Exercise 1

Let $X_{j}, j=1,2, \ldots$ be IID RVs, with $E\left[X_{j}\right]=0$ and $\operatorname{Var}\left(X_{j}\right)=2$;

1) Assume that X_{j} can only take two values, call them a, b. Find $a \cdot b$. Assume then that the two values are equally likely, and find both a and b;
2) Assume instead that X_{j} has the following PDF: $f(x)=C \cdot e^{-\lambda|x|}$. Compute C and λ;
3) Estimate $P\left\{\sum_{j=1}^{100} X_{j}>10\right\}$ in both cases 1) and 2);
4) Assuming that X_{j} can only take two equally likely values, compute $P\left\{X_{1}+X_{2}=0\right\}$. Generalize the above formula to $P\left\{\sum_{j=1}^{2 n} X_{j}=0\right\}$, for any positive n;
5) Still in the hypotheses of point 4), find the PMF of $S_{n}=\sum_{j=1}^{2 n} X_{j}$.

Exercise 2

In a publish-subscribe system, subscribers issue subscribe requests to a publisher, and then wait for the corresponding notification. Subscribe requests arrive at exponential interarrival times with a rate λ. The publisher publishes notifications with a rate μ. All waiting subscribers receive a notification simultaneously, they all leave the system and they have to subscribe again to receive another notification.

1) Draw the CTMC;
2) Find the global equilibrium equations;
3) Compute the conditions according to which the number of waiting requests stays finite, and the PMF of the number of subscribe requests waiting;
4) Find the mean response time for a subscriber;
5) Compute the throughput, i.e., the number of subscribers notified per unit of time.

Exercise 1 - solution

1) The values must satisfy two constraints, one for the mean and one for the variance. Let p be the probability of value a. These constraints are:

$$
\left\{\begin{array}{l}
a \cdot p+b \cdot(1-p)=0 \\
a^{2} \cdot p+b^{2} \cdot(1-p)=2
\end{array}\right.
$$

From the above equations, we easily obtain $a \cdot b=-2$. If the two values are equally likely, it must be $b=$ $-a$, hence $a=\sqrt{2}$.
2) We need to impose that $\int_{-\infty}^{+\infty} f(x)=1$. Since the PDF is symmetric around 0 , we have $2 C$. $\int_{0}^{+\infty} e^{-\lambda \cdot x}=1$, hence $\frac{2 C}{\lambda}=1$, hence $C=\frac{\lambda}{2}$. Moreover, we have $\operatorname{Var}\left(X_{j}\right)=E\left[X_{j}{ }^{2}\right]-E\left[X_{j}\right]^{2}=E\left[X_{j}{ }^{2}\right]=$ $\int_{-\infty}^{+\infty} x^{2} f(x)=2$. From this we derive $\int_{-\infty}^{+\infty} \frac{\lambda}{2} x^{2} e^{-\lambda \cdot|x|} d x=2 \int_{0}^{+\infty} \frac{\lambda}{2} x^{2} e^{-\lambda \cdot x} d x=2$. However, the latter is the expression of the mean square value of an exponential $R V$ with a rate λ. For the latter (call it Y), we know that $E\left[Y^{2}\right]=\operatorname{Var}(Y)+E[Y]^{2}=\frac{1}{\lambda^{2}}+\left(\frac{1}{\lambda}\right)^{2}=\frac{2}{\lambda^{2}}$. Hence, we have $\frac{2}{\lambda^{2}}=2$, or $\lambda=1$ (λ must in fact be positive), and $C=\frac{1}{2}$.
3) The result is given by the CLT: RV $Y=\sum_{j=1}^{100} X_{j}$ is approximately Normal, with a null mean and a variance 200 (for both cases 1) and 2), since the CLT requires only that the variance is finite). Therefore, it is: $P\{Y>10\}=P\left\{\frac{Y-0}{\sqrt{200}}>\frac{10-0}{10 \sqrt{2}}\right\}=P\left\{Z>\frac{1}{\sqrt{2}}\right\}=1-\Phi\left(\frac{1}{\sqrt{2}}\right) \simeq 0.239$.
4) It is $P\left\{X_{1}+X_{2}=0\right\}=P\left\{X_{1}=a, X_{2}=-a\right\}+P\left\{X_{1}=-a, X_{2}=+a\right\}=\frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{2}$. Moreover, the sum of $2 n \mathrm{RV}$ s is null if half of them are equal to $-a$, and the other half to $+a$. Each combination of "half and half" has a probability $\frac{1}{2^{2 n}}$, and there are $\binom{2 n}{n}$ such combinations, so the result is $P\left\{\sum_{j=1}^{2 n} X_{j}=0\right\}=$ $\binom{2 n}{n} \frac{1}{2^{2 n}}$.
5) $\operatorname{RV} S_{n}=\sum_{j=1}^{2 n} X_{j}$ can take on values $-2 n \cdot a,-2(n-1) \cdot a, \ldots, 0, \ldots,+2(n-1) \cdot a,+2 n \cdot a$, i.e. $\{2 a \cdot j,-n \leq j \leq+n\}$, and its PMF is obviously symmetric. Each of the above values $2 a \cdot j$ can be obtained by selecting $n-j$ "positives" and $n+j$ "negatives", which can happen in $\binom{2 n}{n-j}=\binom{2 n}{n+j}$ different ways, each with probability $\frac{1}{2^{2 n}}$. Therefore, the PMF is $p_{n}(2 \cdot a \cdot j)=\binom{2 n}{n-j} \cdot \frac{1}{2^{2 n}},-n \leq j \leq+n$.

Exercise 2 - solution

The CTMC is the following:

Where each state represents the number of requests waiting.
2) The global equilibrium equations are:

$$
\left\{\begin{array}{l}
p_{0} \cdot \lambda=\sum_{i=1}^{+\infty} p_{i} \cdot \mu \\
p_{j} \cdot(\lambda+\mu)=p_{j-1} \cdot \lambda \quad j \geq 1
\end{array}\right.
$$

From the second one we easily obtain $p_{j}=p_{0} \cdot \frac{\lambda^{j}}{(\lambda+\mu)^{j}}$.
From the above, normalization reads: $p_{0} \cdot\left[1+\sum_{j=1}^{+\infty} \frac{\lambda^{j}}{(\lambda+\mu)^{j}}\right]=1$.
3) Call $\theta=\frac{\lambda}{\lambda+\mu}$, If $\mu \neq 0$ it is $\theta<1$, hence the above sum converges to $\sum_{j=1}^{+\infty} \theta^{j}=\frac{\theta}{1-\theta}=\frac{\frac{\lambda}{\lambda+\mu}}{1-\frac{\lambda}{\lambda+\mu}}=\frac{\lambda}{\mu}$. Therefore, the stability condition is $\mu \neq 0$.

We have $p_{0}=\frac{\mu}{\lambda+\mu^{\prime}}, p_{j}=p_{0} \cdot\left(\frac{\lambda}{\lambda+\mu}\right)^{j}=\frac{\mu}{\lambda} \cdot\left(\frac{\lambda}{\lambda+\mu}\right)^{j+1}$. Hence, $p_{j}=\frac{\mu}{\lambda} \cdot\left(\frac{\lambda}{\lambda+\mu}\right)^{j+1}, j \geq 0$.
Therefore, we have $P(z)=\sum_{j=0}^{+\infty} p_{j} \cdot z^{j}=\frac{\mu}{\lambda+\mu} \cdot \sum_{j=0}^{+\infty}\left(\frac{\lambda \cdot z}{\lambda+\mu}\right)^{j}=\frac{\mu}{\lambda(1-z)+\mu}$. From the latter, we get: $P^{\prime}(z)=\frac{\partial}{\partial z} \frac{\mu}{\lambda(1-z)+\mu}=\frac{\lambda \cdot \mu}{[\lambda(1-z)+\mu]^{2}}$, and it is: $E[N]=P^{\prime}(1)=\frac{\lambda}{\mu}$.
4) The mean response time is the mean service time (all requests are served simultaneously), i.e. $E[R]=\frac{1}{\mu}$.
5) The throughput is $\mu \cdot E[N]=\mu \cdot \frac{\lambda}{\mu}=\lambda$ (which is obvious, given that the system is stable).

