Exercise 1

A voice codec alternates between two states (*idle* and *talkspurt*). When in *idle* state, it sends one packet after t_i seconds from the last transmission, and when in *talkspurt* it sends a packet after t_t seconds from the last transmission, $t_t < t_i$. The durations of idle and talkspurt states are exponentially distributed, with mean $1/\lambda_t$ and $1/\lambda_t$ respectively.

- 1) Compute the probability that the codec is in the *talkspurt* and *idle* states (assume an infinitely long observation window)
- 2) Compute the mean generation time of packets at the codec
- 3) You observed a sequence of n packets spaced t_t units of time. What is the probability that the codec will output the next packet after t_t more units of time? Draw a graph of the above probability as a function of n

Exercise 2

Consider a system having *K gates*, through which job requests may arrive. Through each gate, job requests arrive exponentially at a rate λ . Arrivals processes at different gates are independent. When there are $j < K$ requests in the system, $j + 1$ gates are open, whereas the others are closed. If there are K or more requests, all the K gates are open. The system has K identical servers, with a serving rate equal to μ .

- 1) Model the above system as a queueing system and draw its CT Markov Chain.
- 2) Compute the steady-state probabilities and state the stability condition
- 3) Compute the state that a random observe is more likely to observe and the mean number of jobs in the system
- 4) Compute the throughput of the system. Compare it to an M/M/1's and discuss the result.
- 5) Compute the probabilities observed by an arriving job request
- 6) Compute the mean response time, the mean waiting time and the mean number of queued jobs.

Exercise 1 - Solution

The codec can be seen as a 2-state Markov Chain, with transition rates λ_i and $\lambda_t.$ Call P_i and P_t the steady-state probabilities of being in the idle and talkspurt states, we readily obtain:

$$
P_i \cdot \lambda_i = P_t \cdot \lambda_t
$$

$$
P_i + P_t = 1
$$

From which we obtain $P_i = \frac{\lambda_t}{\lambda + \lambda_t}$ $\frac{\lambda_t}{\lambda_i + \lambda_t}, P_t = \frac{\lambda_i}{\lambda_i + \lambda_i}$ $\frac{\lambda_i}{\lambda_i + \lambda_t}$.

The mean packet generation time is $E[T] = t_i \cdot P_i + t_t \cdot P_t = t_i \cdot \frac{\lambda_t}{\lambda_{i+1}}$ $\frac{\lambda_t}{\lambda_i + \lambda_t} + t_t \cdot \frac{\lambda_i}{\lambda_i + \lambda_i}$ $\lambda_i + \lambda_t$

The CDF is the one in the figure below.

Call X the duration of a talkspurt period. The last question can be formulated as follows: $P\{X \geq (n+1) \cdot P\}$ t_t | $X \ge n \cdot t_t$ }. Since X is exponential, hence memoryless, this is equal to $P\{X \ge t_t\} = e^{-\lambda_t}$, and it is independent of n . The graph is thus a straight line.

Exercise 2 – solution

The CTMC is the following:

From the above (transitions are nearest-neighbor) one straightforwardly obtains $p_j = \left(\frac{\lambda}{\mu} \right)$ $\left(\frac{\lambda}{\mu}\right)^j \cdot p_0$. Call $\rho = \lambda/\mu$, then the SS probabilities and the stability condition are the same as an M/M/1's, i.e. $p_j =$ $(1 - \rho) \cdot \rho^j$, as long as $\rho < 1$.

The state that a random observer is more likely to observe is therefore state 0. The mean number of jobs in the system is given by the Kleinrock function $E[N] = \frac{\rho}{\rho}$ $\frac{p}{1-\rho}$.

The throughput is

$$
\gamma = \sum_{j=1}^{+\infty} j \cdot \mu_j = \sum_{j=1}^{K} j \cdot \mu \cdot (1 - \rho) \cdot \rho^j + \sum_{j=K+1}^{+\infty} K \cdot \mu \cdot (1 - \rho) \cdot \rho^j
$$

$$
= \mu \cdot (1 - \rho) \sum_{j=1}^{K} j \cdot \rho^j + K \cdot \mu \cdot (1 - \rho) \sum_{j=K+1}^{+\infty} \rho^j
$$

$$
= \mu \cdot (1 - \rho)\rho \frac{1 - (K + 1)\rho^{K} + K\rho^{K+1}}{(1 - \rho)^{2}} + K \cdot \mu \cdot (1 - \rho) \frac{\rho^{K+1}}{1 - \rho}
$$

$$
= \lambda \cdot \frac{1 - (K + 1)\rho^{K} + K\rho^{K+1}}{1 - \rho} + K \cdot \mu \cdot \rho^{K+1}
$$

$$
= \lambda \cdot \left[\frac{1 - \rho^{K} - K\rho^{K}(1 - \rho)}{1 - \rho} + K \cdot \rho^{K} \right]
$$

$$
= \lambda \cdot \frac{1 - \rho^{K}}{1 - \rho}
$$

When $K = 1$, this system is an M/M/1, and from the above expression we have $\gamma = \lambda$. When $K > 1$, the throughput is *larger* than an M/M/1's, since the average arrival rate is larger than λ . Note that we always have $\gamma = \overline{\lambda}$.

The probabilities observed by an arriving job are $r_j=\frac{\lambda_j}{\bar{\lambda}}$ $\frac{\pi_j}{\bar{\lambda}}\cdot p_j.$ Therefore we have:

$$
r_j = \begin{cases} (j+1) \cdot \frac{1-\rho}{1-\rho^K} (1-\rho) \cdot \rho^j & j < K \\ K \cdot \frac{1-\rho}{1-\rho^K} (1-\rho) \cdot \rho^j & j \ge K \end{cases}
$$

The mean response time, by Little's Law, is:

$$
E[R] = \frac{E[N]}{\gamma} = \frac{\rho}{1 - \rho} \cdot \frac{1}{\lambda} \cdot \frac{1 - \rho}{1 - \rho^{K}} = \frac{1}{\mu} \cdot \frac{1}{1 - \rho^{K}}
$$

Moreover, we get:

$$
E[W] = E[R] - E[ts] = \frac{1}{\mu} \cdot \frac{\rho^K}{1 - \rho^K}
$$

And:

$$
E[Nq] = \gamma \cdot E[W] = \frac{1}{\mu} \cdot \frac{\rho^K}{1 - \rho^K} \cdot \lambda \cdot \frac{1 - \rho^K}{1 - \rho} = \frac{\rho^{K+1}}{1 - \rho}
$$