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Exercise 1 

A box contains a number of coins. Of these, some (a fraction 𝛼 ≤ 1) are fair, whereas for the 

remaining ones the probability of heads is 𝑝 ≠ 1/2. 

Assume you pick a coin at random from the box, and you flip it 100 times.  

1) What is the probability that the first flip yields heads? 

2) Let 𝑋 be a RV that counts the total number of heads in 100 flips. What is its PMF? 

3) Compute 𝐸[𝑋].  
4) Compute 𝛼 as a function of 𝑝 when 𝐸[𝑋] = 25. Discuss your findings. 

5) Assume you obtain 50 heads in 100 flips. Compute the probability that your coin is a fair one.  

 

 

Exercise 2 

The output interface of a network router serves packets at a constant speed. Packets have a 

transmission time which is exponentially distributed, with a rate 𝜇. Packets arrive at the interface with 

exponential interarrival times. However, the rate of arrivals depends on the number of packets already 

in the system, with the following law: 

𝜆𝑛 = {

𝑁 − 𝑛

𝑁 ⋅ (𝑛 + 1)
𝑛 < 𝑁

0 𝑛 ≥ 𝑁

 

1) Model the system and draw its CTMC 

2) Compute the stability condition and the steady-state probabilities [suggestion: spend a little 

time tweaking the SSPs, it will pay off later on] 

3) Compute the SS probabilities seen by an arriving packet 

4) Compute the throughput 

5) Compute the mean number of packets at the interface and the mean response time of the latter. 

 

Some formulas you may find useful: 

 

• 𝑘 (
𝑁
𝑘

) = 𝑁 (
𝑁 − 1
𝑘 − 1

) 

 

• (
𝑁 − 𝑗
𝑗 + 1

) (
𝑁
𝑗

) = (
𝑁

𝑗 + 1
) 

 

• ∑ (
𝑁
𝑘

) ⋅
1

𝑥𝑘 = (1 +
1

𝑥
)

𝑁
𝑁
𝑘=0  

  



PECSN, 17/01/24 

Exercise 1 – solution 

1) According to the law of total probability, we have: 

𝑃{ℎ𝑒𝑎𝑑𝑠} = 𝑃{ℎ𝑒𝑎𝑑𝑠|𝑓𝑎𝑖𝑟} ⋅ 𝑃{𝑓𝑎𝑖𝑟} + 𝑃{ℎ𝑒𝑎𝑑𝑠|𝑢𝑛𝑓𝑎𝑖𝑟} ⋅ 𝑃{𝑢𝑛𝑓𝑎𝑖𝑟} =
1

2
⋅ 𝛼 + 𝑝 ⋅ (1 − 𝛼) 

 

2) By the same token,  

𝑝𝑘 = 𝑃{𝑋 = 𝑘} = 𝑃{𝑋 = 𝑘|𝑓𝑎𝑖𝑟} ⋅ 𝑃{𝑓𝑎𝑖𝑟} + 𝑃{𝑋 = 𝑘|𝑢𝑛𝑓𝑎𝑖𝑟} ⋅ 𝑃{𝑢𝑛𝑓𝑎𝑖𝑟}

= (
100

𝑘
) (

1

2
)

𝑘

(
1

2
)

100−𝑘

⋅ 𝛼 + (
100

𝑘
) 𝑝𝑘 ⋅ (1 − 𝑝)100−𝑘 ⋅ (1 − 𝛼)

= (
100

𝑘
) [(

1

2100
) ⋅ 𝛼 + 𝑝𝑘 ⋅ (1 − 𝑝)100−𝑘 ⋅ (1 − 𝛼)] 

 

3) 𝐸[𝑋] = ∑ 𝑘 ⋅ 𝑝𝑘
100
𝑘=0 =  ∑ 𝑘 ⋅ [𝑃{𝑋 = 𝑘|𝑓𝑎𝑖𝑟} ⋅ 𝑃{𝑓𝑎𝑖𝑟} + 𝑃{𝑋 = 𝑘|𝑢𝑛𝑓𝑎𝑖𝑟} ⋅ 𝑃{𝑢𝑛𝑓𝑎𝑖𝑟}]100

𝑘=0  

Therefore,  

𝐸[𝑋] = 𝛼 ⋅ 100 ⋅
1

2
+ (1 − 𝛼) ⋅ 100 ⋅ 𝑝 = 100 [𝛼 ⋅ (

1

2
− 𝑝) + 𝑝] 

4) From the above, we have: 

100 [𝛼 ⋅ (
1

2
− 𝑝) + 𝑝] = 25 

i.e.,  

𝛼 =
1 − 4𝑝

2 − 4𝑝
 

Since 𝛼, 𝑝 ∈ [0; 1], the above has solutions only when 𝑝 ∈ [0;
1

4
], which makes sense (you cannot 

have 𝐸[𝑋] = 25 if all your coins have 𝑝 >
1

4
). When 𝑝 ∈ [0;

1

4
], 𝛼 is decreasing. When 𝑝 = 0 it is 

𝛼 =
1

2
, which is intuitively correct, and when  𝑝 =

1

4
 it is 𝛼 = 0, which is also intuitively correct.  

5) By Bayes’ theorem: 

𝑃{𝑓𝑎𝑖𝑟|𝑋 = 50} =
𝑃{𝑋 = 50|𝑓𝑎𝑖𝑟} ⋅ 𝑃{𝑓𝑎𝑖𝑟}

𝑃{𝑋 = 50}
 

(
100
50

) [(
1

2100) ⋅ 𝛼]

(
100
50

) [(
1

2100) ⋅ 𝛼 + 𝑝50 ⋅ (1 − 𝑝)50 ⋅ (1 − 𝛼)]
=

(
1

2100) ⋅ 𝛼

(
1

2100) ⋅ 𝛼 + 𝑝50 ⋅ (1 − 𝑝)50 ⋅ (1 − 𝛼)

=
1

1 + [4𝑝(1 − 𝑝)]50 ⋅
1 − 𝛼

𝛼

 

The above probability is significantly different from 1 only when the second addendum at the 

denominator is nonnegligible, which happens if 𝑝 ≅
1

2
 or 𝛼 ≅ 0. This matches intuition. 
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Exercise 2 – solution 

The CTMC is the following: 

0 1 N-1  2

m m m m m

3 N

 
The system is stable, since it has a finite number of states. 

Since the transitions are nearest-neighbor, we can write the usual equation that connects 𝑝𝑘 to 𝑝0: 

𝑝𝑘 = ∏
𝜆𝑗

𝜇𝑗+1

𝑘−1

𝑗=0
⋅ 𝑝0 =

1

𝜇𝑘
⋅ ∏

𝑁 − 𝑗

𝑁 ⋅ (𝑗 + 1)

𝑘−1

𝑗=0
⋅ 𝑝0 = (

𝑁
𝑘

) ⋅
1

(𝑁𝜇)𝑘
⋅ 𝑝0  

 

Which holds for 0 ≤ 𝑘 ≤ 𝑁. Therefore, we can write normalization as follows: 

∑ (
𝑁
𝑘

) ⋅
1

(𝑁𝜇)𝑘
⋅ 𝑝0

𝑁

𝑘=0

= 1 

With the help of one of the suggested formulas, we obtain: 

𝑝0 =
1

(1 +
1

𝑁𝜇)
𝑁 

Therefore, we have:  

𝑝𝑘 = (
𝑁
𝑘

) ⋅
1

(𝑁𝜇)𝑘
⋅

1

(1 +
1

𝑁𝜇)
𝑁 = (

𝑁
𝑘

) ⋅ (
1

𝑁𝜇
)

𝑘

⋅ (
𝑁𝜇

1 + 𝑁𝜇
)

𝑁

= (
𝑁
𝑘

) ⋅ (
1

𝑁𝜇
)

𝑘

⋅ (
𝑁𝜇

1 + 𝑁𝜇
)

𝑁−𝑘

⋅ (
𝑁𝜇

1 + 𝑁𝜇
)

𝑘

= (
𝑁
𝑘

) ⋅ (
1

1 + 𝑁𝜇
)

𝑘

⋅ (
𝑁𝜇

1 + 𝑁𝜇
)

𝑁−𝑘

 

 

Calling 𝛼 =
1

1+𝑁𝜇
, we have 𝑝𝑘 = (

𝑁
𝑘

) 𝛼𝑘 ⋅ (1 − 𝛼)𝑁−𝑘. 

 

This system is non-PASTA. Therefore, we expect 𝑟𝑘 ≠ 𝑝𝑘. It is, in fact, 𝑟𝑘 =
𝜆𝑘

𝜆̅
⋅ 𝑝𝑘. Computing 𝜆̅ is 

tedious, unless one observes that 𝜆̅ = 𝛾 = 𝜇(1 − 𝑝0). Given the above, we have: 

𝑟𝑘 =
𝑁 − 𝑘

𝑁 ⋅ (𝑘 + 1)
⋅

1

𝜇(1 − 𝑝0)
⋅ 𝑝𝑘 =

𝑁 − 𝑘

𝑁 ⋅ (𝑘 + 1)
⋅

1

𝜇(1 − (1 − 𝛼)𝑁)
⋅ (

𝑁
𝑘

) 𝛼𝑘 ⋅ (1 − 𝛼)𝑁−𝑘

=
1

𝑁𝜇
⋅ (

𝑁
𝑘 + 1

) 𝛼𝑘 ⋅ (1 − 𝛼)𝑁−𝑘 ⋅
1

(1 − (1 − 𝛼)𝑁)
 

 

Moreover, we have: 𝛾 = 𝜇(1 − (1 − 𝛼)𝑁) 

 

The mean number of packets at the interface is the mean of a binomial distribution with a probability 

of success equal to 𝛼, i.e.  

𝐸[𝑁] = 𝑁 ⋅ 𝛼 =
𝑁

1 + 𝑁𝜇
=

1 − 𝛼

𝜇
 

By Little’s Law, we get that 

𝐸[𝑅] =
𝐸[𝑁]

𝛾
=

1 − 𝛼

𝜇
⋅

1

𝜇(1 − (1 − 𝛼)𝑁)
=

1 − 𝛼

𝜇2(1 − (1 − 𝛼)𝑁)
 

 


