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ABSTRACT

This paper addresses the problem of estimatingvtiist-case end-
to-end delay for a flow in a tandem of FIFO mukighg nodes,
following up our previous work [14]. We consideethtate-of-the-
art method for computindelay boundsi.e. upper bounds on the
worst-case delay, called tHeeast Upper Delay Boun¢{LUDB)
methodology, and we describe efficient numericehtéques to
compute the LUDB. The latter allow good delay baurid be
computed for tandems of several tens of nodes nvithinutes of
computation time. Furthermore, we show that, unlikeat happens
in some specific sub-classes of FIFO tandems agdlyz the pre-
vious work, the LUDB may actually be larger thae thorst-case
delay, even when end-to-end analysis is possibterefore, in
order to assess how close the derived bounds ahe tactual, still
unknown, worst-case delays, we devise a methodrgpuatelower
boundson the worst-case delay. Our analysis shows traigtp
between the upper and lower bounds is reasonakeyl,sat least
when end-to-end analysis is possible, which imiljisialidates the
upper bounds themselves.
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1. INTRODUCTION

Network calculus ([5], [7]-[10]) is a theory for weministic net-

work performance analysis. Originally devised tarads Quality
of Service problems in IP networks, it has alsonfbdields of

applications in several other areas, including \eg® sensor net-
works [22]-[23], Ethernet installations [24], angsB&ms-on-Chip
[25]. Its main feature is its ability to computerfoemance bounds,

such aglelay boundswhich are useful to assess the capabilities oq

a network architecture to support real-time appilices. As far as
IP networks are concerned, Network Calculus has besed in the
previous decade to compute delay bounds for nesvenkploying
per-flow resource management, the most notable case beihgft
the IETF Integrated Services (IntServ) architeciisee, for exam-
ple, [5], Chapter 2). More recently, network arebttres employ-

ing per-aggregatagesource management have become a reality, d

to their better scalability. Two noticeable exanspdé architectures

! Part of the content of this report has appeardd]and [2].

employing per-aggregate resource management aferéifiated
Services (DiffServ [4]), and Multi-Protocol Labelwfching
(MPLS, [6]), both standardized by the IETF. In fhemer, flows
traversing a domain are aggregated rfuultiplexed in a small
number of classes or Behavior Aggregates (BA), wHoswarding
treatment is standardized, and QoS is provisionadaoper-
aggregate basis at each node. In the latter, ffoesiggregated into
Forwarding Equivalence Classes (FECs) and forwgrdimd rout-
ing are performed on a per-FEC basis.

Computing good delay bounds in networks employingr- p
aggregate resource management is however particalaalleng-
ing. Obviously enough, a delay bound is as gooil astight, i.e.
close to the actual maximum delay that can thezakyyibe experi-
enced by a bit of the flow. We refer to the latisrtheworst-case
delay (WCD). While it is fairly simple to compute the Vi2Qunder
per-flow resource management, computing it in nete@mploy-
ing per-aggregate resource management appearsctinbilerably
more complex. During the last decade, several tehdve ap-
peared in the literature on this subject. The dithese works is to
computedelay boundsn feed-forwardnetworks, which are known
to be stable for any utilization below 100% [5].rRostance, [18]
presents tools and techniques for computing ershtb-delay
bounds for flows in feed-forward networks blind multiplexing
nodes. “Blind” means that no assumption is maderdigg the
flow multiplexing criterion: for instance, both dH© multiplexing
scheme and a strict priority multiplexing schemewhich the
tagged flow(i.e., the one being analyzed) is always multipteaé
the lowest priority fit this definition. Smaller hods can be ob-
tained by explicitly assuming that a FIFO multiplexscheme is in
place at the node. As regards FIFO multiplexingneorecent
works [11]-[14] describe a methodology for compgtiper-flow
elay bounds in tandem networks of rate-latencyesddaversed
by leaky-bucket shaped flows. The method, calledst Upper
Delay BoundLUDB), is based on the well-known Network Calcu-
lus theorem that allows a parametric sepei-flow service curves
to be inferred from @er-aggregateservice curve at a single node.
It entails: i) applying the above theorem iterdffyso as to obtain
a parametric sebf end-to-end service curvésr a flow, ii) com-
Bélting a parametric expression for the delay bowmd, i) mini-
mizing over the set of parameters so as to obtaifgct, the least
upper bound. The term “least”, of course, referthimbounds that



can be found using this method. End-to-end analgsi$ global
minimization are the two points of strength of LUD&s shown in
[14], we are actually able to derive end-to-endiisercurves only
for a particular class of tandems, callested tandemsvhere the

one might wonder if it is alseufficient i.e. whether the LUDB is
tight in all nested tandems. In this paper, we provide a negati
answer to the above question. The LUDB method nwyadly
yield loosebounds even in very simple nested tandems. Weeprov

path traversed by a flow is either entirely included into the path this by counterexample: we devise a method, cdfledv Exten-
of another flowb or has a null intersection with it. Non-nestedsion,that can be used in conjunction to the LUDB methoghp so

tandems, instead, have to bat into a number of nested sub-

tandems, which have to be analyzed separately WsiiyB. Then,
per sub-tandendelay bounds are computed and summed up
obtain the end-to-end delay bound. In this caseretlare always
several ways for cutting a tandem, and there isvap to statea
priori whether one leads to better results than the others

There are currently two open issues related to_theB method-
ology. The first one is that, except for a veryited number of
(nested) tandem topologies, no closed-form soluiborihe LUDB
exists. More specifically, [11] presents a closed¥ solution
LUDB for a tagged flow traversing a tandem of nodés one-hop
persistent cross traffic, while [12] presents arfola for sink-tree
tandems. While it is theoretically possible tha formulas com-
puted in [11]-[12] can be generalized, in this pape follow a
numerical approach. As shown in [14], the compateatof the
LUDB is apiecewise linear problejrsince it exhibits a piecewise
linear objective function and a number of lineanstoaints. In this
paper we show that the problem can be solved bgrdgasing it
recursively into a number of simplexes. Howevee tlumber of
simplexes to be solved may grow very fast, makirg ge-force
approach computationally infeasible when the numbfeflows
approaches few tens. Therefore, we first identifgpprties that
greatly reduce the amount of computations for thesdium-sized
problems (i.e., up to few tens of nodes), and tenpresent an
effective heuristics to obtain good approximatellitsons at a low
computational cost for larger-scale problems (iseveral tens of
nodes). For non-nested tandems, we first identifguzh smaller
number of sets of cuts that are candidate to p@doe best delay
bounds, called thrimary Sets of Cuts (PSCs$ince it is impos-

as to computesmaller delay bounds than those computed through
LUDB alone, at least in some cases. This resutiigaificant for
two reasons: on one hand, it may sometimes leadpgmved delay
bounds; on the other hand, its significance frontheoretical
standpoint lies in proving that the Network Caladbeorem that is
at the core of the LUDB method is not always sidfit to describe
the worst-case behavior of FIFO networks. This,sasdessingow
tight the computed bounds are becomes an important iBsireg
unable so far to identify a provable worst-casenade, we propose
heuristics to approximate it. More specifically, eenstruct a set of
scenarios where a flow experiencelm@e delay, which is itself a
lower boundon the WCD, and we provide an algorithm to effi-
ciently compute this lower bound. The interval bextw the lower
and the upper bounds serves as an estimate ofjtiteedss of the
upper bound itself.

The algorithms described in this paper for comgutipper and
lower bounds on the WCD have been implemented sofavare
tool, called DEBORAH (DElay BOund Rating AlgoritHrf20]),
which is publicly available. This is the first sefire of this kind, to
the best of our knowledge.

The rest of the paper is organized as follows: iBec2 reports
some background on Network Calculus, also intratlycome of
the notation that will be used throughout the papeBection 3 we
give a formal problem statement; we describe th®BUnethodol-
ogy and efficient numerical methods to solve itSaction 4. In
Section 5 we prove that the LUDB may actually brgda than the
WCD, also describing how to compute smaller boutids the
LUDB. In Section 6, we present an algorithm for puting a
lower bound on the WCD, using which we assessigdness of

sible to definea priori which PSC will produce the tightest delay,the LUDB in some non-trivial case studies. Secffobriefly de-

we need to compute the delay bound for all of thdowever, we
exploit the problem structure to obtain an effitienplementation,
where the number of operations to be computed gsmtinearly
with the number of PSCs. Our analysis shows théydeound

computation in non-nested tandems is generally momngplex than
in nested ones, but still computationally affordafdr paths of 30
nodes or slightly more, i.e. as long as the longeshs in today’s
planetary Internet [26]. Furthermore, our boundsrauch smaller
than cumulative per-node delay bounds, the gap detwthem
increasing exponentially with the number of nodelsich justifies

the increased complexity.

The second open issuetightness LUDB is shown to yieldighter

bounds with respect to both per-node analysis,aamadher end-to-
end methodology, described in [15], which does ms¢ global
minimization. However, it is still unknown, in thgeneral case,
how far the bounds thus computed are from the WiiDsink-tree
tandems, which are nested ones, it was proved 2f tHat the

scribes how to use the DEBORAH tool. Finally, carsabns are
reported in Section 8.

2. NETWORK CALCULUS BACKGROUND

This section introduces basic Network Calculus epis; using the
same notation as in [5]. Subsection 2.1 explaiesfidamework for
modeling FIFO rate-latency nodes traversed by Ildnlgket
shaped flows that we developed in [12]-[14].

In Network Calculus, data flows are described bymnseof a wide-
sense increasing cumulative functi®{t) , defined as the number
of bits seen on the flow in time intervgD,t] . Specifically, let
A(t) and D(t) be theCumulative ArrivalandCumulative Depar-
ture functions (CDA and CDF) characterizing the samt diaw
before and after a network element, respectivehenl the network
element can be modeled by tevice curve(t) if

D(t)= inf {A(t-s)+B( s}

Ossst

1)

LUDB is actuallyequalto the WCD. However, whether this is truefor any t>0. The flow is said to be guaranteed the (minimum)
in more general settings is still an open questioade particularly service curveg. The infimum on the right side of (1), as a func-
challenging by the fact that no better computatizethod is avail- tion of t, is called the min-plus convolution ok and 3, and is
able. In particular, since it is commonly believidt end-to-end denoted by(AO B)(t) . Min-plus convolution is commutative and
analysis is aecessaryondition for computing good delay bounds,associative. Furthermore, convolution of concaveesiis equal to



their minimum. Several network elements, such daydelements, Theorem 2.1 (FIFO Minimum Service Curves[5]).

links, and regulators, can be modeled by correspgndervice Consider a lossless node serving two flows, 1 anid ZIFO or-
curves. For example, network elements which hatrarsit delay der. Assume that packet arrivals are instantanedssume that
bounded byg can be described by the following service curve: the node guarantees a minimum service cyfvéo the aggregate

+o t2¢ of the two flows. Assume that flow 2 has as an arrival curve.
% (t) = {0 t<g Define the family of functions:
Many packet schedulers can be modeled thraatglatencyser- 7 (t.7) :[ﬂ(t)‘“z(t‘rﬂ Loy
vice curves, defined as follows: For any 720 such that7(t,7) is wide-sense increasing, then
B x (t) = Rliﬂt— g]* flow 1 is guaranteed the (equivalent) service cuﬁfé(t,r) .

Theorem 2.1 describes arfinity of equivalent service curves, each
instance of which (obtained by selecting a spedifiltie for ther
parameter), is a service curve for flow 1, providteld wide-sense
increasing. For ease of notation, we writ¢ 3,a,7)(t) to denote
the equivalent service curve obtained from applyiingorem 2.1
Guaranteeing performance bounds to traffic flowgunes that the to a service curveﬁ(t), b_y subtrgctlng from it arrival curve
a(t - r). Hereafter, we omit repeating that curves aretfans of

arrivals be constrained throughrival curves A wide-sense in- .

) . . . : time (and, possibly, of other parameters suchr asvhenever do-
creasing functiona is an arrival curve for a flow characterized by. I
a CAE A ifitis: ing so does not generate ambiguity.

As an example, if the node is a rate-latency ome,B = f3,(t) ,
At)- A7) <a(t-7), forall 7<t. and flow 2 is leaky-bucket shaped, i.e,(t)=y, , (t), then
As an example, a flow regulated bylemky-bucketshaper, with Theorem 2.1 yields the following set of equivalestvice curves
sustainable ratep andburst sizeo, is constrained by thaffine  for flow 1.

arrival curve oo ()= (04 P 1)y E(B.a,.7)(1) :(R—p2)|:t—(9+a-2+'02(9_r)j:|+1[tﬂ} 4

R-p,
Functlon_J(e.Xpr} Is equal to 1. Bxpris true, _and 0 otherwnsg. . The curves are also shown in Figure 1, from whigh following
By combining together arrival and service curverahterizations - .
) L . two observations can be made:
of data traffic and network elements, respectivilys possible to a) E(,B a r) is not necessarilv a rate-latency curve. More ifpec
derive relevant performance bounds. In fact, asstimat an ele- e y Y ' P

ment (or tandem of elements) is characterized $Breice curve C‘f"”y' It can be either a rate-latency curve (i 6+0,/R ) ora
. : g k different kind of curve, namely an affine curveftd to the right
and that a flow traversing that node is constraibgdhe arrival

curve a . Then, if the node serves the bits of this flowHIFO g; r:0>t an— gfér\;l)irves obtained from Theorem 2.1ateially rele-
order, the delay is bounded by the horizontal d@na ’

. . ] vant. For instance, all the curves obtained fox8+0,/R lie
h(a.B8)= fgﬁ inf{d=> 0:r(t- d) < B(0}] (2)  entirely below the one obtained far=6+0,/R, and are there-

Intuitively, h is the amount of time the curve must be shifted Iors usEIess for co(rjnputlrig pir:;ormancs_ bhour:lds_. d der i

forward in time so that it lies beloy8. From (2) it follows that t has been proved in [12]-[14] (to which the ieted reader is

< h(a.2)=h(a,B,). Notation < means that referred for more details and proofs) tpatudoaffineurves effec-
'glt ,Bﬁzt)é< lg’ (tfl) (a.52) A<, tively describe the service received by single iow FIFO multi-
1 = FF2 .

plexing rate-latency nodes. We call a pseudoaffiumee one which
can be described as:

for some 820 (the latency) andR=0 (the rate). Notatior|x]*
denotesmax{ 0x} . A fundamental result of Network Calculus is
that the service curve of a tandem of network efemgaversed by
a data flow is obtained by convolving the serviceves of each
network element.

A well-known result related to a tandem bf rate-latency nodes
B, w» 1<i<N, traversed by ay, ,-constrained flow follows
from (2), i.e., the end-to-end delay bound is gilagn =3, [I{ 0 Va,.pxi| (5)

N |
d=3.8+9/ (R} ® o . . |
) 1<i=N i.e., as a multiple affine curve shifted to thehtigNote that, since
provided thatp < R' for anyi. Notation [ denotes the minimum  affine curves are concave, (5) is equivalent to:

operation. It is shown in [5] that bound (3) iswamdly achievable
(i.e., it is the worst-case delay), at least if #réval curve of the =9, D{ IZIVUX,,,X} (6)
flow and the service curves of all the nodes ataadly tight char- texsn

acterizations. Henceforth, we will always assuna this hypothe-
sis is verified.

l<x<n

We denote asffsetthe non negative ternd , and adeaky-bucket
stagesthe affine curves between square brackets. Weteenith

P, (long-term rat¢ the smallest sustainable rate among the leaky-
. . bucket stages belonging to the pseudoaffine cuwe i.e.
2.1 F_IFO Multlp_IeX|_ng ] . p,=min(p,). A rate-latency service curve is in fact pseudoaf-
Regarding FIFO multiplexing, a fundamental resfigt derived in  fine  §ikiee it can be expressed A5, =3, 0y, .. A three-stage
[9], is reported in [5], Chapter 6. Assume that fleavs are FIFO pseudoaffine curve is shown in Figljre 2. '

multiplexed into the same network element, charieié by ser-  The glert reader will notice that, for any valuemfall the curves
vice curve §. Assume thal, is an arrival curve for flow 2. Then, gpiained from (4) are pseudoaffine. Although moemegal than
the service received by flow 1 can be determineddiyputing its rate-latency curves, pseudoaffine curves arefatily easy to man-

equivalentservice curveg(t,7) , as follows. age from a computational standpoint. The following properties,



proved in [12], will be used throughout this paper: or, equivalently,

Property 2.2 (closeness with respect to convolution): —

The convolution of two pseudoaffine curves is aigsaffine curve, E(ma,s)= On(anys D{ U] ypx{s+h(a,n)—q—(o—ﬂx)vpx_p:| ©
whose offset is the sum of the offsets of the ngsraand whose rexen

leaky-bucket stages are the union of the leakydiwstiages of both
operands. It can be proved that the s&=4{ E(ma, 9, gqis a proper

Property 2.3 (delay bound): subsetof T={E(B,a,r), 2@, ie. it does not include some
Let 77 be a pseudoaffine curve, with offdet and n leaky-bucket €equivalent service curve that would be computedugh Theorem
stages y, ,, lsx<n, and let a=y,,. If p,=p, then: 2.1.However, it does include those equivalentisergurves which
h(g,;-[):;fxl(g), where 71'1(.) denotes the pseudo-inverse ofare relevant for computing delay bounds. More djpadly, for

are pseudoaffine equivalent service curves for flow

71(+), defined in [5]. Moreover: each curvexOT\ S, there exists a curvg0 S such thaty = x.
oo 1 Therefore, all the “good” performance bounds ttaat be found by
h(a,n) =m*(c)=D+ 0O { x} , (7)  applying Theorem 2.1 can also be found by appl@ogllary 2.4.
e Py With reference to the example of Figure 1, Corgl2# yields:
where O denotes the maximum operator. E(B.a,9=0 o D asrn, (10)

i.e., all the equivalent service curves obtainemnfrTheorem 2.1
with r=26+0,/R.

3. SYSTEM MODEL

We analyze a tandem ®§ nodesconnected by links. The tandem is
traversed byflows i.e. distinguishable streams of traffic. We are
interested in computing a tight end-to-end delayriobfor a specific
flow, i.e. thetagged flow which traverses the whole tandem from
node 1 toN . At each nodefIFO multiplexingis in place, meaning
that all flows traversing the node are bufferedaisingle queue
First-Come-First-Served. Furthermore, the aggregétthe flows
traversing a node is guaranteed a minimum seriiahe form of a
rate-latency service curve, with rateR* and latency 6,
1<k < N. In the above framework, a flow can be identifigdthe
couple (i,j), 1<i<j <N, wherei and j are the first and last
Figure 1 - The set of equivalent service curvesiéw 1 node of the tandem at which the flow is multiplexeith the ag-
gregate. We model a flow as a streanfiafl, i.e. we assume that it
A rr(t) is feasible to inject and service an arbitrarilyairmmount of traffic
=7, at a node. We assume that flows are constraineal dsyp leaky-
) bucketarrival curve at their ingress node. Leaky-bucketes are
ol ) additive, i.e. the aggregate of two leaky-buckeipsid flows is a
Ap, leaky-bucket shaped flow whose arrival curve is sien of the
o, -~ two. Hence, without any loss of generality, we assuhat at most
s oneflow exists along a path and we identify it usthg path as a
o, subscript. Based on how the paths of its flowsiaterleaved, we
classify tandems as being eitherstedor non-nestedIn anested
> tandem, flows are eitherestedinto one another, or they have null
t intersection. This means that no two flodisj), (h,k) exist for
which i <h < j <k . Said in other words, let us consider two flows
Finally, Theorem 2.1 can be specialized for thee cdgpseudoaffine (i,i), (h,k), with (i,j)#(h.k) andi<h. Then eitherj<h, or
service curves and leaky-bucket arrival curveolis\fis: k< j. In the first case, the two flows span a disjaiet of nodes.
Corollary 2.4 ([12]): _ _ In the second case, we say tifatk) is nested within(i, ). For
Let 77 be a pseudoaffine service curve, with offseand n leaky-  axample, Figure 3 represents a nested tandemesf trodes. Flow
bucket stagey,, , , 1sx<n,andleta=y, ,with p,2p.1fa (33 is nested within flow (2,3). Furthermore, flows(1,1),
node guarantees a minimum service curveto the aggregate of (3 3) ang (2,9) are nested withir{1,3) , that is the tagged flow.
the two flows, which are served in FIFO order, dlmv 2 hasa Given a flow (i,j), we denote itdevel of nestingl (i,j) as the
as an arival curve, then the family of functionspymper of flows(h,k) into which it is nested. For instance, with
{E(n,a,s), sz O} » With: reference to Figure 3, it is(1,]) =1(2,3= 2, and|(3,3)= 3. The
level of nesting of the tagged flow is thereforeigqto one. The
E(n,a,s) =0 .oy X , (8) level of nestingf the tandenis the maximum level of nesting of
Dggn{%} +s | 1sxen px{s;‘gn[%‘"} —”;x”*},px—p one of its flows, which can be easily recognizetiédhe maximum
number of flows crossing a single node. Note th&tnalem of N

D
Figure 2 - Example of a three-stage pseudoaffimeecu




nodes has a level of nesting no greater thapand that the maxi- For instance, let us consider again the three-mated tandem
mum number of flows insisting on aN -node nested tandem is shown in Figure 3. Figure 5 shows how to compugest of end-
2N -1. to-end service curves for the tagged flow (1,3). $t&t from the
aggregate service curves at each node, and we Gopbllary 2.4,

starting from nodes 1 and 3. Then we convolve #rgice curves
obtained for nodes 2 and 3, which are now travetsethe same
aggregate of flows (1,3) and (2,3). We remove f(@y8) by apply-

ing once more Corollary 2.4, and we obtain theasetnd-to-end
service curves for the tagged flow through convolutThe set of

A particular case ofn -level nested tandem is the one in whichserV'Ce curvesrr*? S J390 F23 depend on three parameters,
SN g N s( , , s( , and they are pseudoaffine for each instance of
Ox,1< x< n,00(i, j):1(i,j) =x, i.e. we have onlgneflow at each 113" ™23 733
the three parameters.

level of nesting. We call such a tanderfubly nested tandent-or

(‘3, 3

(23
Figure 3 — A nested tandem

instance, a sink-tree tandem, i.e. a tandem in lwtiere are ex- Ay sy
actly N flows, whose path i(i,N), 1<i<N (see Figure 4, \ A \ A
above), is a fully nested tanddmhose level of nesting it ). On Ay i B Vi >
the other hand, a tandem is non-nested if it dassverify the \ v
above definition, as the one shown in Figure 4pweln that case, _ Y29 _
we say that flow(1,2) and (2,3) areinterdependent s E(6.uy.34) Vi E(8.a55.:4) .
(33 \ v
| $ e
(1.9 1 2 3 . ayy E(8" a1y 501) B OE(F 045 359) .
| . | v
w2) (2.3 29
| 4 Gy |E(F" s 5s) E(5 DE(£ a5 35) Aas 8],
3 : 2 3 .
(2‘3) v tuy | E(F s3]0 BB O HB a0 8) A B2 |,

Figure 4 — A fully nested tandem (above) and a mested tandem (below) Figure 5 — An example of application of the LUDBthwrology

Finally, as far as rate provisioning is concerngd,assume that a
node’s rate is no less than the sum of the sustlmates of the
flows traversing it, i.e. for every nodesh< N,
> PiysR
(i.j)ishsj
Note that this allows a node’s rate to be utilizgdto 100%, and it fact a simplified representation of the tandem.usetlefine two sets:
is therefore a necessary condition for stabilityorbbver, we as-

Sy ={(ij):hsi<jskandl(i j)=1(k)+ ],
sume that the buffer of a node is large enouglo agiarantee that . )
traffic is never dropped. i.e. the set of flows which are nested right iftok) , and:

={I:h<1<kand0(i j)Os,, I<i of >},

More generally, let us consider a nested tandemNofnodes,
whose level of nesting im>2 (otherwise the problem is trivial).
The algorithm for computing the delay bound for tagged flow
can be described as follows.

As a first step, we build theesting treeof the tandem, which is in

11)

Cini

i.e. the set of nodes in pa(th k) that are not in the path of any

flow in . Note that, if =0, thenC,, ={hh+1..K.

For the sake of clarity, hereafter the nodes inrtesting tree are

calledt-nodes in order to distinguish them to the nodes inghth

of the tagged flow. In the nesting tree, there tare kinds of t-

nodes: non-leaf t-nodes repres#latvs and leaf t-nodes represent

sets ofhodesin the path. More specifically:

1. Each non-leaf t-node contains a flofls, k). The root t-node
contains(L,N).

4. THE LEAST UPPER DELAY BOUND

METHODOLOGY

In this paragraph, we describe theast Upper Delay Bound
(LUDB) methodology and propose numerical technigioescom-
puting delay bounds. We first explain the problend @ur solu-
tions for nested tandems, and then extend it torested tandems
later on.

At a first level of approximation, LUDB entails cguiting all the
service curves for the tagged flow: we start frdme tggregate

service curves at each node, we apply Corollaryitratively in Each tnode whose content ighk) has all flows
order to remove one flow{i, j) #(LN) from the tandem, and we (i.j)os,, as direct descendants.  Furthermore, if
convolve the service curves of nodes traversechbysame set of Cry#U, (h.k) hasone more direct descendant represent-

flows. Every time Corollary 2.4 is used, a new fpegamete i)

is introduced. Therefore, we compute in faamnalti- dlmensmnal
infinity of service curves. From each of these we can caenaut
delay bound for the tagged flow, hence the mininamong all the
delay bounds is thieast upper delay bound

ing Cy, (WhICh is a leaf t-node).
The level of nesting of a flow is the level of tberresponding t-
node in the nesting tree. Accordingly, we hencéfostrite that
(i.,i) = (h.k) iff. (i,] OSpy» Sny being the set of non-leaf
direct descendantsf (h, k) and that( j) =" (h.k) to denote



that (i, ) is a (possibly non-direct) descendant(bfk) . Figure 6 nested tandem of arbitrary length [11], i.e. oneerghone-hop
shows the nesting tree of the tandem of Figureeaf t-nodes are persistent cross flows traverse the tandem, ana fEink-treetan-
shown as circles, while non-leaf nodes are ellipges instance, it dem [12]. In [14] we showed that problem formulatid.3) is the
is (3,9 -~ (2,3 and (3,3 - (1,3, whereas(1,1) <" (2,3) . same for all tandems whose nesting treestra@-equivalenti.e.
For non-leaf t-nodes, we also define theight H (i,j) as the have the same shape. As a consequence, any ctoseddlution
length of the longest path to a leaf t-node, i}d.(2,3): 2, computed for a given tandem can be generalized lltdrese-
H (1, 3) = 3. Once the nesting tree has been constructedethaf s equivalent tandems. For instance, the solutioraforfully nested
end-to-end service curves fc(tl,N) is computed by visiting the tandem can be computed in a closed form startiom fthe one

nesting tree from the leaves to the root as follows computed for the tree-equivalent sink-tree tandémsimple vari-
1. For eacheaf t-node representin@(h'k) for some parent t-node able substitution. However, a closed-form solutfon a generic
(h,k), compute nested tandem is still missing as of today.
S = i As far asnumerical methods are concerned, P-LP problems are
ﬂ []B . , .
iXCy normally dealt with either by exploding them intonamber of

simplexes, by considering each linear piece atne,tior through
ad-hoc algorithms that exploit some known propsrtie.g., the
A = S0 B E(n{i.i}ya(_ 'S ,-)) (12) convexity of the objective fungtior_l (see, fqr irr_ma, [10]). Since

(1.1) S ' ' we have no proof that the objective function is\eq we use a

2. atanon-leaf t-nodéh, k), compute a service curve as

i.e. as the convolution of: simplex approach to solve (13). Assume for easetdtion that

i) The (pseudoaffine) service curves obtained by amply 7N =y D{ 0. } )
Corollary 2.4 to the service curve computed attald t-cnodes; ° T
ii) The (rate-latency, hence pseudoaffine) serviceecar , if ~ By Property 2.3, problem (13) can be formulatefbdsws:

l<x<n

C,.z0 (otherwise assume for completeness that +
L R Fun) ~ 9%
T =0=Byua): " V=min{D+ O |+~
The set of end-to-end service curves farN), call it 7", is el py

obtained by computing the service curve at the tewtde. The

least upper end-to-end delay bound for the tagtmed ik the fol- .
lowing: §.20  O(i.j) -  (1N)

V= min {h(g,1N ,,Z{LN}(%_ (i) -7 (L N)))} (13) Problem (13) has a non linear objective functiame tb the maxi-

I Cd N i) mum operator. It can however be decomposed mtd. problems,

_("j)ﬂ ) . as many as the terms in the max operator betwegy lotackets
We now discuss how to to solve (13) numericallyteAthat, we (ie., all the n leaky bucket stages ofN | plus the null term

show how to adapt LUDB to compute delay boundsdn-nested 0, by [ ]). In each sub-problem, the max is assumed to be
tandems. This section terminates with a wrap-upusision Show- 5 cpieved either for generic term, 1< x< n, or for the null term,

ing the practicability of the presented algorithausd their im- 54 the inequalities which are required for thessumptions to
provement over per-node analysis. hold are added accordingly. We henceforth call efcthose in-

st

Y (33 stances alecompositiorof the original (P-LP) LUDB problem. A
3 L!—l‘—f ! ) ! Hﬂ generic decompositiox , 1< x< n is formulated as follows:
[ ‘ ‘ Ny o Ouny ~ 9
(29 V,=minq D+——"——
P

st (14)

(3 Cea) 5,20, A1) - (N)
O @ @ T =9« Tan =9y Oy,1<y<n

p)( py

® O, — 0.

Figure 6 — a nested tandem and the related nestiag % 20
. . While the n+1" one is:

4.1 Computing the LUDB in nested tandems V,., = min{ D}
Since 77" (') is pseudoaffine andy, . is an affine curve, prob- "
lem (13) is an optimization problem withpgecewise lineapbjec- St (15)
tive function of M variables andM linear constraintsM being S >0, D(i,j) R (1,N)
the number of distinguishetbws in the tandem (or, equivalently, :
the number of non-leaf t-nodes in the nesting tr@@)us one, 9un) "9

L T . <0 Oy, lsys<n
M <2N . Therefore, (13) is @iecewise-linear programmin(P- Py

LP) problem. Closed-form solutions have been derieough ad-

. X Then, the LUDB is computed as:
hoc methods for special cases of problem (13),foea 2-level



V= min {V}.

lsxsn+l
Now, if the offset D and the burstss, of the n Ieaky-bucket
stages of " are affine functions of 20, (i) =" (1N),
then all the decompositions (14)-(15) are simpleXéss happens,
for instance, in a tandem with one-hop persistemgflows, as in

[11]. Otherwise,D and g, are itself piecewise linear functions of
-"(1N) . However, through (12) and Property 2.2,

5,20 (1)) _ d Prope
they are obtained by composing sum and maximumatipes
recursively according to the nesting tree structiiteerefore, each
problem can be recursively decomposed into a nurobether
problems, working out maxima and adding constramtseach
recursive step, until the resulting problems tuubto be simplexes
themselves. We call each simplex originating fromUbB prob-
lem arecursive simplex decompositigRSD) of that LUDB prob-
lem. A first solution algorithm for the LUDB probite (13) entails
expanding the LUDB formula as explained and solvaigthe
resulting RSDs. We instantiate the RSD algorithmtloe nested
tandem of Figure 3.

Example 4.1

For the nested tandem of Figure 3 (whose nestaggisrreported in
Figure 6) the LUDB problem is the following:

V= mln{{z 6+ +§2I4+z(1p}

st (16)
Suy 2 0 !

Seg 2 0

5(3’3) >0

where the term between square brackets in (16eisftsetof the
pseudoaffine service curve for the tagged fidw8) , and:

3‘3)

+ ?3,3 +2

§ e
(R 23 33
(R p(s-s)E{%s*z =
o3
R~ 045y~ 0 ’
2(1,3) =0 (3.3 (23 ,
Ouy~ R’ E{§23 +Z(23_ 0(2’3)}
, , y 2 —_
R Ty "R &y
. ,
i R =Py ~Puy

Ty~ R By ”(z,a] _

2,,=0 ,
9 [ R-py F

At a first glance, twelve RSD can be obtained frid®), as many
as the cross product of the terms in the two maxéxgressions
2.4 andz,,, i.e. four and three respectively. Note that, eaill

the three terms within square bracketszin, can be negative, in

which case the null ternﬁ ] would be the maximum one, the
is non negative by definition, and therefore 1

second term inz, ,
the null term is not necessary. This reduces bytbeenumber of

combinations forx, , and brings the total number of RSDs to

4x2=8.

For the sake of completeness, hereafter we writendihe RSD
obtained assuming that the maximum is achievedeérfitst term
ofbothX, , and Z, , . Our assumptions yield the following:

) ‘(R3 ‘p(sa) 52y

b3
R =Py =Py

(2.9 = Rs _ ’

And they are obtained under the following ineqiedit(the first
one related toZ( » the following three related @&, , ):
Ty ~R Bay G2y

%9 "R BRay E§s3
-R? +
? E{M R Py R

R'- Py
R =Py

R2

(R 9
Ty~ (R~ Ps4) By .
R=Psg~Pes

Ty ~ (R /’sa)D?zs
R =Py~ Play

9y~ (R~ paa)E‘?za
R’ “Pay " P2g

Accordingly, after a few straightforward algebram@anipulations
we obtain the following RSD:

e
”13)‘(R3‘p<s‘3)t§zs

R~ Py = Plag

13 R1E§1J)
Rl_pl.

g,,-R
Loy "R,

R~ Py

V, =min

st

S19 2 0
S29 2 0
Sa.9 2 0

Ty "R Bay RE?sa
R -0y

R2

s Ty "R Ray _
2.9 R® =Py Rz

R® -

LT ‘(R3 ‘p(s‘a) e

R =Py~ Py

) ‘(Ra‘/’(sa)miza

R~ P9~ Py

—([R® =
Ty ~(R-2p4) By -0

R~ Pey = Pay
The other seven are obtained through the same guoEeassum-
ing different maxima and related inequalities.
€
In general, each RSD of an LUDB with cross flows hasM
variables and a number of constraitsas follows:

C=M+L(1,N)SM+M

Py

Ty Rl[%u)
Rt_pL

-1, a7)

where:

S =
1+<i ,.)Z%h kiulj e } o

The first M constraints are S|mpl)s( )>0 for each cross flow.
The other L(1n) constraints are those required to isolate a single
term of the nested sequence of maxima, and thela@ys no
more than the sum of the fird#l naturals (although our experi-
ments show that their actual number is much smalteaverage).
Note that L(nk) is the number of leaky-bucket stages in the pseu-

L(hk) = (18)



doaffine service curve computed at nddek) .

However, although a simplex witM variables ancO(Mz) con-
straints may look tractable from a computationandpoint in
practical cases, the overalumberof required RSDs may instead

putation times become impractical also in a bottgmapproach.
For this reason, we propose a heuristic methodcdonputing an
approximateLUDB in larger scale nested tandems.

grow very fast. In fact, the numbé? of RSDs to be solved can be 4 2 Heuristic apprOX|mat|on of the LUDB

recursively computed a@ = G( N with:

1 Shig =
L(nk) O

%h.k) 0
(i,j)-(h k)

It is easy to see from (18) and (19) th@at depends on both the

Gy = (19)

number of flows M and their level of nesting, a deeper nesting" RSD 5( j

tree yielding more RSDs than a shallower one dughéoproduct
operator. In fact,Q ranges betweem , achieved in a two-level
tandem (i.e. one with one-hop persistent crossdjovo M!,
achieved in a sink-tree tandem (although the LURB actually be
computed in a closed-form in both cases, withodtialy going
through the RSD process).

A much more efficient solution algorithm can be abed by ob-
serving that many of th€ RSDs arénfeasibleand can be identi-
fied as such at a small cost. In fact, thanks ¢orétursive structure
of the LUDB problem, it is fairly easy to identifymall sets of
infeasible constraints, each one of which may appeaossibly
many RSDs. Once a set of constraints is identdigéhfeasible, all
the RSDs which include that set can be safely gldppeducing the
overall number of simplexes to be solved to a maroaller figure.
With reference to the previous example, one caityeatseck that,
if R?’—p(3 92 > R, then the following inequality is infeasible for

any §,420.
R B

R “Psy

As a consequence, all the RSDs which include (28)four out of
eight (included the one described in the above el@mare infea-
sible too, and can be safely skipped. Thus, thet&eyfaster solu-
tion algorithm is to workbottom-upin the nesting tree: starting
from the t-nodes(i,j) such thatH (i,j)=2 (e.g., node (2,3) in
the above example), we compute the LUDB for thetsed rooted
at each of them. In doing so, we check the feasiluf each result-
ing RSD, and we mark infeasible constraints or getseof. Mov-
ing upwards towards the root, at each father t-nodesolve the
LUDB problem, this time consideringnly those RSDs which do
not include infeasible (sets of) constraints ofl¢chinodes. Note
that this does not guarantee that the resultingR8il be feasible
themselves, since the subset of constraints cairdieasibility may
be sparse among several child t-nodes. Howevespas as new
infeasible RSDs are identified, they are marked raed out from
then on.

The bottom-up algorithm is considerably faster tlabrute-force
recursive simplex decomposition. For instance, ink-free tan-
dems it reduces the number of simplexes frivhh to O(MZ) . As
another example, for a case-study tandem with 3fesi@and 31
flows, nested up to level five, we obtaid=1.5C10 . The bottom-
up algorithm brings the overall number of RSDs whiave to be
solved or proved infeasible (including those ateinmtediate t-

(20)

When computing the LUDB at a t-nodg,j), each RSD
includes a set of constraints. Some of these dagedeto chi d t-
nodes(h,k) - (i, j). For instance, with reference to Example 5.1,
all the RSDs for the tagged flow (1,3) include @oastraint stating
which term in %, , is the largest, wit(2,3) - (1,3 . We say that
includesanother §, ,, with (h,k) - (i, j) , if the
set of constraints OES | mcludes that o hig Define a roptimal
RSD for a t- node(l , as one whose optimum is the LUDB
for (i,j). In general, there can be more than one optim&lsR6r

a t-node. Based on experimental observationsitstout that an
optimal RSD ofterincludessome optimal RSDs of its children t-
nodes (h,k) - (i, j). In other words, the constraints of optimal
RSDs forchildren t-nodes are good candidates for being included
in the optimal RSD at parentt-node. With reference again to
Example 5.1, if one finds that the optimal RSD238] is obtained
with the following constraint:

-R By

R =Py R2

then the optimal RSD for the tagged flow (1,3) oftacludes the
same constraint.

We capitalize on this in order to devise an effextieuristic tech-
nique for approximating the LUDB. The key to effiocy is tdimit

the explosion in the number of the RSDs. In ordedd that, we
traverse the tree bottom-up, identify the feestRSDs for each t-
node (i.e., those leading to the best approxim&t®R) anddis-
card the others Going upwards to parent t-nodes, we force the
RSD algorithm to keep into accouanbly the surviving RSDs of
children t-nodes. More specifically, the algoritisyas follows:

1) compute the (exact) LUDB at all t-nodgs,j) such that
H(i,j)=2; memorize all the optimal RSDs and discard the
others.

going bottom-up towards the root t-node, comput@uroxi-
mateLUDB at a t-node(i, ) with H(i,j)>2 using the RSD
algorithm. However, when the recursion gets to dgmmsing a
term related to a child t-nodfh, k) - (i, j), instead of explor-
ing all possible RSDs, piatinly thebestRSDs for that t-node,
up to a maximum oh=1. When more tham are available,
select n at random among them. After computing the ap-
proximate LUDB at(i,j), memorize all the best RSDs, and
discard the others.

The above heuristics allows one to control the remrdf RSDs
which are passed on to a parent t-node, and, easeguence, the
overall computation time. Generally speaking, tmaléer n is, the
faster an approximated solution is computed, beitels likely it is
that the latter is equal tthe LUDB. However, we show that the
trade-off is very favorable, i.e. we can computeyvgood ap-
proximations solving few simplexes. We start withserving that,
as far as sink-trees are concerned, the abovestiesralways com-

2)

nodes) tol.67C1LG . In this last case, DEBORAH finds the solutionPute an exact solution even with=1. In fact, in this case there is

in less than 20 minutes on a 2.4GHz Intel Core20Bgfocessor.
It is however evident that, as the scale of the BUboblem gets
larger in both the number of flows and their nesligvel, the com-

only one feasible simplex at each t-node. In otdeevaluate the
trade-off between accuracy and computational owethie more
general settings, we create nested tandems whetiegqi&rees are



balancedk -ary trees with a level of nesting equalltpi.e. having
(k' —1)/(k—1) flows and k'™ nodes. For each flow, we randomly
select a burst and sustainable rate, and for theéeta nodes we
select a null latency and a rate equal to:

R'=(1+X0 > g

(i.i)ishsj

where x is a random variable uniformly distributed [iﬁ.Ol,_’], SO
as to verify (11). The results are plotted as afion of n for a
given set of balanced nesting trees, varying tlesiel of nesting
and -arity (i.e.,] and k). For each selected value bfand k , we
generate 50 problems with different data sets.
Figure 7 shows the percentage of scenarios wherehduristic
solution matches the LUDB. The figure shows thatektively

ratio of simplexes actually computed

n
Figure 9 - Fraction of simplexes solved in the fios with respect to
those required for the exact LUDB computation

small value ofn is enough in most cases, the performance worseim order to give a tangible figure, for the samsecatudy described

ing when the level of nesting gets higher. Moreriestingly, even
when the heuristics does not achieve the LUDBy¢kedive error is
small to negligible. Figure 8 shows theximumrelative error in
the LUDB estimate in the same scenarios. Both égwghow that,
with n=5, you are very likely to attain the LUDB, or a st
less than 1% apart. The heuristics is however denably faster, as
shown in Figure 9. The latter reports the ratioMeein the number
of simplexes solved in the heuristics and thoseesbfor the exact
LUDB computation (using the bottom-up approach)e Tigure
shows that the larger the size of the problem géts,larger the
improvement is.

% of exact matches

10
Figure 7 — Percentage of exact matches of the LitHb&ugh the heuristics
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Figure 8 - Maximum relative error in the LUDB apgiration

at the end of the previous subsection, the hear&ilution with
n=2% (i.e., with virtually no limit to the number of owinations
carried to the parent level) completes on the ssys&em in 1.6s,
returning the same result.

Within the limits of the considered scenarios, ieristics appear
to be very fast and accurate, allowing good est@maft the LUDB
to be obtained in reasonable computation times &v&rge nested
tandems. We now move to considering non-nestecktasd

4.3 Non-nested tandems

The LUDB methodology cannot be applied directlyntm-nested
tandems, such as the one shown in Figure 4. Asshiojl4], a
non-nested tandem has to be partitioned into a eurabnested
sub-tandems, each of which can then be analyzeli#tion using
LUDB. Whenever two flows (i,j), (hk) exist for which
i<h<j<k, they are said to bmterdependentand cutting the
tandem at (i.e.beforg@ any node in[h, j +1] will sever their inter-
dependency. For instance, with reference to FigOrelows (1, 2)
and (2,3) are interdependent, and their interdependenogviered
by cutting at any node i|[12,3] . In order to analyze such tandems,
two problems need be solved: first of all, findisets of cutghat
partition a tandem so as to sever all the intenddgecies (thus
creating only nested sub-tandems); then, computirg delay
bound for each sub-tandem. With respect to therlé&sue, in [14]
we have shown that, once a suitable set of cuideistified, the
delay bound can be computed iteratively: startimgnf the first
sub-tandem, we compute the LUDB for the tagged ftowd the
output arrival curve for each flow that crosses ¢be (i.e. that is
also present in the next sub-tandem); then we rtomtfee next sub-
tandem, for which we have just computed all théevarcurves, and
so on. We have also shown that computing an owtyival curve
implies solving a separate LUDB problem, which sscamplex as
(or less complex than) the one for delay computatio the sub-
tandem. With respect to the fiissue, i.e. computing a set of cuts,
[14] mentions that there are, in general, many wiaydo so for a
tandem, as there are always at l¢ast nodes to cut at in order to
solve a single interdependency. As a consequemeesioould — in
principle — tryall possible sets of cuts (optimal ones being hard to
identify a priori) and select the best delay bound among them
posteriori A fast heuristic is also proposed for computimg such
set. Hereafter, we delve deeper into both the aposklems.
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Figure 10 — A sample non-nested tandem, and refmednatrix (left) and
dependency matrix (right)
Given a tandenT ={i:1<i<N} of N nodes, we partition it into
m disjoint sub-tandemd; ={k:¢_, < ks ¢-1, 1<i<m, with
¢,=N+1, ¢ <g, (andc, =1 for ease of notation)c is a node
index, and is accordingly calledcat Furthermore, we call set of
cutsa set of nodesSC={ ¢:1< i< n} suchthaf J__ T =T and
T,nT, =0 fori#j. Note that the possible sets of cuts forldn
node tandem in the order of the subsets of a sét @lements, i.e.
€] 2“). We are interested ilNestingSC (NSQ, i.e. those for

following variables: the global list of valid set$ cuts VSC=0,
the current set of cuts foun8C=0 and the set of severed de-
pendenciesSD=0 . Then, at each recursive step, a new node
n'0{n+1,..., N} is considered for inclusion int&C (we assume
n=1 initially). The node is discarded if either albtdependencies
in D,. are already inSD, or if we are cutting at three consecutive
nodes. In this last case, in fact, since any twdentandem is by
definition a nested one, removing one cut woulllyd@gld an NSC.
On the other hand, if the inclusion test is pasked we update the
set of dependencies &D'= SDU D.; now if SD'= D, then SC

is a valid NSC, hence it is addedW¥SC and the current recursive
iteration terminates. Otherwise a new recursiop &estarted from
the current node and so on, until the last nodedshed. The algo-
rithm exits when the top-level iteration terminatksaving all the
possible NSCs stored insC.

As a final stepVSC is scanned to eliminate redundant sets of cuts,
so as to leave only PSCs. Note that the numbeBafsPstill grows
exponentially with the number of nodes, howevehvat reduced
exponent: for a tandem includirgl possible flows, our experi-
ments show that the number of PSCs grows0a&32*", i.e.
about3C1C° for N =30.

which each T, is a nested sub-tandem. In the above example,

{3.9 {243 { 2,3,4)5 are some NSC. However, cutting a tan-

dem entails assuming separate worst-case scerfariasach sub
tandem, which are not necessarily possible simetiasly. There-
fore, the less often we cut, the tighter the remilgoing to be.
Hence we define &rimary SC PSQ as one NSCX such that
0, x\{c}
redundant NSCs, and thus the only ones worth cerisgl With
reference to the above example~{3,8 and b={2,4,9 are
PSCs, which originatéwo different end-to-end delay boundg®

andVV". The alert reader can check th&t can be either larger or
smaller thanv®, depending on the actual values of the nodes and
flows parameters, despite the fact tlathas one cut less. Hence

the safest choice is to compue=V* OV°.
The first problem to solve is therefore how to comepall the PSCs
in a tandem. In fact, their number grows with thenber of nodes
and flows in the tandem. We present an efficiegb@hm to do
this. In a non-nested tandem, the number of flaws is upper
bounded by NO{N+1)/2, ie. all the couples(i,j) with
1<i<j<N. These flows can be represented inMmx N binary
flow matrix F, such thatF =1 is flow (i,j) exists. Interde-
pendencies can be efficiently located by explorfhgusing simple
bitwise operations. For instance, for flo(\iuj) the interdependent
flows are the 1s in the following blocks of the mat

[Li-gx[ij -0 + 4 ]x[j + N ]
Let d be the number of such dependencies. As a firgt, ste
Nxd binary Dependency MatrixDM) is computed. For the

is not an NSC. Broadly speaking, PSCs are non-

VSC=0; SC=0; SDb=0; n=1;
void compute_sets ( SC,SD, n){
for n=n+lto N {
i D, O0SDor {n-2,n-130SC
then continue; //skip to next node
SC'= SCI{ h ;//add n to the set of cuts
SD'= SDO D.; /lupdate set of depend.
if SD'=D then VSC=VSQ] S(

else compute_sets( SC,SD', n');

}
}

Figure 11 - Pseudo-code for recursive cuts setpatation

Once all the PSCs are computed, we are faced hétiptoblem of
computing the related delay bounds. As already robge one
delay bound should be computed per PSC, using teghéd/DB
computation. To this aim, one may note that cutirigng tandem
into shorter sub-tandems actually reduces the teaplexity: in
other words, computing the delay bound for a PS@ilersolving a
linear number of exponentially simpler problems,ighhis gener-
ally much faster. However, this would obviously d@mputation-
ally expensive as the number of PSCs grows langeortler to
obtain an efficient implementation, we can agaipleix the prob-
lem structure. Since an interdependency betweerflomes can be
severed by cuttingit leastat two different nodes, there will be in

above example andDM are also shown in Figure 10. For eachgeneral several PSCs where the firstcuts are the same. For

couple of interdependent flowl,j) and (h,k), the dependency
is severed if we cut the tandem at any nod¢hinj +1]. Accord-
ingly, the matrix has a 1 at all the rO\{/e, i +1i for that depend-
ency. Building such matrix requires at mdgt“/2 comparisons.
Row n of the DM is thus the set of dependencigs severed by a
cut at noden . Note that a set of cuts is an NSC if and onli if
satisfies all the dependenciesin= Nﬁ D

As a second step, all the candidate NSCs are feelyrsomputed
as follows (see the pseudocode in Figure 11). Riesinitialize the

these, the delay bounds and output arrival curaethé first n

sub-tandems can be computed once, and reused Bulisequent
computations. This can easily be done by arrangihthe PSCs in
a tree, whose( j +1)‘|1 level nodes are thg™ cuts in every PSC.
The end-to-end delay bounds for all the PSCs caeffi@ently

computed by visiting such a tree depth-first andrgaall the com-
putations at intermediate nodes. Table 1 reporspircentage of
LUDB skipped with respect to a brute-force approasdch value
representing an average over ten randomly geneirsgeghces. The
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number of flows is varied among 20%, 50% and 10G%llothe
possible ones. The flow paths are generated abrar(the result-
ing tandem is checked to be non-nested before pditg with the
analysis), and so are their rates and bursts. Nadegrovisioned
so as to accommodate the overall flow traversirgmthwith a
random overprovisioning ranging from 1% to 50%, lehiheir
latencies are set to be identically null. As thielgaclearly shows,
the amount of computations saved is significantrdasing with
both the number of nodes and the flow density.

N, d| 20% | 50% | 100%
10 20.42 | 39.33 41.67
15 45.36 | 56.02 58.77
20 61.40 | 65.59 68.58
25 70.51 | 73.3q 74.74
30 75.47 | 77.9Q 78.90

Table 1 — % of LUDBSs skipped with respect to a e#arce approach

To evaluate the overall scalability of the proposexgproach, we
run the computations on non-nested tandems ofn@usize, in the
same settings as before and on the same hardviguee B2 shows
the time taken to compute all the PSCs againditdem size. The
overall LUDB computation time once the sets of P&@sidenti-
fied is instead reported in Figure 13. Both figuse®w an expo-
nential dependency with respect to the tandem &iterestingly,
the PSC computation time does not depend monotbniza the
number of flows, the highest one being achievedaf@f%. This is
because, when flows are sparser, sBis tend to have smaller
intersections, so that you need more to compufeé%@, and there-
fore the number of their combinations increasewels Although
not shown in the figure, however, further reducihg number of
flows (e.g., to 10%) eventually leads to smallempatation times.
On the other hand, the LUDB computation gets heaat the
number of flows increases, which is expectable, pidesents the
dominant time with densely populated tandems. Hewess the
figures show, a 30-node tandem with all possildevd (i.e., 465)
can be analyzed in twenty minutes.

100

—6— 20%
-E— 50%

10 =1 —o— 100%

Teut(s)
=

0,1

001 ; i a i a i a i

30

Figure 12 — PSC computation time
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Figure 13 — LUDB computation time

Note that — unless very large nested sub-tandeenstaained (i.e.,
in the order of several tens of nodes, which iribe case in the
above experiments) — heuristics such as thoseideddn Section

4.2 are ineffective in reducing the overall compiotatime. In fact,

when sub-tandems are short, few simplexes are reshjtid solve

their LUDB problems, and the efficiency gain ofngithe heuris-
tics is thus negligible.

4.4 A wrap-up discussion

As shown in the previous sections, LUDB computattompletes
in seconds or minutes foestedandems of up tens of nodes. Com-
putation in non-nested tandems instead requiresitasnfor tan-
dems of up to 30 nodes. Since the computation groais expo-
nentially, and although using more performing harbky such as
quad-core PCs, may push the limit a few units aheadeeding
this last figure quickly leads to unfeasibly longngputation times.
However, we observe that 30-node paths are rareclase to the
longest in today’s planetary Internet [26]. Morethie point, few, if
any, paths under the control ofsagle administrative entity are
that long. This means that such methodology isblétfor today’s
Internet. Moreover, according to the current treruiths in the
Internet are getting shorter over time due to iasigy domain-
level interconnectivity, which makes that figurege enough also
for the foreseeable future. The point that we wantake now is
that such computational overhead is really neediede it comes
with a dramatic improvement in the solution accyraith respect
to the only other comparable method so far, i.e:npele delay
analysis. In the latter, per-node delay bounds aumgbut arrival
constraints are computed and summed up, similarlywhat we
would do by using a (redundant) NS® ={1,...,.N+}. This
method is computationally simpler, since singleeahalysis is
trivial. However, the ratio of the per-node delayubd and the
LUDB is always greater than one, and it greaxponentiallywith
the number of nodes, in both nested and non-nestedems.
Figure 14 shows the ratio of per-node delay bowet the LUDB
as a function of the number of nodes, in the saorernested tan-
dem settings previously used. The improvement grivais 4-6
times (for 10 nodes) to 500-800 times (for 30 nydabnost irre-
spective of the flow density. For nested tandemdgam is even
larger: for instance, in a balanced tree with 4,k =3 (i.e., 64
nodes), theheuristic bound is on averag®4[1G times smaller
than the per-node one.
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Figure 14 - Ratio between per-node delay and LUDB

Having shown that LUDB analysis is indeed worth quimg if
delay bound accuracy is a concern, we take oveptbblem of
assessing hotight the LUDB is in the next section.

5. THE PROBLEM OF TIGHTNESS

Assessing whether the LUDB is a tight bound is mpaigicularly
challenging by the fact that a method for computing WCD in
FIFO tandems is still missing. In a previous woifkoars, [12],

LUDB was applied to sink-treeandems, which are in fact nestedhai's")to

tandems. For this class of tandems, we showed theat_ UDB
(which can be computed in a closed form) is agjuadjualto the
WCD. The proof was obtained by constructing a séenshere a
bit of the tagged flow experiences a delay equéheoUDB itself.
As far as non-nested tandems are concerned, wadgl€howed
that this method yields much better results contbaoeper-node
analysis. However, breaking the end-to-end analysiscomputing

W =W. Now, the LUDB is not smaller than the WCD by défi
tion. Thus, ifV and V are LUDBs for T and T, then it is
V=W, i.e.V is obviously a delay bound for . However, if we
find cases wheV <V , we can prove that >W.
Apparently, we need a method to build such a tanderinom T .
The starting point for this is a technical Lemmaichhidentifies
assumptions on the nodes behavior which are cobipatiith the
worst-case scenario. Hereafter, we denot ﬁ(t) the CAF for
flow (i,j) at nodek, and with D(ﬁlj)(t) the CDF for flow (i, j)
at node k . Furthermore, we denote witt\‘(t) and D“(t) the
total CAF and CDF at nodé& .

Define ascenariog for an N -node tandem as:

1) a set of CAFs for all the flowgi,j) O(LN) at their entry
node, 'i.j)(t)?

a set of “node behaviors”, i.e. the way each nbodé<i <N ,
transforms its CAFA (t) into its CDF D'(t), according to
the related service curve inequalify (t) Z{Ai 0 E;(t). As
for the latter, we can describe a node behaviombgns of a
non-negative lead function L'(t), which is such that
D'(t)=[ A 08 ](t)+L(t). Note thatL'(t) is not necessar-
ily wide-sense increasing.

In order for a scenario to Beasible each CAF has to be compati-

2)

ble with the related arrival curve constraint,
Ali () - Aﬁv” S sam(t— 9. Furthermore, each lead function
verify L' (t) < A (t)=[ A0 8 |() in order for nodei to

have a causal behavior.

We first show that there is at least one scenahiere all nodes are
lazy, i.e. they have a nulkad, where the WCD is attained.
Lemma5.1

Assume that a tandem & FIFO nodes is traversed by a set of
flows, and fix the CAF of each flofi, j) at its entry ”Odeﬁ(ii.j) )
Then, the WCD for flow1,N) is achieved in a scenario where all

and summingartial delay bounds, is likely to lead to loose end-toygdes are lazy

end delay bounds nonetheless, as it entails asgumitependent,
non simultaneously possible worst-case scenariogaah sub-

Proof
Call T the set of all feasible scenarios in a tandemouginout

tandem. The alert reader will notice that a Simmument has this proof’ we express the fact that a quantityed'dp on scenario

been used in the past to prove thatghg burst only oncprinciple
holds for single flows in per-flow scheduling netk® (see e.g. [5]
for some discussion on this topic). Broadly spegkioutting a
tandem into sub-tandems is much better than cuitiingo single
nodes (as it is done in per-node analysis), butllgnbgcause you
needless cuts to accomplish the same task, hence we wootd
expect the bounds thus obtained to be tight. ligive for granted
that end-to-end analysis is reecessarycondition to obtain tight
bounds, a natural question is whether the lattatsissufficient In
other words, whether end-to-end analysis alway&lyia bound
which is equal to the WCD. In this section, we sHpycounterex-
ample that this is not the case: the LUDB may bgelathan the
WCD, even when end-to-end analysis is possible.siewv that
there are cases of nested tandems where we aréoatdenpute a
smallerdelay bound than the LUDB, which proves that theDIBJ
itself is not necessarily equal to the WCD.

Our line of reasoning is the following: insteadlobking for an-

gOr by using the conditional notatidy , i.e. A, (t)|, denotes
the CAF of flow (i,j) at nodei under scenariq .

Call d' (t)‘ , the delay experienced at nodéy a bit of the tagged
flow entering a generid\ -node tandem at timé in scenariog .
The WCD d is defined as follows:

" s=pe{ {0, |

This said, we prove the thesis by induction onnbdes, starting
from the last one.

Base step: nodé&N has to be lazy.

Call ®, OT the subset of scenarios wheté(t)=0, i.e. those
for which node N is lazy. We show that at least one worst-case
scenario is included i , i.e.:

(21)

othermethodto upper bound the WCD in a sample tandem (whicH}SSUMe by contradiction that:

to the best of our knowledge, has not be discoveoefdr), we look

for anothettandem derived from the sample one, to which to apply
the same methqdi.e., the LUDB. More specifically, consider a
tandemT , and callW its WCD. Assume you are able to build a

tandem T, such that its WCDW is not smaller thanW , i.e.

d= [ng{ ma id‘ (t)g}} (22)
> mef S0 (91, @

and call xOF\® the scenario wheral is achieved. Consider
now the scenarioyO®, , which only differs from x because

12



L¥(t)=0. It is obviously d'(t )‘ =d (1),, 1<i<N -1, since

nothing has changed at the firstN-1 nodes, and
A ()], = AN(t)\ However, if nodeN is lazy in y and not in
x, itis DM(t)[, < D" (t)]., hence Dy o (O], <Dy (t)], since
the node is FIFO and" ( ) >d" i\ Thus, we have found a

scenario yOJ&®,, where a delay larger than or equal tb is
achieved, which contradicts (23).
Inductive step:
Let N be a lazy node. Fix its arrival@t’fw)(t), if any. Then,
given a generic scenaripd @, , we have:

A1

DN(t)‘y_[ X" l( )‘ +ANN ( )‘ :|
Where X’“(t)‘y is the sum of the CDFs at nodé¢ -1 of the
flows traversing bothN -1 and N. Consider now the scenario
xO®,, , which only differs fromy by assuming that nod&l -1
is lazy as well. We readily obtain thad"™(t)|, <D""'(t)|,,
which also implies thatx"(t)|, < X"(t)|, due to the FIFO
hypothesis. Since convolution is isotonic, it isrth

DY (O], =[ X" (1), + AL o (0], ] 0 8*(1) o
<[ X" (0], + A (9], ]0 “(t)=DN<t)\y

For the FIFO hypothesis, (24) implies tHB(f;‘ DN )( )‘ ,
Thus, the horizontal distance between any p0|nt ) and
Dy » i-e. the end-to-end delay of each bit for fl§tyN), is lar-

()

ger or equal if nodeN -1 is lazy. This means that there exists g, T,

worst-case scenario in which nodé-1 is lazy. By repeating the
same argument at nodés— j, 2< j <N -1, the thesis follows.

€

Although the above lemma is not sufficient to idigné possible

worst-case scenario, it can be used to state thgepy that allows
us to build a tandenT from a given tandenT , which we call

Flow Extension (FE)We first formulate and prove it, and then

exploit it to construct simple counterexamples.

Theorem 5.2 (Flow Extension, FE)

Let T be a tandem ofN nodes, in which there is a flow
(ji,N-1). Call T the tandem obtained from by “extending”
flow (j,N-1), i.e. by substituting it with flow(j,N), all else
being equal. Calld and d the WCD for the tagged flow it
andT . Then, itisd>d.

Proof

By Lemma 5.1, the WCD is attained in a scenariore/tal nodes
are lazy. Thus, we compare and T, limiting ourselves to the

narios are the same up to noule—l included. However, the input
atnodeN in T is A"(t) = A"(t) + AN, (1), where AL, (1)
is a wide-sense increasing function. Now, sinceenhdis Iazy and
FIFO, the delay of each bit i\" (t) cannot be lower than iff ,
thus d" (t)|; > d" (1) -

Now, for any scenariqg 0@ there exists a scenangDCD where
the end-to-end delay of a bit of the tagged flowesng at timet
in tandemT is larger than (or equal to) the one in tand&m
Therefore, the same inequality also holds betwéenréspective
WCDs, i.e.d>d.

€

We now show how to exploit FE to compugmaller bounds than
the LUDB.

Example 5.3

Consider the two-node tandem shown in Figure 15, left.

() T

_F

12

v

»
»

N CLICE R

Figure 15 — Two simple tandems. The one on the rigbbtained by apply-
ing FE to the one on the left.

Build the corresponding tandei according to FE (shown in the
same figure on the right), for which it M/ =W . Consider now
whatdelay boundve can compute through LUDB in both tandems.
it is the following:

2 5, %, % 2
Yot R+puy <R
V= 2 g, (26)
Z|:19+ (;2 R2+p1])2R1
2
R+ Py
provided that the following provisioning inequadsi hold:
R2p,)+ Py R20, @7
otherwise it is infinite. _
On the other hand, the LUDB for the tagged flowTinis:
V=y? g+ 20 % 28
ZI =1 Rl O RZ ( )
provided that the following provisioning inequadii holds:
R2puy+ Py R20y+ Ay (29)

subset of feasible scenarig@s where all nodes are lazy. Wheneverotherwise it is infinite. Note that the second inality in (29),

needed, we use the same symbol to denote the saamitips in
T and T, adding a bar to the latter ones in order to niggtish
them. Consider now a generic scenagal ® for tandemT , and
define thecorrespondingscenariog in T as the one with the
same set of CAFs at the entry nodes of all floweafy, if the
scenario is feasible i , it is also feasible irl , since flows are
subject to the same constraints. However, in tandem flow
(j,N -1) is extendedup to nodeN . This is exactly like adding a
“virtual” flow (N-1,N), with A%, \ (t) =D, (t). as an input
to nodeN . o

For a scenariogd® in T, the corresponding scenarigCd® is
such that:

d' (0,2 d (9], 1si<N

In fact, equality holds in (25) fot<i<N -1, since the two sce-

(29)

related to node 2, is more constraining than threesponding one
in(27).
Now, [I(V,V) is a delay bound inT . However, it is easy to see
that V <V in some cases. Table 2 reports the comparisoneleetw
V andV in the five different regions in which the ratequalities
included in expressions (26)-(29) divide the pl&OR (also
shown in Figure 16). In region ¥ <V . Thus, the following set of
inequalities hold:

VW, VW, W= W K\ (30)
An immediate consequence of (30) is that W, i.e.the LUDB is
not the WCD in that case
Furthermore, note that in region lll, the rate in&lifies are not
sufficient to decide whethe¥ <V or V =V : in fact, both can
occur depending on the values of the parameterainAthis means
that the LUDB is not necessarily the WCD in thajioa too.

13



€
A |
" ‘ [1]
| g g
e 2 /s
| R>R R R
| // R2 < R /.’
| e . 2
\ o Retpyy <R
yaoy
P
Pay ¥ Pua | /
V/ 7
e L
A P
s I Z
o B
7 | 7/
Ve
Poa| B
4
7

1
Puy Pyt Pug
Figure 16 - Different regions of the pldR OR and related inequalities.

Now, when LUDB is applied to a nested tandem, thires set of
all the “good” end-to-end service curves that candomputed
using Theorem 2.1 and convolution is explored, andlobal
minimum is computed. This means that no better Heuwan be
computed by relying on Theorem 2.1 alone. Howevbis is
proved not to be sufficient for computing the WGDlikely cause
for this is that not all the necessary informatisrretained in the
equivalent service curves computed through The@dm
Consider, for instance, a single rate-latency rioaleersed by two
leaky-bucket shaped flows, as in the example shiowRigure 1,
and assume that the arrival curve of the two flawesa, = Voo »
1<i< 2. The LUDB for flow 1 is computed as the solutidtive
following trivial optimization problem:

s+6’+ﬁ+ o,-R[B
R R-p,
The minimum is achieved whes=0,/R, and it is equal to
V =6+(0,+0,)/R. This is also the WCD for flow 1, since it is

d =min

s20

attained by itsalth bit in the following worst-case scenario:

a) both flows aregreedy: A (t) =a(t), i.e. their CAFs are equal
to their respective arrival curves. However, thesbof flow 2
arrivesjust beforethat of flow 1.

b) the node is lazy.

Call D,(t) the CDF for flow 1 obtained in the above scenario,

shown in Figure 17 as a thicker dashed line. Letarmpare it to

the curves Dl‘(t,s) obtained by convolving the greedy CAF of
flow 1 with each equivalent service curve derivdatotigh

Corollary 2.4, therein including the “optimum” on&hese are

shown as thinner lines in the same figure, forosivalues ofs,

and they represemdwer boundgo any CDF that can be obtained
from that CAF, by definition of (equivalent) sereicurve. How-
ever, one can easily see thdis: D(t)=Di(t's). More to the
point, the curvesD, (t,s) with s>0 cannot be obtained in a FIFO
system, since they assume that flow 1 does nosrmarany bit for
longer than 8+0,/R. This seems to suggest that tig(t,s)
might not be tight lower bounds themselves. Thisturn, would
imply that each equivalent service curve alone oaulescribe the
behavior of a FIFO node with the necessary accuracy

A
A

RO
M P %
\
a‘ .
| \
T o/R R ;

Figure 17 — CDFs obtained using equivalent semigges

5.1 Practical Applications of Flow Extension
Beside being useful to prove the limitations of dtean 2.1, FE
can also be exploited to compute improved delayndeuHow-
ever, its practical usefulness is limited for eadethree reasons.
The first one is represented by the topology retstns required in

Re- Rate Inequalities \% \% Comparison
gion
2 5, % e
6 +—=+ ’ 0, +0 _
Rl > 10(1,1) +'0(1,2) s RZ > Rl Z|:1 Rl Rl R2 Zizzlgl + [¢) (13 V<V
RZ +p(1]) Rl
O, O O, +0 _
| RZhuy oy Ri4py <R YO YLt vy
R2p .+ Py RR<R, 2 g0, %y o +o
1 (1121) (1'2 2 R g R 32 6+t _"03 |t depends
R +p(111)2 RL R2+p i=1 R
()
1 o
R2p,y+Puy e +d (12 _
|V ) ) i=1 Rl RZ o V < V
RE<Poy*Pug R+ 2R Ren,
2 2
y RU2 L1y R<Puy* Py 52 g+ Joa , s o V<V
R? + Py 2 R i= R R
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order to apply Theorem 5.2 (i.e., that there ibw fin the tandem
that leaves at noddN —1). Second, in order for it to be of any
practical use, it requires that the last nodeoberprovisionedIn
fact, with reference to the previous example, we aaserve that, if
RZD[p(u),p(Mﬁpm , i.e. in regions IV and V, the WCD in
tandemT is infinite, and thus FE is useless in this cd$e third
one is that it cannot be statacpriori whether it will yield smaller
bounds or not, as it depends on the actual vallifeeanodes’ and
flows’ parameters.

This said, we can still find some useful generéiiraof Theorem
5.2. The first one is that, given a tanddm and a set oéxtensible
flows S={(j,N-1)O(LN)}, FE can in fact be applied by ex-
tending any (non emptygubsetf flows sO S. Thus we can build
up to 2% -1 different tandemsT , for each one of which a delay
bound can be computed, possibly improving on th@©BUn T
for some value of the nodes and flows parameteosveder, the

more flows are ins, the more constraining the provisioning ine-

qualities at nodeN must be, in order for the related boundTinto
be finite. More specifically, the required ineqpls the following:
p(.,N) + Z p(l,N—l) <R" (31)
(i.N)O(1N) (i,N-10s
Thus, the amount of overprovisioning at nole may act as a
constraint on the number @fffectiveways in which FE can be
applied (which can therefore be smaller tri@h-1 in practice).
The second generalization is that FE can be appi@e than once
to the same tandem, while obviously tightening phevisioning
inequalities each time. For instance, in the tandleown in Figure
18, above, FE can be applied a first time by extepélow (1,2).
After convolving the service curves of node 2 and 8an then be
applied again, extending flov(/l,l) up to node 3. One must ob-
serve, however, that whether applying FE yieldsnaler LUDB

_ g, g, + 0,
v=y? g+ L3y 03~ 73 (33)
" ROR (RZDR’)EIiRl
R+ 02

Both (32) and (33) hold provided thafzp(m) + Doy T Py
Two different delay bound expressions® and V® can be ob-
tained using LUDB in the same tandem, using eitf&4 or
{2,4 as a set of cuts respectively. They are reporiethe Ap-
pendix. The alert reader can check that, unliké/fhand V", in

V each bursta(ur) appears exactly once. It is easy to identify
regions in whichV <(Va DV") . For instance, ifR' =3, &'
1<i<3, and 0;,=3, p;;=1, for all flows, we obtain
V=203, V*=1079, V* =92/9, s0 thatv ~ 0.65({V* V")

6. ALOWER BOUND ON THE WORST-

CASE DELAY

Once acquired that the LUDB (whether FE is emplogecdhot)
might be an overrated estimate of the WCD, we reeetkthod to
assess its tightness. In order to assess howaighpped boun&¥

is, we compute dower bound v on the worst-case delay. The
interval [v,V] includes the WCD by definition, hence we define
U =1-v/V as theRelative Overrating Bound(ROB), meaning
thatV is overrated by less than a factdr.

Now, any attainable end-to-end delay is by definition a lower
bound on the worst-case delay, the latter beirfgdhthe maximum
attainable delay. Therefore, we computeby heuristically defin-
ing a scenario, i.e. by tuning the arrivals at effml and assuming
a behavior at each node, so that the tagged flquereences a
“large” end-to-end delay. In such a scenario, wecintraffic from
both the tagged flow and the cross flows, and weapde how the

or not cannot be decideal priori, since it depends on the actualcaF of the tagged flow is transformed at each nbeeause of

numbers (i.e., node rates, flows bursts, etc.).

(22) (1,3)
[[=— !
SR 2 3 |
(29 A
{(13(13} ' -
1 23
{3 (19 (1}
1 23 -

Figure 18 — a three-node nested tandem and rdf&dthnsformations

Hereafter, we report another example for FE, tin trelated to a
non-nested tandem.

Example 5.4

Consider the non-nested tandem of Figure 4. Weydpiplto it, by
extending flow(1,2) , and derive the following delay bound:

If R+p,,<(ROR), then:

S0 g 9313 T 91y
\ _Zizlg +

R

e

ROR

(32)

Otherwise

FIFO multiplexing and aggregate scheduling int@atency ser-
vice curve elements. Thus, we ultimately compute @DF for the
tagged flow at nodeN of the tandem, and compute the lower
bound as the maximum horizontal distance betweerCtF of the
tagged flow at node 1 and the CDF at nddle

The idea of using a lower bound in order to astessightness of a
Network Calculus upper bound under FIFO multipleximas al-
ready been used in [21], in the context of sinlke-tnetworks. Be-
fore introducing the scenario that we use to evelube lower
bound, we need to describe the algorithmic fram&wioat we use
to manipulate CAFs at each node under FIFO mukipte show-
ing how to compute per-flow CDFs.

6.1 An Algorithmic Framework for Network

Calculus with FIFO-multiplexing Nodes

Within the DEBORAH tool, we represent each CAF gseewise
linear function, without any hypothesis on convexitVhile this
allows us to approximate any curve using a suitédnlge amount
of segments, the curves that we will actually useur scenario are
piecewise linear, so their representation is ex@kerefore, each
CAF A, is a list of Qf , breakpoints; each breakpoir is
represented through its Cartesian coordinatdgs anda gap g, ,
i.e. a vertical discontinuity which allows for iastaneous bursts:
B=(t.b.9). A E{Bx, 1< x< q“”} . As the CAFs are wide-
sense increasing, the abscissas of the breakpaiatstrictly in-
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creasing, andb,, =h + g. The number of breakpoints is finite. third operation, i.e. FIFO de-multiplexing, expiihe underlying

This is because, since the worst-case delay stays, fthen it is

achieved for sure in finite time, and thereforecae safely assume node k as part of a FIFO aggregatet >0 D

that the CAF remains constant after the last breakp For in-
stance, an affine CAF with initial burgt and a constant slopg
up to time 7 is represented g40,0,0) (7 pT +0 0} .

The three operations required for computing the @Dfhe tagged
flow at nodeN are:

so as to compute the aggregate CAF.

FIFO hypothesis: more specifically, for all flovx(s j) traversmg

(1) = Ay (x(1).

where x(? sup{rst A(7) = D(t)} . Let B e the rate of
t.t,

Dk(t) in ) If A(1) is contmuous i x(t,) ).x(t,)), call R"
and its rate and that ofr | (t) in that interval. Then, the
rate ofb J in [tl,t is equal toR "“‘ I% OR"/ R . If

instead A‘g(t) has a discontinuity irt due to flow f’s burst, so

1) FIFO multiplexingof several CAFs at the entrance of a nodethat Ak(t‘) =h, and A (}*) =h> thf then all the ftraffic in the
aggregate CDF in (D*) " (b,),( D" (qg belongs to flow f

2) Convolutionbetween the aggregate CAF and a node’s ratghus, if R™ is t

latency service curve, i.e. computation of a loweund for
the aggregate CDF-.

rate of D¥(t) in that interval, the rate of
D (t) in the same interval is equal &

Figure 19
reports a graphic representation of the FIF Llp

g and de-

3) FIFO de-multiplexingof flows at the exit of a node, i.e. com- multiplexing of two CAFs.
putation ofper-flow CDFs from the aggregate CDF. This isTo the best of our knowledge, few other softwam@sdave been

required to take into account flows leaving thediam.
The multiplexing is a summation of CAFs, which sodown to
computing the union of the respective breakpoimsd aumming
their ordinates. The convolution algorithm is expéa in [5],
Chapter 1.3, in its most general form. Our impletaton capital-
izes on the service curve being latency-rate antherCAF being
piecewise linear. In this case, all it takes is paring the slope of
the linear pieces in the CAF against the rate efdérvice curves,
and computing intersections. The resulting CDF ddsfferent set
of breakpoints with respect to the CAF, and tastinuouseven if
the CAF is not, since the service curve is itselfithiuous. The

developed for Network Calculus problems. The DIS&@ulator,
[18], implements some basic Network Calculus opanat on
curves, such as sum, minimum, convolution, decartiaii and
sub-additive closure. However, it assunidisd multiplexing (in-
stead of FIFO). Furthermore, it does not computeF€Orom
CAFs: rather, it computesutput arrival curvesfrom (concave)
input arrival curves. The COINC library [19] implemts basic
(min, +) algebra operations, hence — although naoa itself,
lacking network representation, it can be useduitdba tool. The
RTC [27] and CyNC [28] toolboxes allow one to cortgCDFs
from CAFs through (min,+) convolution. However, fas as we

o
IISA Ak(t) Dk(t)
D" (t,)
8
2
=}
r+r2 s
Dk(tz) 1 2 E‘
D (t,)
Dk (tl) n+ rzl RoU
x(t) x(L)=x(L) x(t) 8 8 to
| FIFO-multiplexing | | FIFO-demultiplexing |
bits A (t)
2 A1) Di(t)
RoulEI
rl r+r out
Z "G
X(t)  x(k)=x(t) x(t) b bt oot

Figure 19 —CAF 1 is multiplexed with CAF 2 at a ®IRode and transformed in the related CDF
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know, they cannot compute LUDBs in FIFO systemsl we are
not aware that they implement demultiplexing ofsoat the out-
put of a FIFO server, which is necessary for owelo bound
analysis.

6.2 Description of the Scenario

The hypotheses based on which we build the lowandscenario
are the same that were proved in [12] to actuadlyresenthe
worst-case scenario for sink-tree tandems. Whils ttoes not
imply that the same holds for generic tandemspitetheless pro-
vides a good motivation. The hypotheses are theviaig:

a) All nodes are lazy. This is not restrictive by Lemf1.

b) The tagged flow(1,N) sends its whole bursz, , at time
t =0 and then stops. Therefore, thxlem) " bit of t?1e tagged
flow experiences a larger delay than the oty ) -1.

c) Every cross ﬂOW(I j) sends “as much traffic as possible”, so

as to delay theg,, ,, " bit of the tagged flow.
We measure the deﬁay experienced by dhlq\l " bit of the tagged
flow under these hypotheses.
Let us take a closer look at hypothesis c) abowdl @*,b* the
time instants when thiirst and thdast bit of the tagged flow arrive
at nodex . For instance, it ia" = b' =0, while a* <b* for x>1,
since all nodes are lazy. Hypothesis c) implies tha

A (0) = A ()=, (b~ 8) (34)
for each flow (i,j) . However, there are infinite CAFs that verify
(34). For instance, one is tigeeedyCAF, A, ()= a ’j)(t— a‘),

while another one |9’3t ()= F(' )( ) . with:
v ot E@t— ‘)+ t<b
Fi (t)= ) (35)
' P [Qb' )+a t=8

which we calldelayed greedCAF, in which the flow sends its
burst g; jUSt beforethe g, ”‘ bit of the tagged flow arrives at
nodei, as shown in Figure 20

A
i 7
" a(”)(t—a)///
(ili) -
-
-
z
r
|
: F(: J)(t)
P -
a bt

Figure 20 - Cumulative arrival functions for flawj)

Under the hypotheses of the system model, if @l@AFs for the

CAFs for each cross-flow entails testing up26 different scenar-
ios, which clearly represents a problem as the munah flows
increases. Devising topological properties thaivalthe number of
scenarios to be reduced is part of the ongoing wisrkhe next
subsection, we assess the tightness of the upperdsofor the
tandems analyzed in Sections 4.1 and 5.

6.3 Assessing the Tightness of the Upper

Bounds

In order to show that, on one hand, FE is effectiveomplement-

ing LUDB, and, on the other hand, that the hewssbehind the

computation of the lower bound are effective, wstfcompute a

lower bound for the tandems shown in the two exaspf Section

5. The results are as follows:;

- Example 5.3:v=0(V,V) in regions I, Il, V. In the above
cases, flow(l,]) can be assumed to be either greedy or de-
layed-greedy indifferently, since =b'=0. In regions llI
and IV itis

v=3Le
- Example 5.4: when (3}) holds, it is always\7. When (33)
holds, instead, it i¥ =V only when R? < R, otherwise it is:

“) + le <D(v v)

g, (o} _
, B+ <p(vV)
R R
RO
R+ 0,4 R+ Py

Wheneverv =V, the WCD is obtained when flow (2,3) is de-
layed greedy (flow (1,2) can be considered eithay,\as speci-
fied before). However, when (33) holds, a greedy-Gévr flow
(2,3) yields the same result.
We then compute the ROB for the nested tandems asethse
studies in Section 4.1, i.e. those having balankedry nesting
trees with a level of nesting equal ko For each value ofk , we
instantiate 5@andems with random nodes and flows parameters (as
described in Section 4.1), we compute the LUDB (ryihg FE),
and report the average and maximum ROB. The reatdtshown
in Table 3 The lower bound, and, accordingly, tHeBRis exact
for the first three set of topologies. When the bemof scenarios
gets too large (as in the last two rows of the allhere it is
64010 and1280106° respectively), DEBORAH can be configured
to select a fixed number of scenarios (which ikpianiformly at
random among all scenarios) so as to keep the catigu time
reasonable. When this happens, the maximum ROBderesti-
mated, and the average ROB is not necessarilytelidhe results
in the last two rows of Table 3. were obtaineditgs64(1F com-
binations.

cross flows are either greedy or delayed greedy) thetotal CAF
and the CAF of the tagged flow at each node areepiese linear.
Furthermore, v is the time instant when the, ,, ™ bit of the
tagged flow leaves nodH .

It turns out that, depending on the values assedtiti the nodes
and flows parameters, using either the greedyedtiayed greedy
CAF for the cross flows actually leads to differelelays, and it is

| | k| max ROB | avg ROB
32 0.474 0.317
412 0.341 0.329
213 0.458 0.245
33| =0261 | 0257(%
52| =0402 | 0.383(%

not always possible to establish which is the Isrdgeeforehand.
For instance, in sink-tree networks the WCD is agbd with de-
layed-greedy arrivals at all flows, although in soocases swapping
a delayed-greedy CAF for a greedy one at some @imssioes not
change the result [12]. Testing bogineedy and delayed greedy

Table 3 — ROB for some nested tandems having bedanesting trees

In all cases, the ROB stays below 0.5, which mélaasthe LUDB
is less than twice the WCD.

We report three more case studies. The first twe retated to
nested tandems, one having one-hop persistenttedfis, and the
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other in asource-treetopology. The last one deals with the mostval curve, witho =5 and p=4. Nodes have a rate-latency ser-
unfavorable non-nested tandem. vice curve, with 8 =1 and R :( N+1- i) Do/U, U ranging
Case study 1 — one-hop persistent cross traffic from 20% to 100%. The LUDB for that tandem can beawkd in a
We analyze a tandem dfl nodes, traversed by the tagged flowclosed form by considering that all fully nesteddams ardree
(LN) and by cross-flows(i,i), 1<i <N, shown in Figure 21. equivalent(see [14]) and using the known formulas for sirdes
We assume that all flows have the same leaky-buakistal curve, [12]. In the above settings, we have:
with =5 and p=4. All nodes have the same rate-latency ser- Ul
vice curve, withd=1 and R=2p/U, U ranging from 20% to V=Ng+
100%. The LUDB expression for that tandem is abddlan a
closed form, and it is equal to (see Theorem 2.ij)f

H

N !

where H, is theN-th harmonic number. Figure 26 shows the ROB
as a function of the number of nodes and for varicalues ofU .
V=N [E€+W [ﬁé)r 1 ﬂ As the figure shows, the ROB increases with However, on one

e 2 2-U hand the ROB values are smaller than in the forragse. On the

Figure 22 shows the ROB as a function of the nurobeodes and Other hand, they peak & =4 and then decrease afterwards.

for various values ofJ . As the figure shows, the ROB increases IN-1) (L2) (L))
with both N and U . However, it tends to reach a limit value as ‘ ‘ T T T

N grows higher. While the exact quota of the ROBetels on the
actual parameter values, the same behavior is alelagerved.

(1,N) = s -
1 2 N-1 N
(1"1) ﬁ 2 T (N-1, N“l) (?‘ N) Figure 23 — A case-study source-tree nested tandem
(1,N) . > 0.25 T ‘ : T T I
1 2 N-1 N o : ‘ : : : o |
Figure 21 — A case-study nested tandem with onegmpgistent cross- ’ i
traffic '3 : : ; L
0.5 | ; 3 proeree b |
0.5 8
24
|
0.4 A
.l <%~ -50% 1 : : | : |
0.3 --m— 100%| | o i i i i i i
@ : ; Lo ; 2 4 6 8 10 12 14 16
o 02 7""":;’?*"""f'f'f"i':'”"”””‘: """"""" %'"”””””'% """"""" ; """""" ] N
7 Figure 24 — ROB in the source-tree case-study tande
R T . 5 R L Note that, in this particular case, FE does noldyay improve-
0 ; i i i ; i ment in the delay bounds. For instance, whe¢r1/N all the
2 4 6 8 10 12 14 16 cross flows can be extended to the last node,\ielding a tandem
_ _ N with only a tagged flow(1,N)=(N[&,Np) and no cross-flows.
Figure 22 — ROB in the nested case-study tandem For this, the LUDB is trivially equal v = N[{6+U [/ p) , and

Note that we can apply FE to the above tandem wher100%. itis V=V sinceH <N.

For instance, whenN =8, U = 20% all the cross flows can be €

extended to the last node, thus yielding a sin&-temdem with a Case study 3 — non-nested tandem

tagged flow (1LN)=(20,20) and cross-flows(i,N)=(o,p), We now analyze a very unfavorable scenario, shawfigure 25,
2<i <8, for which the LUDB can be computed in a closedrfo Where an even number of nodés are traversed by a tagged flow
applying the formula in [12]. As shown in Tabletéjs improves (LN), by all flows (i,i +1), 1<i<N, and by two flows(1,1)

the ROB of about 40%. and (N,N) for symmetry. Computing the LUDB in the latter
requires the maximum possible number of cuts antapalelay
tandem | LUDB | Lower ROB bound computations, i.eN/2. Thus, it is very likely that the
original | 10.111| Bou (1 9.75% LUDB is overrated, all the more ad grows higher. We assume
i ' 8125 ' that all flows have th leaky-bucket arrivave, with o =
with FE | 9.673 5 66% at all flows have the same leaky-bucket arrivave, with 0 =5
Table 4 — ROB for the one-hop persistent nestedetanwith N=8 and and o =4. All nodes have the same rate-latency serviceegurv
U=20% with =1 and R=3p/U, U ranging from 20% to 100%. The
€ recursive LUDB expression for that tandem is thiofang (see
Case study 2 — source tree tandem [14] for the computations):
The case-studyN -node tandem, shown in Figure 23, is traversed & o+og' o+d0
: . v=Y 20+ + , (36)
by the tagged flow(1,N) and by cross-flowg1,i), 1<i<N . We — R R-p

call such a fully-nested tandensaurce-treg¢andem, for symmetry \yjitn:
with the sink-tree case. All flows have the samakyebucket arri-
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o+o +2p0+0' /R
a£=af:a,0if+1=a+p%9+ ' PR[Q !/ )1

f
gl,=a +p020+ L0 2
R-p

Figure 26 shows the ROB as a function of the nurobeodes and

for various values ofJ . As the figure shows, the gap grows with
N and with U . This confirms what already said in Section 5 o

the non tightness of the LUDB in non-nested tandems
€

(4.5)

—1 |

o e

(1‘1) %2‘3)
‘ il 2

®2 (3.4
Figure 25 — A case-study non-nested tandem
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Figure 26 — ROB in the non-nested case-study tandem

Once more, we can apply FE to the above tandem whé?{

U <100%. For instance, whenN =8, U = 20% all the cross

flows (i,i +1) can be extended to the last node. This yieldsagai
sink-tree tandem, with a tagged flof,N) =(37,30) and cross-

flows (i,N)=(o,p), 2<i<8. As shown in Table 5, this im-
proves the ROB of about 85%.

tandem | LUDB | Lower ROB
original | 10.666 Bougcg372 16.78%
with FE | 9.106 ' 2.57%

Table 5 — ROB for the non-nested tandem with N=@ dr20%

€

Within the limits of the analyzed case studies, satonclusive
remarks can be attempted. For nested tandems,Ubdlappears
to be of the same order of magnitude as the WCDadh as N
grows larger, the ROB does not appear to apprdechnity. How-
ever, as the provisioning gets tighter, the unasstaabout the
tightness increases as well. In non-nested tandéresROB ap-
pears to grow faster, confirming the intuition tlead-to-end analy-
sis is necessary to achieve reliable bounds. Athoiti would be
tempting to try to infer general relationships lim the tandem
topology(i.e., the shape of the nesting tree) to the tigbs$ of the
delay bounds in nested tandems, we remark thaightness also

7. Using DEBORAH

In this section we briefly show how to use DEBOR#d analyz-
ing user-defined network topologies. DEBORAH is ameand-
line program written in portable C++, which candmmpiled for a
number of architectures; so far it has been sufidBssun on
Linux, Windows and MacOS X. Its arguments can lessified
into three functional categories: a) specificatioh the tandem
topology; b) indication of the desired computati¢currently

Iﬁl_UDB, lower bound and per-node upper bound); cjvoek provi-

sioning modifiers, e.g. to scale the rates assigadibws or nodes
by a constant factor or to explicitly select theged flow.

The tandem topology is input in a text file (segxl.conf ")
using a straightforward syntax. The file must begith the direc-
tive TANDEM N F , which denotes a tandem witN nodes and
F flows. Next, the service curve of each node isfigoned by
means of aNODEn & R” line, wheren is the node ID from 1 to
N, and 6,R are its latency and the rate respectively. Sityilar
flows are specified usingFLOWi j o p”, where i,j are the
source and sink nodes aralp are the flow's leaky bucket pa-
rameters. The tagged flow is automatically seleetethe one span-
ning the longest segment (usually the whole tandemjt can be
manually specified by usingFLOWnNstead oFLOWN its declara-
tion. Apart from theTANDEMlirective, which is expected to come
first in the file, the other lines can appear istjany order. Lines
beginning with a hash#] character are treated as comments and
ignored.

A tandem configuration file is normally the firsboromand line
argument. If no other arguments are specified, DRBB parses
the topology, performs some sanity checks (e.gclchéhat the
nodes’ rates are sufficient) and prints a repaot. fkested tandems,
instance, it will print the associated nestiinge using a text
notation.

The LUDB and the lower bound are computed by spiegjfthe—
ludb and -lb options after the configuration file name:
JJdeborah ex1.conf —ludb [-Ib] .

Regarding the LUDB, the tool reports detailed infation includ-
ing the numeric value of the optima(llyj) parameters and the sym-
bolic expression of the service curve, and perfowedigures such
as the number of simplexes evaluated and the tot@putation
time. By default, DEBORAH runs the exact LUDB algjom de-
scribed in this paper. The heuristic approximatian be requested
using the—ludb-heuristic k option, wherek is the maxi-
mum number of randomly-selected RSDs used at eadh im the
nesting tree.

When LUDB computation is invoked, the tool firstedks whethter
the tandem is non-nested. In that case, it setattong the tandem
into multiple disjoint sub-tandems. Each comput&CRs reported
in the program output along with the associatedydélound, the
minimum of which is elected as the LUDB. As theical perform-
ance factor here is represented by the possibbe l@umber of
PSCs, the latter can be controlled with thedb-cuts-len L

option, which throws away PSCs exceeding the skbiae by
more thanL cuts. In fact, ad grows larger, a diminishing likeli-
hood of finding good bounds can be observed. Binakr-node

depends on th#lows andnodes'rates (see, for instance, Examplepounds can be computed, usinger-node . The latter can be

5.3 and Example 5.4), so that different ROBs carltitained for
the same topology just by varying the rates.

used as a baseline, as they are generally largelyaied.
For the lower bounds, DEBORAH prints the numbefl@i com-
binations analyzed versus the maximum possiblewels as the
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computation time. Again, the tool provides an optto deal with
performance scalability issues by addirgb-random-combo

p to the command line, which forces the total numifezombina-
tions to be computed to stay belpdo of the theoretical limit.

files, DEBORAH provides means to generate particalasses of
tandems in an analytical way, which can be usefuddnduct sys-
tematic studies. Specifically, it is possible tingete nested to-
pologies whose nesting tree is a balanced treemyforder and
depth, and non-nested tandems populated with amaaybnumber
of flows. For the first case, the syntax ikleborah —gen-

tree O K file.conf
number of children for each nod&),is the tree depth arfde.conf
is the name of the file where the configurationlvbié stored.
Nodes and flows are provisioned according to stemhaariables
which can be controlled using dedicated switches.fon-nested
tandems, commandjen-nnested N F file.conf is used,
whereN is the number of nodes afdis thepercentageof flows
(randomly selected) with respect to a maximunoif N -1)/2.
Finally, loaded configurations can be altered befprocessing
takes place. For instance it is possible to overtlte tagged flow
ID with —tagged N
taneously with-scale-rates Rf Rn
and nodes are multiplied Bf andRnrespectively.

8. CONCLUSIONS

Following our previous work [14], this paper hasli@$sed the prob-
lem of how to practically compute the least uppetag bound
(LUDB) for a flow traversing a FIFO-multiplexingridem, and how
to assess whether the latter is equal to (or,sagardinate, close to)
the actual worst-case delay. As far as the firsblem is concerned,
we have developed a tool which allows both exadt taeuristically
approximated LUDB computation. The exact algoritsolves a
possibly large number of simplexes, doing its besivoid infeasible
ones, while the heuristic algorithm limits the nianbf simplexes to
be solved, trying to pick up those which are mdkcely to yield the
actual LUDB. The latter has been shown to provide/\good ap-
proximations of the LUDB at a small computationastc As far as
tightness is concerned, we have shown that themuletwork Cal-
culus theorems related to FIFO multiplexing are safficient for
computing the worst-case delay in tandem netwoairksfact, the
LUDB itself can sometimes be improved upon, evereary simple
cases. We have shown this introducing a methodledcBlow Ex-
tension — that allows one to compute delay bound&iploiting

(2]

(3]

While it is easy to create and analyze custom tagiet using text [4]

(5]
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10. APPENDIX

We report here the expressions for the LUDB in ttio@-nested
tandem dealt with in Example 5.4 (see [14] for tbenputations).
Delay boundV*® is obtained by using3,4 as a set of cuts, and its
expression is the following.

If R+p,9<FR,
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VA =@ M1+t 142G || g2 e 223U go
2 Eﬁ R EE R R
+UI(?1;) [Ep;f +(1+ ’O(I;3JEE1+ 'O(F?H 38)

2
+ s [E1+p<2v3 AR m] + 2L [E1+ ihdi ﬂz]

R? R R R R

Delay boundV" is instead obtained by using?,4 as a set of
cuts, and its expression is the following.

If RP+p,, <R,

_ Pua) , Pus
vlb_91EE1+ SRR +6°+6°

(39)
+0—(1,2) 14 P + O13 + O(13 1+ Plap + 9 N 9( 23
R R R R R R R
Otherwise,
Puy P P
VO =g 1+ 282 20 14 223 14 g2 4 g3
2 Eﬁ R? R R
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