSCs can be efficiently
computed by visiting such a tree depth-first and saving all the com-
putations at intermediate nodes. Table 1 reports the percentage of
LUDB skipped with respect to a brute-force approach, each value
representing an average over ten randomly generated instances. The

 11

number of flows is varied among 20%, 50% and 100% of all the
possible ones. The flow paths are generated at random (the result-
ing tandem is checked to be non-nested before proceeding with the
analysis), and so are their rates and bursts. Nodes are provisioned
so as to accommodate the overall flow traversing them, with a
random overprovisioning ranging from 1% to 50%, while their
latencies are set to be identically null. As the table clearly shows,
the amount of computations saved is significant, increasing with
both the number of nodes and the flow density.

N, d 20% 50% 100%

10 20.42 39.33 41.67

15 45.36 56.02 58.77

20 61.40 65.59 68.58

25 70.51 73.36 74.74

30 75.47 77.90 78.90
Table 1 – % of LUDBs skipped with respect to a brute-force approach

To evaluate the overall scalability of the proposed approach, we
run the computations on non-nested tandems of varying size, in the
same settings as before and on the same hardware. Figure 12 shows
the time taken to compute all the PSCs against the tandem size. The
overall LUDB computation time once the sets of PSCs are identi-
fied is instead reported in Figure 13. Both figures show an expo-
nential dependency with respect to the tandem size. Interestingly,
the PSC computation time does not depend monotonically on the
number of flows, the highest one being achieved for a 20%. This is
because, when flows are sparser, sets nD tend to have smaller
intersections, so that you need more to compute an NSC, and there-
fore the number of their combinations increases as well. Although
not shown in the figure, however, further reducing the number of
flows (e.g., to 10%) eventually leads to smaller computation times.
On the other hand, the LUDB computation gets heavier as the
number of flows increases, which is expectable, and represents the
dominant time with densely populated tandems. However, as the
figures show, a 30-node tandem with all possible flows (i.e., 465)
can be analyzed in twenty minutes.

0,01

0,1

1

10

100

20 22 24 26 28 30

20%
50%
100%

T
cu

t (
s)

N
Figure 12 – PSC computation time

0,001

0,01

0,1

1

10

100

1000

104

10 15 20 25 30

20%
50%
100%

T
lu

db
 (

s)

N
Figure 13 – LUDB computation time

Note that – unless very large nested sub-tandems are obtained (i.e.,
in the order of several tens of nodes, which is note the case in the
above experiments) – heuristics such as those described in Section
4.2 are ineffective in reducing the overall computation time. In fact,
when sub-tandems are short, few simplexes are required to solve
their LUDB problems, and the efficiency gain of using the heuris-
tics is thus negligible.

4.4 A wrap-up discussion
As shown in the previous sections, LUDB computation completes
in seconds or minutes for nested tandems of up tens of nodes. Com-
putation in non-nested tandems instead requires minutes for tan-
dems of up to 30 nodes. Since the computation time grows expo-
nentially, and although using more performing hardware, such as
quad-core PCs, may push the limit a few units ahead, exceeding
this last figure quickly leads to unfeasibly long computation times.
However, we observe that 30-node paths are rare and close to the
longest in today’s planetary Internet [26]. More to the point, few, if
any, paths under the control of a single administrative entity are
that long. This means that such methodology is suitable for today’s
Internet. Moreover, according to the current trends, paths in the
Internet are getting shorter over time due to increasing domain-
level interconnectivity, which makes that figure large enough also
for the foreseeable future. The point that we want to make now is
that such computational overhead is really needed, since it comes
with a dramatic improvement in the solution accuracy with respect
to the only other comparable method so far, i.e. per-node delay
analysis. In the latter, per-node delay bounds and output arrival
constraints are computed and summed up, similarly to what we
would do by using a (redundant) NSC { }1,..., 1X N= + . This
method is computationally simpler, since single-node analysis is
trivial. However, the ratio of the per-node delay bound and the
LUDB is always greater than one, and it grows exponentially with
the number of nodes, in both nested and non-nested tandems.
Figure 14 shows the ratio of per-node delay bound over the LUDB
as a function of the number of nodes, in the same non-nested tan-
dem settings previously used. The improvement grows from 4-6
times (for 10 nodes) to 500-800 times (for 30 nodes), almost irre-
spective of the flow density. For nested tandem the gain is even
larger: for instance, in a balanced tree with 4, 3l k= = (i.e., 64
nodes), the heuristic bound is on average 394 10⋅ times smaller
than the per-node one.

 12

1

10

100

1000

10 15 20 25 30

20%
50%
100%p

er
-n

od
e

 d
el

a
y

/ L
U

D
B

 r
at

io

N
Figure 14 - Ratio between per-node delay and LUDB

Having shown that LUDB analysis is indeed worth pursuing if
delay bound accuracy is a concern, we take over the problem of
assessing how tight the LUDB is in the next section.

5. THE PROBLEM OF TIGHTNESS
Assessing whether the LUDB is a tight bound is made particularly
challenging by the fact that a method for computing the WCD in
FIFO tandems is still missing. In a previous work of ours, [12],
LUDB was applied to sink-tree tandems, which are in fact nested
tandems. For this class of tandems, we showed that the LUDB
(which can be computed in a closed form) is actually equal to the
WCD. The proof was obtained by constructing a scenario where a
bit of the tagged flow experiences a delay equal to the LUDB itself.
As far as non-nested tandems are concerned, we already showed
that this method yields much better results compared to per-node
analysis. However, breaking the end-to-end analysis, i.e. computing
and summing partial delay bounds, is likely to lead to loose end-to-
end delay bounds nonetheless, as it entails assuming independent,
non simultaneously possible worst-case scenarios at each sub-
tandem. The alert reader will notice that a similar argument has
been used in the past to prove that the pay burst only once principle
holds for single flows in per-flow scheduling networks (see e.g. [5]
for some discussion on this topic). Broadly speaking, cutting a
tandem into sub-tandems is much better than cutting it into single
nodes (as it is done in per-node analysis), but mostly because you
need less cuts to accomplish the same task, hence we would not
expect the bounds thus obtained to be tight. If we give for granted
that end-to-end analysis is a necessary condition to obtain tight
bounds, a natural question is whether the latter is also sufficient. In
other words, whether end-to-end analysis always yields a bound
which is equal to the WCD. In this section, we show by counterex-
ample that this is not the case: the LUDB may be larger than the
WCD, even when end-to-end analysis is possible. We show that
there are cases of nested tandems where we are able to compute a
smaller delay bound than the LUDB, which proves that the LUDB
itself is not necessarily equal to the WCD.
Our line of reasoning is the following: instead of looking for an-
other method to upper bound the WCD in a sample tandem (which,
to the best of our knowledge, has not be discovered so far), we look
for another tandem, derived from the sample one, to which to apply
the same method, i.e., the LUDB. More specifically, consider a
tandem T , and call W its WCD. Assume you are able to build a
tandem T , such that its WCD W is not smaller than W , i.e.

W W≥ . Now, the LUDB is not smaller than the WCD by defini-
tion. Thus, if V and V are LUDBs for T and T , then it is
V W≥ , i.e. V is obviously a delay bound for T . However, if we
find cases when V V< , we can prove that V W> .
Apparently, we need a method to build such a tandem T from T .
The starting point for this is a technical Lemma which identifies
assumptions on the nodes behavior which are compatible with the
worst-case scenario. Hereafter, we denote as () (),

k
i jA t the CAF for

flow (),i j at node k , and with () (),
k
i jD t the CDF for flow (),i j

at node k . Furthermore, we denote with ()kA t and ()kD t the
total CAF and CDF at node k .
Define a scenario g for an N -node tandem as:
1) a set of CAFs for all the flows () (), 1,i j N⊆ at their entry

node, () (),
i
i jA t ;

2) a set of “node behaviors”, i.e. the way each node i , 1 i N≤ ≤ ,
transforms its CAF ()iA t into its CDF ()iD t , according to
the related service curve inequality () ()i i iD t A tβ ≥ ⊗  . As
for the latter, we can describe a node behavior by means of a
non-negative lead function ()iL t , which is such that

() () ()i i i iD t A t L tβ = ⊗ +  . Note that ()iL t is not necessar-
ily wide-sense increasing.

In order for a scenario to be feasible, each CAF has to be compati-
ble with the related arrival curve constraint,

() () () () () (), , ,
i i
i j i j i jA t A s t sα− ≤ − . Furthermore, each lead function

has to verify () () ()i i i iL t A t A tβ ≤ − ⊗  in order for node i to
have a causal behavior.
We first show that there is at least one scenario where all nodes are
lazy, i.e. they have a null lead, where the WCD is attained.
Lemma 5.1
Assume that a tandem of N FIFO nodes is traversed by a set of
flows, and fix the CAF of each flow (),i j at its entry node, (),

i
i jA .

Then, the WCD for flow ()1,N is achieved in a scenario where all
nodes are lazy.
Proof
Call Γ the set of all feasible scenarios in a tandem. Throughout
this proof, we express the fact that a quantity depends on scenario
g ∈Γ by using the conditional notation g , i.e. () (),

i
gi jA t denotes

the CAF of flow (),i j at node i under scenario g .
Call ()i

gd t the delay experienced at node i by a bit of the tagged
flow entering a generic N -node tandem at time t in scenario g .
The WCD d is defined as follows:

 ()
0

1

max max
N

i
g

g t
i

d d t
∈Γ ≥ =

  =   
  
∑ (21)

This said, we prove the thesis by induction on the nodes, starting
from the last one.
Base step: node N has to be lazy.
Call NΦ ⊂ Γ the subset of scenarios where () 0NL t = , i.e. those
for which node N is lazy. We show that at least one worst-case
scenario is included in NΦ , i.e.:

 ()
0

1

max max
N

N
i

g
g t

i

d d t
∈Φ ≥ =

  =   
  
∑ (22)

Assume by contradiction that:

 ()
0

1

max max
N

N
i

g
g t

i

d d t
∈Φ ≥ =

  >   
  
∑ (23)

and call \x∈Γ Φ the scenario where d is achieved. Consider
now the scenario Ny∈ Φ , which only differs from x because

 13

() 0NL t = . It is obviously () ()i i
y xd t d t= , 1 1i N≤ ≤ − , since

nothing has changed at the first 1N − nodes, and
() ()N N

y xA t A t= . However, if node N is lazy in y and not in
x , it is () ()N N

y xD t D t≤ , hence () () () ()1, 1,
N N

y xN ND t D t≤ since
the node is FIFO, and () ()N N

y xd t d t≥ . Thus, we have found a
scenario Ny∈ Φ where a delay larger than or equal to d is
achieved, which contradicts (23).
Inductive step:
Let N be a lazy node. Fix its arrivals () (),

N
N NA t , if any. Then,

given a generic scenario Ny∈ Φ , we have:

 () () () () ()1
,

N N N N
y y yN ND t X t A t tβ− = + ⊗

 

Where ()1N
yX t− is the sum of the CDFs at node 1N − of the

flows traversing both 1N − and N . Consider now the scenario

Nx∈ Φ , which only differs from y by assuming that node 1N −
is lazy as well. We readily obtain that () ()1 1N N

x yD t D t− −≤ ,
which also implies that () ()1 1N N

x yX t X t− −≤ due to the FIFO
hypothesis. Since convolution is isotonic, it is then

() () () () ()

() () () () ()

1
,

1
,

N N N N
x x xN N

N N N N
y y yN N

D t X t A t t

X t A t t D t

β

β

−

−

 = + ⊗
 

 ≤ + ⊗ =
 

 (24)

For the FIFO hypothesis, (24) implies that () () () ()1, 1,
N N

x yN ND t D t≤ .
Thus, the horizontal distance between any point in ()

1
1,NA and

()1,
N

ND , i.e. the end-to-end delay of each bit for flow ()1,N , is lar-
ger or equal if node 1N − is lazy. This means that there exists a
worst-case scenario in which node 1N − is lazy. By repeating the
same argument at nodes N j− , 2 1j N≤ ≤ − , the thesis follows.
€
Although the above lemma is not sufficient to identify a possible
worst-case scenario, it can be used to state the property that allows
us to build a tandem T from a given tandem T , which we call
Flow Extension (FE). We first formulate and prove it, and then
exploit it to construct simple counterexamples.
Theorem 5.2 (Flow Extension, FE)
Let T be a tandem of N nodes, in which there is a flow
(), 1j N − . Call T the tandem obtained from T by “extending”
flow (), 1j N − , i.e. by substituting it with flow (),j N , all else
being equal. Call d and d the WCD for the tagged flow in T
and T . Then, it is d d≥ .
Proof
By Lemma 5.1, the WCD is attained in a scenario where all nodes
are lazy. Thus, we compare T and T , limiting ourselves to the
subset of feasible scenarios Φ where all nodes are lazy. Whenever
needed, we use the same symbol to denote the same quantities in
T and T , adding a bar to the latter ones in order to distinguish
them. Consider now a generic scenario g ∈Φ for tandem T , and
define the corresponding scenario g in T as the one with the
same set of CAFs at the entry nodes of all flows. Clearly, if the
scenario is feasible in T , it is also feasible in T , since flows are
subject to the same constraints. However, in tandem T , flow
(), 1j N − is extended up to node N . This is exactly like adding a
“virtual” flow ()1,N N− , with () () () ()1

1, , 1
N N
N N j NA t D t−

− −= , as an input
to node N .
For a scenario g ∈ Φ in T , the corresponding scenario g ∈Φ is
such that:

 () ()i i
gg

d t d t≥ , 1 i N≤ ≤ . (25)

In fact, equality holds in (25) for 1 1i N≤ ≤ − , since the two sce-

narios are the same up to node 1N − included. However, the input
at node N in T is () () () ()1,

N N N
N NA t A t A t−= + , where () ()1,

N
N NA t−

is a wide-sense increasing function. Now, since node N is lazy and
FIFO, the delay of each bit in ()NA t cannot be lower than in T ,
thus () ()N N

gg
d t d t≥ .

Now, for any scenario g ∈Φ there exists a scenario g ∈ Φ where
the end-to-end delay of a bit of the tagged flow entering at time t
in tandem T is larger than (or equal to) the one in tandem T .
Therefore, the same inequality also holds between the respective
WCDs, i.e. d d≥ .
€
We now show how to exploit FE to compute smaller bounds than
the LUDB.
Example 5.3
Consider the two-node tandem T shown in Figure 15, left.

()1,2

()1,1

1 2

T

() (){ }1,2 , 1,1
1 2

T

Figure 15 – Two simple tandems. The one on the right is obtained by apply-
ing FE to the one on the left.

Build the corresponding tandem T according to FE (shown in the
same figure on the right), for which it is W W≥ . Consider now
what delay bound we can compute through LUDB in both tandems.
In T , it is the following:

() ()
()

() ()

()

()

2 1,1 1,2 2 1
1,11 21

2 1,1 1,2 2 1
1,1211

1
2

1,1

i

i

i

i

R R
R R

V
R R

RR
R

R

σ σ
θ ρ

σ σ
θ ρ

ρ

=

=


+ + + <


=  + + + ≥
 ⋅

+

∑

∑
 (26)

provided that the following provisioning inequalities hold:

 () ()
1

1,1 1,2R ρ ρ≥ + , ()
2

1,2R ρ≥ , (27)

otherwise it is infinite.
On the other hand, the LUDB for the tagged flow in T is:

 () ()2 1,1 1,2

1 21

i

i
V

R R

σ σ
θ

=

+
= +

∧∑ , (28)

provided that the following provisioning inequalities holds:
 () ()

1
1,1 1,2R ρ ρ≥ + , () ()

2
1,1 1,2R ρ ρ≥ + , (29)

otherwise it is infinite. Note that the second inequality in (29),
related to node 2, is more constraining than the corresponding one
in (27).
Now, (),V V∧ is a delay bound in T . However, it is easy to see
that V V< in some cases. Table 2 reports the comparison between
V and V in the five different regions in which the rate inequalities
included in expressions (26)-(29) divide the plan 1 2R OR (also
shown in Figure 16). In region I, V V< . Thus, the following set of
inequalities hold:

 , , ,V W V W W W V V≥ ≥ ≥ < (30)

An immediate consequence of (30) is that V W> , i.e. the LUDB is
not the WCD in that case.
Furthermore, note that in region III, the rate inequalities are not
sufficient to decide whether V V< or V V≥ : in fact, both can
occur depending on the values of the parameters. Again, this means
that the LUDB is not necessarily the WCD in that region too.

 14

€

() ()1,1 1,2ρ ρ+

()1,2ρ

1R()1,1ρ

()
2 1

1,1R Rρ+ >

()
2 1

1,1R Rρ+ <

2 1R R>

2 1R R<

III

IV

() ()1,1 1,2ρ ρ+

2R

V

II

I

Figure 16 - Different regions of the plan 1 2R OR and related inequalities.

Now, when LUDB is applied to a nested tandem, the entire set of
all the “good” end-to-end service curves that can be computed
using Theorem 2.1 and convolution is explored, and a global
minimum is computed. This means that no better bounds can be
computed by relying on Theorem 2.1 alone. However, this is
proved not to be sufficient for computing the WCD. A likely cause
for this is that not all the necessary information is retained in the
equivalent service curves computed through Theorem 2.1.
Consider, for instance, a single rate-latency node traversed by two
leaky-bucket shaped flows, as in the example shown in Figure 1,
and assume that the arrival curve of the two flows are ,i ii σ ρα γ= ,
1 2i≤ ≤ . The LUDB for flow 1 is computed as the solution of the
following trivial optimization problem:

 2 1

0
2

min
s

R s
d s

R R

σ σθ
ρ

+

≥

  − ⋅ = + + +  −   

The minimum is achieved when 1s Rσ= , and it is equal to
()1 2V Rθ σ σ= + + . This is also the WCD for flow 1, since it is

attained by its 1σ th bit in the following worst-case scenario:
a) both flows are greedy: () ()i iA t tα= , i.e. their CAFs are equal

to their respective arrival curves. However, the burst of flow 2
arrives just before that of flow 1.

b) the node is lazy.
Call ()1D t the CDF for flow 1 obtained in the above scenario,
shown in Figure 17 as a thicker dashed line. Let us compare it to
the curves ()'

1 ,D t s obtained by convolving the greedy CAF of
flow 1 with each equivalent service curve derived through
Corollary 2.4, therein including the “optimum” one. These are
shown as thinner lines in the same figure, for various values of s ,
and they represent lower bounds to any CDF that can be obtained
from that CAF, by definition of (equivalent) service curve. How-
ever, one can easily see that ∃ () ()'

1 1: ,s D t D t s= . More to the
point, the curves ()'

1 ,D t s with 0s > cannot be obtained in a FIFO
system, since they assume that flow 1 does not transmit any bit for
longer than 2 Rθ σ+ . This seems to suggest that the ()'

1 ,D t s
might not be tight lower bounds themselves. This, in turn, would
imply that each equivalent service curve alone cannot describe the
behavior of a FIFO node with the necessary accuracy.

θ 2 Rσ

1σ

0s =

R

2R ρ−

1s Rσ=

1ρ
()1A t

()1D t

1s Rσ>

1s Rσ<

1ρ1

1 2

R
ρ

ρ ρ
⋅

+

Figure 17 – CDFs obtained using equivalent service curves

5.1 Practical Applications of Flow Extension
Beside being useful to prove the limitations of Theorem 2.1, FE
can also be exploited to compute improved delay bounds. How-
ever, its practical usefulness is limited for at least three reasons.
The first one is represented by the topology restrictions required in

Re-
gion

Rate Inequalities V V Comparison

I () ()
1

1,1 1,2R ρ ρ≥ + , 2 1R R>
() ()

()

2 1,1 1,2

211
1

2
1,1

i

i RR
R

R

σ σ
θ

ρ

=
+ +

⋅
+

∑ () ()2 1,1 1,2

11

i

i R

σ σ
θ

=

+
+∑ V V<

II () ()
2

1,1 1,2R ρ ρ≥ + , ()
2 1

1,1R Rρ+ < () ()2 1,1 1,2

1 21

i

i R R

σ σ
θ

=
+ +∑ () ()2 1,1 1,2

21

i

i R

σ σ
θ

=

+
+∑ V V≤

III
() ()

2
1,1 1,2R ρ ρ≥ + , 2 1R R< ,

()
2 1

1,1R Rρ+ ≥

() ()

()

2 1,1 1,2

211
1

2
1,1

i

i RR
R

R

σ σ
θ

ρ

=
+ +

⋅
+

∑ () ()2 1,1 1,2

21

i

i R

σ σ
θ

=

+
+∑ It depends

IV
() ()

1
1,1 1,2R ρ ρ≥ + ,

() ()
2

1,1 1,2R ρ ρ< + , ()
2 1

1,1R Rρ+ ≥

() ()

()

2 1,1 1,2

211
1

2
1,1

i

i RR
R

R

σ σ
θ

ρ

=
+ +

⋅
+

∑
∞ V V<

V
()

2
1,2R ρ≥ , () ()

2
1,1 1,2R ρ ρ< +

()
2 1

1,1R Rρ+ ≥
() ()2 1,1 1,2

1 21

i

i R R

σ σ
θ

=
+ +∑ ∞ V V<

 15

order to apply Theorem 5.2 (i.e., that there is a flow in the tandem
that leaves at node 1N −). Second, in order for it to be of any
practical use, it requires that the last node be overprovisioned. In
fact, with reference to the previous example, we can observe that, if

() () ()
2

1,2 1,1 1,2,R ρ ρ ρ ∈ +
 

, i.e. in regions IV and V, the WCD in
tandem T is infinite, and thus FE is useless in this case. The third
one is that it cannot be stated a priori whether it will yield smaller
bounds or not, as it depends on the actual values of the nodes’ and
flows’ parameters.
This said, we can still find some useful generalization of Theorem
5.2. The first one is that, given a tandem T , and a set of extensible
flows () (){ }, 1 1,S j N N≡ − ⊂ , FE can in fact be applied by ex-
tending any (non empty) subset of flows s S⊆ . Thus we can build
up to 2 1S − different tandems T , for each one of which a delay
bound can be computed, possibly improving on the LUDB in T
for some value of the nodes and flows parameters. However, the
more flows are in s , the more constraining the provisioning ine-
qualities at node N must be, in order for the related bound in T to
be finite. More specifically, the required inequality is the following:

 ()
() ()

()
()

, , 1
, 1, , 1

N
i N i N

i N N i N s

Rρ ρ −
⊂ − ∈

+ ≤∑ ∑ (31)

Thus, the amount of overprovisioning at node N may act as a
constraint on the number of effective ways in which FE can be
applied (which can therefore be smaller than 2 1S − in practice).
The second generalization is that FE can be applied more than once
to the same tandem, while obviously tightening the provisioning
inequalities each time. For instance, in the tandem shown in Figure
18, above, FE can be applied a first time by extending flow ()1,2 .
After convolving the service curves of node 2 and 3, it can then be
applied again, extending flow ()1,1 up to node 3. One must ob-
serve, however, that whether applying FE yields a smaller LUDB
or not cannot be decided a priori, since it depends on the actual
numbers (i.e., node rates, flows bursts, etc.).

1

() (){ }1,3 , 1,2

()1,1

1 2 3

()1,3

()1,1

1 2 3

()1,2

() () (){ }1,3 , 1,2 , 1,1

2 3
Figure 18 – a three-node nested tandem and related FE transformations

Hereafter, we report another example for FE, this time related to a
non-nested tandem.
Example 5.4
Consider the non-nested tandem of Figure 4. We apply FE to it, by
extending flow ()1,2 , and derive the following delay bound:
If () ()1 2 3

2,3R R Rρ+ < ∧ , then:

 () () ()3 2,3 1,3 1,2

2 3 11

i

i
V

R R R

σ σ σ
θ

=

+
= + +

∧∑ (32)

Otherwise

 () () ()

()
()

3 2,3 1,3 1,2

12 31
2 3

1
2,3

i

i
V

RR R
R R

R

σ σ σ
θ

ρ

=

+
= + +

∧ ∧ ⋅
+

∑ (33)

Both (32) and (33) hold provided that () () ()
3

1,3 2,3 1,2R ρ ρ ρ≥ + + .
Two different delay bound expressions aV and bV can be ob-
tained using LUDB in the same tandem, using either { }3,4 or
{ }2,4 as a set of cuts respectively. They are reported in the Ap-
pendix. The alert reader can check that, unlike in aV and bV , in
V each burst (),i jσ appears exactly once. It is easy to identify
regions in which ()a bV V V< ∧ . For instance, if 3iR = , 1iθ = ,
1 3i≤ ≤ , and (), 3i jσ = , (), 1i jρ = , for all flows, we obtain

20 3V = , 101 9aV = , 92 9bV = , so that ()0.65 a bV V V⋅ ∧≃ .
€

6. A LOWER BOUND ON THE WORST-
CASE DELAY
Once acquired that the LUDB (whether FE is employed or not)
might be an overrated estimate of the WCD, we need a method to
assess its tightness. In order to assess how tight an upped bound V
is, we compute a lower bound v on the worst-case delay. The
interval [],v V includes the WCD by definition, hence we define

1U v V= − as the Relative Overrating Bound (ROB), meaning
that V is overrated by less than a factor U .
Now, any attainable end-to-end delay is by definition a lower
bound on the worst-case delay, the latter being in fact the maximum
attainable delay. Therefore, we compute v by heuristically defin-
ing a scenario, i.e. by tuning the arrivals at each flow and assuming
a behavior at each node, so that the tagged flow experiences a
“large” end-to-end delay. In such a scenario, we inject traffic from
both the tagged flow and the cross flows, and we compute how the
CAF of the tagged flow is transformed at each node because of
FIFO multiplexing and aggregate scheduling into rate-latency ser-
vice curve elements. Thus, we ultimately compute the CDF for the
tagged flow at node N of the tandem, and compute the lower
bound as the maximum horizontal distance between the CAF of the
tagged flow at node 1 and the CDF at node N .
The idea of using a lower bound in order to assess the tightness of a
Network Calculus upper bound under FIFO multiplexing has al-
ready been used in [21], in the context of sink-tree networks. Be-
fore introducing the scenario that we use to evaluate the lower
bound, we need to describe the algorithmic framework that we use
to manipulate CAFs at each node under FIFO multiplexing, show-
ing how to compute per-flow CDFs.

6.1 An Algorithmic Framework for Network
Calculus with FIFO-multiplexing Nodes
Within the DEBORAH tool, we represent each CAF as a piecewise
linear function, without any hypothesis on convexity. While this
allows us to approximate any curve using a suitably large amount
of segments, the curves that we will actually use in our scenario are
piecewise linear, so their representation is exact. Therefore, each
CAF (),

k
i jA is a list of (),

k
i jQ breakpoints; each breakpoint iB is

represented through its Cartesian coordinates ,it b and a gap ig ,
i.e. a vertical discontinuity which allows for instantaneous bursts:

(), ,i i i iB t b g= , () (){ }, ,, 1k k
xi j i jA B x Q≡ ≤ ≤ . As the CAFs are wide-

sense increasing, the abscissas of the breakpoints are strictly in-

 16

creasing, and 1i i ib b g+ ≥ + . The number of breakpoints is finite.
This is because, since the worst-case delay stays finite, then it is
achieved for sure in finite time, and therefore we can safely assume
that the CAF remains constant after the last breakpoint. For in-
stance, an affine CAF with initial burst σ and a constant slope ρ
up to time τ is represented as () (){ }0,0, , , ,0σ τ ρ τ σ⋅ + .
The three operations required for computing the CDF of the tagged
flow at node N are:
1) FIFO multiplexing of several CAFs at the entrance of a node,

so as to compute the aggregate CAF.
2) Convolution between the aggregate CAF and a node’s rate-

latency service curve, i.e. computation of a lower bound for
the aggregate CDF.

3) FIFO de-multiplexing of flows at the exit of a node, i.e. com-
putation of per-flow CDFs from the aggregate CDF. This is
required to take into account flows leaving the tandem.

The multiplexing is a summation of CAFs, which boils down to
computing the union of the respective breakpoints and summing
their ordinates. The convolution algorithm is explained in [5],
Chapter 1.3, in its most general form. Our implementation capital-
izes on the service curve being latency-rate and on the CAF being
piecewise linear. In this case, all it takes is comparing the slope of
the linear pieces in the CAF against the rate of the service curves,
and computing intersections. The resulting CDF has a different set
of breakpoints with respect to the CAF, and it is continuous, even if
the CAF is not, since the service curve is itself continuous. The

third operation, i.e. FIFO de-multiplexing, exploits the underlying
FIFO hypothesis: more specifically, for all flows (),i j traversing
node k as part of a FIFO aggregate, 0t∀ ≥ () () () ()(), ,

k k
i j i jD t A x t= ,

where () () (){ }sup : k kx t t A D tτ τ= ≤ = . Let outR be the rate of
()kD t in [)1 2,t t . If ()kA t is continuous in () ())1 2,x t x t , call inR

and (),
in
i jR its rate and that of () (),

k
i jA t in that interval. Then, the

rate of () (),
k
i jD t in [)1 2,t t is equal to () (), ,

out in out in
i j i jR R R R= ⋅ . If

instead ()kA t has a discontinuity in t due to flow f ’s burst, so
that () 0

kA t b− = and () 1 0
kA t b b+ = > , then all the traffic in the

aggregate CDF in () () () ())1 1

0 1,k kD b D b
− −


 belongs to flow f .

Thus, if outR is the rate of ()kD t in that interval, the rate of

() (),
k
i jD t in the same interval is equal to (){ },

1out

i j f
R ≡⋅ . Figure 19

reports a graphic representation of the FIFO multiplexing and de-
multiplexing of two CAFs.
To the best of our knowledge, few other software tools have been
developed for Network Calculus problems. The DISCO calculator,
[18], implements some basic Network Calculus operations on
curves, such as sum, minimum, convolution, deconvolution and
sub-additive closure. However, it assumes blind multiplexing (in-
stead of FIFO). Furthermore, it does not compute CDFs from
CAFs: rather, it computes output arrival curves from (concave)
input arrival curves. The COINC library [19] implements basic
(min, +) algebra operations, hence – although not a tool itself,
lacking network representation, it can be used to build a tool. The
RTC [27] and CyNC [28] toolboxes allow one to compute CDFs
from CAFs through (min,+) convolution. However, as far as we

1
1 2r r+

2
1 2r r+

1t 2t 3t 4t()1x t () ()2 3x t x t= ()4x t

()1
kD t

()2
kD t

()3
kD t

()4
kD t

1t 2t 3t 4t()1x t () ()2 3x t x t= ()4x t

1r

1
2r

2
2r

1
1

1 2

out r
R

r r
⋅

+
1

2
1 2

out r
R

r r
⋅

+

()kA t ()kD t

()1
kD t()1

kA t

()2
kA t

outR

Figure 19 –CAF 1 is multiplexed with CAF 2 at a FIFO node and transformed in the related CDF

 17

know, they cannot compute LUDBs in FIFO systems, and we are
not aware that they implement demultiplexing of flows at the out-
put of a FIFO server, which is necessary for our lower bound
analysis.

6.2 Description of the Scenario
The hypotheses based on which we build the lower bound scenario
are the same that were proved in [12] to actually represent the
worst-case scenario for sink-tree tandems. While this does not
imply that the same holds for generic tandems, it nonetheless pro-
vides a good motivation. The hypotheses are the following:
a) All nodes are lazy. This is not restrictive by Lemma 5.1.
b) The tagged flow ()1,N sends its whole burst ()1,Nσ at time

0t = and then stops. Therefore, the ()1,Nσ th bit of the tagged
flow experiences a larger delay than the other ()1, 1Nσ − .

c) Every cross flow (),i j sends “as much traffic as possible”, so
as to delay the ()1,Nσ th bit of the tagged flow.

We measure the delay experienced by the ()1,Nσ th bit of the tagged
flow under these hypotheses.
Let us take a closer look at hypothesis c) above. Call ,x xa b the
time instants when the first and the last bit of the tagged flow arrive
at node x . For instance, it is 1 1 0a b= = , while x xa b< for 1x > ,
since all nodes are lazy. Hypothesis c) implies that

 () () () () () (), , ,
i i i i i i
i j i j i jA b A a b aα− = − (34)

for each flow (),i j . However, there are infinite CAFs that verify
(34). For instance, one is the greedy CAF, () () () (), ,

i i
i j i jA t t aα= − ,

while another one is () () () (), ,
i i
i j i jA t F t= , with:

 () () () ()
() () ()

,

,

, ,

i i
i ji

i j i i i
i j i j

t a t b
F t

b a t b

ρ

ρ σ

+ ⋅ − <= 
⋅ − + =

 (35)

which we call delayed greedy CAF, in which the flow sends its
burst (),i jσ just before the ()1,Nσ th bit of the tagged flow arrives at
node i , as shown in Figure 20.

ia ib

(),i jσ

() (),
i
i jF t

t

(),i jρ

() (),
i

i j t aα −

Figure 20 - Cumulative arrival functions for flow (i,j)

Under the hypotheses of the system model, if all the CAFs for the
cross flows are either greedy or delayed greedy, both the total CAF
and the CAF of the tagged flow at each node are piecewise linear.
Furthermore, v is the time instant when the ()1,Nσ th bit of the
tagged flow leaves node N .
It turns out that, depending on the values associated to the nodes
and flows parameters, using either the greedy or the delayed greedy
CAF for the cross flows actually leads to different delays, and it is
not always possible to establish which is the largest beforehand.
For instance, in sink-tree networks the WCD is achieved with de-
layed-greedy arrivals at all flows, although in some cases swapping
a delayed-greedy CAF for a greedy one at some cross flow does not
change the result [12]. Testing both greedy and delayed greedy

CAFs for each cross-flow entails testing up to 2M different scenar-
ios, which clearly represents a problem as the number of flows
increases. Devising topological properties that allow the number of
scenarios to be reduced is part of the ongoing work. In the next
subsection, we assess the tightness of the upper bounds for the
tandems analyzed in Sections 4.1 and 5.

6.3 Assessing the Tightness of the Upper
Bounds
In order to show that, on one hand, FE is effective in complement-
ing LUDB, and, on the other hand, that the heuristics behind the
computation of the lower bound are effective, we first compute a
lower bound for the tandems shown in the two examples of Section
5. The results are as follows:
- Example 5.3: (),v V V= ∧ in regions I, II, V. In the above

cases, flow ()1,1 can be assumed to be either greedy or de-
layed-greedy indifferently, since 1 1 0a b= = . In regions III
and IV it is

 () () ()2 1,1 1,2

1 21
,i

i
v V V

R R

σ σ
θ

=
= + + < ∧∑

- Example 5.4: when (32) holds, it is always v V= . When (33)
holds, instead, it is v V= only when 2 3R R≤ , otherwise it is:

 () ()

()

()

()

()3 2,3 1,3 1,2

1 131
3 2

1 1
2,3 2,3

,i

i
v V V

R RR
R R

R R

σ σ σ
θ

ρ ρ

=
= + + + < ∧

⋅ ⋅
+ +

∑

Whenever v V= , the WCD is obtained when flow (2,3) is de-
layed greedy (flow (1,2) can be considered either way, as speci-
fied before). However, when (33) holds, a greedy CAF for flow
(2,3) yields the same result.

We then compute the ROB for the nested tandems used as case
studies in Section 4.1, i.e. those having balanced k -ary nesting
trees with a level of nesting equal to l . For each value of ,l k , we
instantiate 50 tandems with random nodes and flows parameters (as
described in Section 4.1), we compute the LUDB (not trying FE),
and report the average and maximum ROB. The results are shown
in Table 3 The lower bound, and, accordingly, the ROB, is exact
for the first three set of topologies. When the number of scenarios
gets too large (as in the last two rows of the table, where it is

964 10⋅ and 15128 10⋅ respectively), DEBORAH can be configured
to select a fixed number of scenarios (which it picks uniformly at
random among all scenarios) so as to keep the computation time
reasonable. When this happens, the maximum ROB is underesti-
mated, and the average ROB is not necessarily reliable. The results
in the last two rows of Table 3. were obtained testing 664 10⋅ com-
binations.

l k max ROB avg ROB
3 2 0.474 0.317

4 2 0.341 0.329

2 3 0.458 0.245

3 3 ≥ 0.261 0.257 (*)

5 2 ≥ 0.402 0.383 (*)
Table 3 – ROB for some nested tandems having balanced nesting trees

In all cases, the ROB stays below 0.5, which means that the LUDB
is less than twice the WCD.
We report three more case studies. The first two are related to
nested tandems, one having one-hop persistent cross-traffic, and the

 18

other in a source-tree topology. The last one deals with the most
unfavorable non-nested tandem.
Case study 1 – one-hop persistent cross traffic
We analyze a tandem of N nodes, traversed by the tagged flow
()1,N and by cross-flows (),i i , 1 i N≤ < , shown in Figure 21.
We assume that all flows have the same leaky-bucket arrival curve,
with 5σ = and 4ρ = . All nodes have the same rate-latency ser-
vice curve, with 1θ = and 2R Uρ= , U ranging from 20% to
100%. The LUDB expression for that tandem is available in a
closed form, and it is equal to (see Theorem 2 in [11]):

1 1

2 2

U
V N

U

σθ
ρ

 ⋅  = ⋅ + ⋅ +  −  

Figure 22 shows the ROB as a function of the number of nodes and
for various values of U . As the figure shows, the ROB increases
with both N and U . However, it tends to reach a limit value as
N grows higher. While the exact quota of the ROB depends on the
actual parameter values, the same behavior is always observed.

N1N −1 2

()1,N

()1,1 ()2,2 (),N N()1, 1N N− −

Figure 21 – A case-study nested tandem with one-hop persistent cross-
traffic

0

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10 12 14 16

20%
50%
100%

R
O

B

N
Figure 22 – ROB in the nested case-study tandem

Note that we can apply FE to the above tandem when 100%U < .
For instance, when 8, 20%N U= = all the cross flows can be
extended to the last node, thus yielding a sink-tree tandem with a
tagged flow () ()1, 2 ,2N σ ρ≡ and cross-flows () (), ,i N σ ρ≡ ,
2 8i≤ ≤ , for which the LUDB can be computed in a closed form
applying the formula in [12]. As shown in Table 4, this improves
the ROB of about 40%.

tandem LUDB Lower
Bound

ROB
original 10.111 9.75%
with FE 9.673

9.125
5.66%

Table 4 – ROB for the one-hop persistent nested tandem with N=8 and
U=20%

€
Case study 2 – source tree tandem
The case-study N -node tandem, shown in Figure 23, is traversed
by the tagged flow ()1,N and by cross-flows ()1,i , 1 i N≤ < . We
call such a fully-nested tandem a source-tree tandem, for symmetry
with the sink-tree case. All flows have the same leaky-bucket arri-

val curve, with 5σ = and 4ρ = . Nodes have a rate-latency ser-
vice curve, with 1iθ = and ()1iR N i Uρ= + − ⋅ , U ranging
from 20% to 100%. The LUDB for that tandem can be derived in a
closed form by considering that all fully nested tandems are tree
equivalent (see [14]) and using the known formulas for sink-trees
[12]. In the above settings, we have:

 N

U
V N H

σθ
ρ
⋅= ⋅ + ⋅ ,

where NH is the N-th harmonic number. Figure 26 shows the ROB
as a function of the number of nodes and for various values of U .
As the figure shows, the ROB increases with U . However, on one
hand the ROB values are smaller than in the former case. On the
other hand, they peak at 4N = and then decrease afterwards.

..
.

N1N −1 2
()1,N

()1,1()1,2()1, 1N −

Figure 23 – A case-study source-tree nested tandem

0

0.05

0.1

0.15

0.2

0.25

2 4 6 8 10 12 14 16

20%
50%
100%

R
O

B

N
Figure 24 – ROB in the source-tree case-study tandem

Note that, in this particular case, FE does not yield any improve-
ment in the delay bounds. For instance, when 1U N≤ all the
cross flows can be extended to the last node, thus yielding a tandem
with only a tagged flow () ()1, ,N N Nσ ρ≡ ⋅ ⋅ and no cross-flows.
For this, the LUDB is trivially equal to ()V N Uθ σ ρ= ⋅ + ⋅ , and
it is V V≥ since NH N≤ .
€
Case study 3 – non-nested tandem
We now analyze a very unfavorable scenario, shown in Figure 25,
where an even number of nodes N are traversed by a tagged flow
()1,N , by all flows (), 1i i + , 1 i N≤ < , and by two flows ()1,1
and (),N N for symmetry. Computing the LUDB in the latter
requires the maximum possible number of cuts and partial delay
bound computations, i.e. 2N . Thus, it is very likely that the
LUDB is overrated, all the more as N grows higher. We assume
that all flows have the same leaky-bucket arrival curve, with 5σ =
and 4ρ = . All nodes have the same rate-latency service curve,
with 1θ = and 3R Uρ= , U ranging from 20% to 100%. The
recursive LUDB expression for that tandem is the following (see
[14] for the computations):

2

1

2
N f t

i i

i

V
R R

σ σ σ σθ
ρ=

 + += + + − 
∑ , (36)

With:

 19

 1 1
t fσ σ σ= = ,

()
1

2t f
i if

i

R

R

σ σ ρ θ σ
σ σ ρ θ+

 + + ⋅ +
 = + ⋅ +
  

 1 2
f

t t i
i i R R

σ σ σσ σ ρ θ
ρ+

 += + ⋅ + + − 

Figure 26 shows the ROB as a function of the number of nodes and
for various values of U . As the figure shows, the gap grows with
N and with U . This confirms what already said in Section 5 on
the non tightness of the LUDB in non-nested tandems.
€

N1N −1 5432

()1,N

()1,1 ()2,3

()1,2 ()3,4

()4,5 (),N N

()1,N N−

1c 2c 2 1Nc − 2Nc

Figure 25 – A case-study non-nested tandem

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 4 6 8 10 12 14 16

20%
50%
100%

R
O

B

N
Figure 26 – ROB in the non-nested case-study tandem

Once more, we can apply FE to the above tandem when
100%U < . For instance, when 8, 20%N U= = all the cross

flows (), 1i i + can be extended to the last node. This yields again a
sink-tree tandem, with a tagged flow () ()1, 3 ,3N σ ρ≡ and cross-
flows () (), ,i N σ ρ≡ , 2 8i≤ ≤ . As shown in Table 5, this im-
proves the ROB of about 85%.

tandem LUDB Lower
Bound

ROB
original 10.666 16.78%
with FE 9.106

8.872
2.57%

Table 5 – ROB for the non-nested tandem with N=8 and U=20%

€
Within the limits of the analyzed case studies, some conclusive
remarks can be attempted. For nested tandems, the LUDB appears
to be of the same order of magnitude as the WCD. In fact, as N
grows larger, the ROB does not appear to approach the unity. How-
ever, as the provisioning gets tighter, the uncertainty about the
tightness increases as well. In non-nested tandems, the ROB ap-
pears to grow faster, confirming the intuition that end-to-end analy-
sis is necessary to achieve reliable bounds. Although it would be
tempting to try to infer general relationships linking the tandem
topology (i.e., the shape of the nesting tree) to the tightness of the
delay bounds in nested tandems, we remark that the tightness also
depends on the flows and nodes’ rates (see, for instance, Example
5.3 and Example 5.4), so that different ROBs can be obtained for
the same topology just by varying the rates.

7. Using DEBORAH
In this section we briefly show how to use DEBORAH for analyz-
ing user-defined network topologies. DEBORAH is a command-
line program written in portable C++, which can be compiled for a
number of architectures; so far it has been successfully run on
Linux, Windows and MacOS X. Its arguments can be classified
into three functional categories: a) specification of the tandem
topology; b) indication of the desired computation (currently
LUDB, lower bound and per-node upper bound); c) network provi-
sioning modifiers, e.g. to scale the rates assigned to flows or nodes
by a constant factor or to explicitly select the tagged flow.
The tandem topology is input in a text file (say “ex1.conf ”)
using a straightforward syntax. The file must begin with the direc-
tive TANDEM N F , which denotes a tandem with N nodes and
F flows. Next, the service curve of each node is configured by
means of a “NODE n θ R ” line, where n is the node ID from 1 to
N , and ,Rθ are its latency and the rate respectively. Similarly,
flows are specified using “FLOW i j σ ρ ”, where ,i j are the
source and sink nodes and ,σ ρ are the flow’s leaky bucket pa-
rameters. The tagged flow is automatically selected as the one span-
ning the longest segment (usually the whole tandem), or it can be
manually specified by using TFLOW instead of FLOW in its declara-
tion. Apart from the TANDEM directive, which is expected to come
first in the file, the other lines can appear in just any order. Lines
beginning with a hash (#) character are treated as comments and
ignored.
A tandem configuration file is normally the first command line
argument. If no other arguments are specified, DEBORAH parses
the topology, performs some sanity checks (e.g. checks that the
nodes’ rates are sufficient) and prints a report. For nested tandems,
for instance, it will print the associated nesting tree using a text
notation.
The LUDB and the lower bound are computed by specifying the –
ludb and –lb options after the configuration file name:
./deborah ex1.conf –ludb [–lb] .
Regarding the LUDB, the tool reports detailed information includ-
ing the numeric value of the optimal (),i js parameters and the sym-
bolic expression of the service curve, and performance figures such
as the number of simplexes evaluated and the total computation
time. By default, DEBORAH runs the exact LUDB algorithm de-
scribed in this paper. The heuristic approximation can be requested
using the –ludb-heuristic k option, where k is the maxi-
mum number of randomly-selected RSDs used at each node in the
nesting tree.
When LUDB computation is invoked, the tool first checks whethter
the tandem is non-nested. In that case, it sets to cutting the tandem
into multiple disjoint sub-tandems. Each computed PSC is reported
in the program output along with the associated delay bound, the
minimum of which is elected as the LUDB. As the critical perform-
ance factor here is represented by the possibly large number of
PSCs, the latter can be controlled with the –ludb-cuts-len L
option, which throws away PSCs exceeding the shortest one by
more than L cuts. In fact, as L grows larger, a diminishing likeli-
hood of finding good bounds can be observed. Finally, per-node
bounds can be computed, using –per-node . The latter can be
used as a baseline, as they are generally largely overrated.
For the lower bounds, DEBORAH prints the number of flow com-
binations analyzed versus the maximum possible, as well as the

 20

computation time. Again, the tool provides an option to deal with
performance scalability issues by adding —lb-random-combo
p to the command line, which forces the total number of combina-
tions to be computed to stay below p% of the theoretical limit.
While it is easy to create and analyze custom topologies using text
files, DEBORAH provides means to generate particular classes of
tandems in an analytical way, which can be useful to conduct sys-
tematic studies. Specifically, it is possible to generate nested to-
pologies whose nesting tree is a balanced trees of any order and
depth, and non-nested tandems populated with an arbitrary number
of flows. For the first case, the syntax is: ./deborah –gen-
tree O K file.conf where O is the order of the tree (the
number of children for each node), K is the tree depth and file.conf
is the name of the file where the configuration will be stored.
Nodes and flows are provisioned according to stochastic variables
which can be controlled using dedicated switches. For non-nested
tandems, command -gen-nnested N F file.conf is used,
where N is the number of nodes and F is the percentage of flows
(randomly selected) with respect to a maximum of ()1 2N N⋅ − .
Finally, loaded configurations can be altered before processing
takes place. For instance it is possible to override the tagged flow
ID with –tagged N , or to scale the rates by a given factor simul-
taneously with –scale-rates Rf Rn , where the rates of flows
and nodes are multiplied by Rf and Rn respectively.

8. CONCLUSIONS
Following our previous work [14], this paper has addressed the prob-
lem of how to practically compute the least upper delay bound
(LUDB) for a flow traversing a FIFO-multiplexing tandem, and how
to assess whether the latter is equal to (or, as a subordinate, close to)
the actual worst-case delay. As far as the first problem is concerned,
we have developed a tool which allows both exact and heuristically
approximated LUDB computation. The exact algorithm solves a
possibly large number of simplexes, doing its best to avoid infeasible
ones, while the heuristic algorithm limits the number of simplexes to
be solved, trying to pick up those which are more likely to yield the
actual LUDB. The latter has been shown to provide very good ap-
proximations of the LUDB at a small computational cost. As far as
tightness is concerned, we have shown that the current Network Cal-
culus theorems related to FIFO multiplexing are not sufficient for
computing the worst-case delay in tandem networks. In fact, the
LUDB itself can sometimes be improved upon, even in very simple
cases. We have shown this introducing a method – called Flow Ex-
tension – that allows one to compute delay bounds by exploiting
topological properties of tandems. We have then addressed the ques-
tion of how close the upper bounds are to the (still unknown) worst-
case delay. We have devised an algorithm to compute lower bounds
on the worst-case delay. The analysis reported in the paper show that
the upper and lower bounds are of the same order in nested tandems,
while they tend to diverge in non-nested tandems, where end-to-end
analysis is not possible. This further confirms the common belief that
end-to-end analysis is fundamental to achieve a reasonably tight
worst-case delay assessment.

9. REFERENCES
[1] L. Bisti, L. Lenzini, E. Mingozzi, G. Stea, “Estimating the Worst-case

Delay in FIFO Tandems Using Network Calculus”, VALUETOOLS
2008, Athens, Greece, 21-23 October 2008

[2] L. Bisti, L. Lenzini, E. Mingozzi, G. Stea, “DEBORAH: A Tool for
Worst-Case Analysis of FIFO Tandems”, ISoLA 2010, Crete, October
2010

[3] R. Braden, D. Clark and S. Shenker, “Integrated Services in the Inter-
net Architecture: an Overview”, IETF RFC 1633, June 1994.

[4] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss,
“An Architecture for Differentiated Services,” IETF RFC 2475, 1998.

[5] J.-Y. Le Boudec, P. Thiran, Network Calculus, Springer-Verlag LNCS
vol. 2050, 2001.

[6] E. Rosen, A. Viswanathan, R. Callon, “Multiprotocol Label Switching
Architecture”, IETF RFC 3031, January 2001

[7] R.L. Cruz. “A calculus for network delay, part i: Network elements in
isolation”. IEEE Transactions on Information Theory, Vol. 37, No. 1,
March 1991, pp. 114-131.

[8] R.L. Cruz. “A calculus for network delay, part ii: Network analysis”.
IEEE Transactions on Information Theory, Vol. 37, No. 1, March
1991, pp. 132–141.

[9] R. Agrawal, R. L. Cruz, C. Okino, and R. Rajan, “Performance
Bounds for Flow Control Protocols,” IEEE/ACM Transactions on
Networking, Vol. 7, No. 3, June 1999, pp. 310-323.

[10] C. S. Chang, Performance Guarantees in Communication Networks,
Springer-Verlag, New York, 2000.

[11] L. Lenzini, E. Mingozzi, G. Stea, “Delay Bounds for FIFO Aggre-
gates: a Case Study”, Elsevier Computer Communications Vol. 28 Is-
sue 3, February 2005 pp. 287–299.

[12] L. Lenzini, L. Martorini, E. Mingozzi, G. Stea, “Tight End-to-end Per-
flow Delay Bounds in FIFO Multiplexing Sink-tree Networks", Per-
formance Evaluation, Vol. 63, October 2006, pp. 956-987.

[13] L. Lenzini, E. Mingozzi, G. Stea, "End-to-end Delay Bounds in FIFO-
multiplexing Tandems", VALUETOOLS'07, Nantes (FR), October 23-
25, 2007

[14] L. Lenzini, E. Mingozzi, G. Stea, "A Methodology for Computing
End-to-end Delay Bounds in FIFO-multiplexing Tandems", to appear
on Performance Evaluation, 2008 (already available at
http://www.sciencedirect.com)

[15] M. Fidler, V. Sander, “A Parameter Based Admission Control for
Differentiated Services Networks”, Elsevier Computer Networks, Vol.
44, No 1, January 2004, pp. 463-479.

[16] R. L. Cruz. “Sced+: Efficient management of quality of service guar-
antees”. Proc. of IEEE Infocom’98, San Francisco (USA), 29 March-
April 1998, pp. 625-634.

[17] J. C. R. Bennett, K. Benson, A. Charny, W. F. Courtney, and J.-Y. Le
Boudec, “Delay Jitter Bounds and Packet Scale Rate Guarantee for
Expedited Forwarding,” IEEE/ACM Trans. on Networking, Vol. 10,
No. 4, August 2002, pp. 529-540.

[18] J. B. Schmitt, F. A. Zdarsky, “The DISCO Network Calculator - A
Toolbox for Worst Case Analysis” Proc. of VALUETOOLS '06, Pisa,
Italy. ACM, October 2006.

[19] Anne Bouillard, Éric Thierry, “An Algorithmic Toolbox for Network
Calculus”, INRIA research report 6094, 2007, to appear in Journal of
Discrete Event Dynamic Systems.

[20] Website of the Computer Networking Group at the University of Pisa,
http://info.iet.unipi.it/~cng/, continuously updated

[21] G. Urvoy-Keller, G. Hèbuterne, Y. Dallery, “Traffic Engineering in a
Multipoint-to-point network.”, IEEE Journal on Selected Areas in
Communications, Special Issue on Recent Advances in Network Man-
agement, Vol. 20, No. 4, May 2002, pp. 834-849

[22] J. Schmitt and U. Roedig, “Sensor network calculus - a framework for
worst case analysis,” in Proc. Distributed Computing on Sensor Sys-
tems (DCOSS), pp. 141–154, June 2005.

[23] A. Koubaa, M. Alves, and E. Tovar, “Modeling and worst-case di-
mensioning of cluster-tree wireless sensor networks,” in Proc. IEEE
RTSS, pp. 412–421, 2006.

[24] T. Skeie, S. Johannessen, and O. Holmeide, “Timeliness of real-time
IP communication in switched industrial Ethernet networks,” IEEE
Transactions on Industrial Informatics, vol. 2, pp. 25–39, Feb. 2006.

[25] S. Chakraborty, S. Kuenzli, L. Thiele, A. Herkersdorf, and P. Sag-
meister, “Performance evaluation of network processor architectures:

 21

Combining simulation with analytical estimation,” Computer Net-
works, vol. 42, no. 5, pp. 641–665, 2003.

[26] R. Pastor-Satorras, A. Vespignani, “Evolution and Structure of the
Internet: A Statistical Physics Approach”, Cambridge University
Press, 2004

[27] E. Wandeler, L. Thiele, “Real-Time Calculus (RTC) Toolbox”, avail-
able online at http://www.mpa.ethz.ch/Rtctoolbox , 2006

[28] H. Schioler, H.P. Schwefel, M.B. Hansen “CyNC – a
MATLAB/Simulink Toolbox for Network Calculus”, Proc.
VALUETOOLS’07, Nantes (FR), October 2007

10. APPENDIX
We report here the expressions for the LUDB in the non-nested
tandem dealt with in Example 5.4 (see [14] for the computations).
Delay bound aV is obtained by using { }3,4 as a set of cuts, and its
expression is the following.
If ()

1 2
2,3R Rρ+ < ,

() () () ()

() () ()

() () () () ()

1,3 2,3 2,3 1,31 2 3
1 3 2 3

3
1,2 2,3 1,3

3 2 1

2
1,3 2,3 1,3 2,3 1,3

3 2 1 2 3

1 1 1

1 1

aV
R R R

R

R R R

R

R R R R R

ρ ρ ρ ρ
θ θ θ

σ ρ ρ

σ ρ σ σ ρ

  +   
= ⋅ + ⋅ + + ⋅ + +            

 +
 + +
 
 

 + 
 + ⋅ + + + ⋅ +       

 (37)

Otherwise,

() () () ()

() () () ()

() () () () ()

1,3 2,3 2,3 1,31 2 3
2 3 2 3

1,2 2,3 1,3 2,3

2 3 3 1

2 2
1,3 2,3 2,3 2,3 1,3

2 2 3 2 3

1 1 1

1 1

1 1

aV
R R R

R R R R

R R

R R R R R

ρ ρ ρ ρ
θ θ θ

σ ρ ρ ρ

σ ρ ρ σ ρ

  +   
= ⋅ + ⋅ + + ⋅ + +            

    
+ ⋅ + + ⋅ +            

   + +
   + ⋅ + + + ⋅ +
   
   

 (38)

Delay bound bV is instead obtained by using { }2,4 as a set of
cuts, and its expression is the following.
If ()

3 2
1,2R Rρ+ < ,

() ()

() () () () () () ()

1,2 1,31 2 3
1 2 3

1,2 1,3 1,2 1,3 1,2 1,3 2,3

1 3 2 1 2 3 3

1

1 1

bV
R R

R R R R R R R

ρ ρ
θ θ θ

σ ρ σ σ ρ σ σ

 
= ⋅ + + + +  

 

   
+ + + + + + +      

   

 (39)

Otherwise,

() () ()

() () () () () ()

() () () ()

1,2 1,3 2,31 2 3
2 2 2 3

1,2 1,3 2,3 1,2 1,3 1,2

1 2 3 2 1 2

1,3 2,3 2,3 2,3

2 3 2 3

1 1

1 1 1

1 1

bV
R R R

R R R R R R

R R R R

ρ ρ ρ
θ θ θ

σ ρ ρ σ σ ρ

σ ρ σ ρ

  
= ⋅ + + ⋅ + + +      

    
+ ⋅ + ⋅ + + + ⋅ +            

   
+ ⋅ + + ⋅ +      

   

 (40)

