
Performance Evaluation of Computer Systems and Networks, 21/2/24 

Exercise 1 

The power consumed and produced by a power plant can be modelled as – respectively - two continuous 

RVs, 𝑋, 𝑌. Their JPDF is equal to: 

𝑓(𝑥, 𝑦) = {

1

4 ⋅ √𝑥𝑦
0 < 𝑥 < 1, 0 < 𝑦 < 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

1) Compute the PDFs of 𝑋 and 𝑌, and state whether or not they are independent; 

2) Compute 𝐸[𝑋 ⋅ 𝑌] 

3) Compute the distribution of the ratio of produced vs. consumed power; 

4) Compute the probability that the produced power is more than twice the consumed one. 

 

Exercise 2 

Consider a distributed system providing service to a pool of 𝑁 processes. The system has a pool of 𝑀 ≥ 𝑁 

identical peripherals, which are kept idle until some process requests service to them. Every time a process 

issues a service request, a peripheral is activated and dedicated to that process. Service requests are blocking, 

i.e. the same process can only have at most an outstanding request at any time. When the service request is 

fulfilled, the peripheral is returned to the idle pool and the process carries on with its elaborations. Assume 

that a running process issues service requests with an interarrival time which is exponentially distributed, 

and let 𝜆 be its rate. Assume that all processes are independent. Assume that the service time of peripherals 

is exponentially distributed, and let 𝜇 be its rate. Assume 𝜇 ≠ 𝜆 for simplicity. 

1) Model the system and draw its CTMC.  

2) Compute the stability condition and find the steady-state probabilities. 

3) Compute the mean number of blocked processes. 

4) Compute the steady-state probabilities seen by a process issuing a service request. 

5) Compute the CDF of the response time for a process.  
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Exercise 1 - Solution 

1) It is: 

𝑓𝑋(𝑥) = ∫ 𝑓(𝑥, 𝑦)𝑑𝑦
1

0

=
1

4 ⋅ √𝑥
∫ 𝑦−

1
2𝑑𝑦

1

0

=
1

4 ⋅ √𝑥
⋅ 2 ⋅ (1 − 0) =

1

2 ⋅ √𝑥
 

𝑓𝑌(𝑦) = ∫ 𝑓(𝑥, 𝑦)𝑑𝑥
1

0

= ⋯ =
1

2 ⋅ √𝑦
 

The two RVs are independent since 𝑓𝑋(𝑥) ⋅ 𝑓𝑌(𝑦) = 𝑓(𝑥, 𝑦). 

2) From the theory, we know that 

𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸[𝑋 ⋅ 𝑌] − 𝜇𝑋 ⋅ 𝜇𝑌 

However, since the two RVs are independent, it is 𝐶𝑜𝑣(𝑋, 𝑌) = 0, hence 𝐸[𝑋 ⋅ 𝑌] = 𝜇𝑋 ⋅ 𝜇𝑌 = 𝜇𝑋
2  since 

𝜇𝑌 = 𝜇𝑋, by symmetry. 

𝜇𝑋 = ∫ 𝑥 ⋅ 𝑓𝑋(𝑥)𝑑𝑥
1

0

= ∫ 𝑥 ⋅
1

2 ⋅ √𝑥
𝑑𝑥

1

0

= ∫
1

2
⋅ 𝑥

1
2𝑑𝑥

1

0

=
1

2
⋅
2

3
=
1

3
 

Therefore, we have:  

𝐸[𝑋 ⋅ 𝑌] =
1

9
 

3) We need to compute the CDF of RV 𝑍 = 𝑌/𝑋. Since both 𝑋, 𝑌 have support in [0,1], 

the support of 𝑍 𝑖𝑠 [0, +∞]. Moreover 𝐹𝑍(𝑎) = 𝑃{𝑍 ≤ 𝑎} = 𝑃{𝑌 ≤ 𝑎 ⋅ 𝑋}. The latter 

is the integral of  𝑓(𝑥, 𝑦) in the area below the dotted line in the Cartesian plane. 

Depending on whether 𝑎 ≤ 1, 𝑎 ≥ 1, the area is a triangle or a trapezoid, hence 

computations are different.  

𝐹𝑍(𝑎) =

{
 
 

 
 ∫ [∫

1

4 ⋅ √𝑥𝑦

𝑎𝑥

0

𝑑𝑦]
1

0

 𝑑𝑥 =
1

2
√𝑎 𝑎 ≤ 1

1 −∫ [∫
1

4 ⋅ √𝑥𝑦

𝑦
𝑎

0

𝑑𝑥]
1

0

 𝑑𝑦 = 1 −
1

2√𝑎
𝑎 ≥ 1

 

The alert reader can check that 𝐹𝑍(𝑎) verifies all the conditions of a CDF.  

4) The requested probability is 𝑃{𝑌 ≥ 2 ⋅ 𝑋}, i.e. 1 − 𝐹𝑍(2) = 1 − (1 −
1

2√2
) =

1

2√2
.

 

y

x

1

1

a

 

 

Exercise 2 – Solution 

The quicker way. The system is indistinguishable from one where each process has a dedicated peripheral 

(since there are more peripherals than processes). The latter is the juxtaposition of 𝑁 independent and non 

interacting 2-state M/M/1/1 subsystems. Define 𝑢 =
𝜆

𝜇
. The probability that a subsystem like this is empty is 

𝜋0 =
1

(1+𝑢)
, and the probability that it is non empty is 𝜋1 =

𝑢

(1+𝑢)
. Then the probability that a subsystem is 

busy is Bernoullian, hence the requested probabilities 𝑝𝑗   for the whole system can be computed through 

the binomial formula as:  

𝑝𝑗 = (
𝑁
𝑗
) ⋅ 𝜋1

𝑗 ⋅ 𝜋0
𝑁−𝑗 = (

𝑁
𝑗
) ⋅

𝑢𝑗

(1+𝑢)𝑁
, 
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And the mean value is  𝐸[𝑛] = 𝑁 ⋅ 𝜋1 = 𝑁 ⋅
𝑢

(1+𝑢)
. The system is always stable, since the population is finite. 

Moreover, there is never any queueing, hence the response time is equal to the service time: 𝐹𝑅(𝑡) = 1 −

𝑒−𝜇⋅𝑡. Therefore, the only thing that you need to compute from scratch is the requirement for point 4. 

The longer way.  

1) The system is a finite-population one. The service rate increases based on the number of jobs in the system, 

and there is never any queueing (an idle server is always available for an incoming job request).  

0 1 N-1 .2

m 2m 3m (N-1)m Nm

N

 

This allows one to answer point 5 immediately: the distribution of the response time is the distribution of 

the service time, i.e. 𝐹𝑅(𝑡) = 1 − 𝑒
−𝜇⋅𝑡  

2) The system is always stable, since there is never any queueing and the number of states is finite. The SS 

probabilities can be easily found by observing that the CTMC diagram has only nearest-neighbor transitions: 

𝑝𝑗 =
𝑝0 ⋅ (

𝑁!
(𝑁 − 𝑗)!

⋅ 𝜆𝑗)

(𝜇𝑗𝑗!)
= (

𝑁
𝑗
) ⋅ 𝑢𝑗 ⋅ 𝑝0 

This said, normalization reads:  

∑𝑝𝑗

𝑁

𝑗=0

= 𝑝0 ⋅∑(
𝑁
𝑗
)𝑢𝑗

𝑁

𝑗=0

= 𝑝0 ⋅ (1 + 𝑢)
𝑁 = 1 

hence  

𝑝𝑗 = (
𝑁
𝑗
) ⋅

𝑢𝑗

(1 + 𝑢)𝑁
,    0 ≤ 𝑗 ≤ 𝑁 

3) The mean number of blocked processes is: 

𝐸[𝑛] =∑𝑗 ⋅ (
𝑁
𝑗
)

𝑢𝑗

(1 + 𝑢)𝑁

𝑁

𝑗=0

= 𝑁 ⋅∑(
𝑁 − 1
𝑗 − 1

)
𝑢𝑗

(1 + 𝑢)𝑁

𝑁

𝑗=1

= 𝑁 ⋅
𝑢

1 + 𝑢
 

4) The system is non-PASTA, since the arrival rates are not constant. It is:  

𝜆 =∑𝜆𝑗 ⋅ 𝑝𝑗

𝑁

𝑗=0

=∑(𝑁 − 𝑗) ⋅ 𝜆 ⋅ 𝑝𝑗

𝑁

𝑗=0

= [𝑁 ⋅ 𝜆 ⋅∑𝑝𝑗

𝑁

𝑗=0

− 𝜆 ⋅∑𝑗 ⋅ 𝑝𝑗

𝑁

𝑗=0

] = 𝜆 ⋅ [𝑁 − 𝐸[𝑛]] 

Therefore, we have: 

𝑟𝑗 =
(𝑁 − 𝑗) ⋅ 𝜆

𝜆 ⋅ [𝑁 − 𝐸[𝑛]]
⋅ 𝑝𝑗 =

𝑁 − 𝑗

𝑁 − 𝐸[𝑛]
⋅ 𝑝𝑗 = [. . . ] = (

𝑁 − 1
𝑗

) ⋅
𝑢𝑗

(1 + 𝑢)𝑁−1
,    0 ≤ 𝑗 ≤ 𝑁 − 1 

  

  5) See point 1. 

 


