Exercise 1

Consider an unfair die, where the probability of obtaining 6 is $p \neq \frac{1}{6}$. The die is thrown several times. Call T the RV that counts the number of throws before a 6 appears for the first time, and assume that $E[T]=3$.

1) Find the distribution of T and compute $P\left\{-\frac{1}{3} \leq T \leq \sqrt{11}\right\}$.
2) Let T_{1}, T_{2} be two IID RVs having the same distribution as T. Find the PMF of $Z=\min \left(T_{1}, T_{2}\right)$. Explain your findings.
3) Compute the $95^{\text {th }}$ percentile of Z and $\operatorname{Var}\left(\frac{25}{9} Z-\sqrt{6}\right)$.

Exercise 2

Consider an operating system where N tasks may issue a blocking request to a server. When all the tasks are blocked, the server unblocks a random number of them simultaneously, which then resume their operation. The other tasks remain blocked until the next service epoch. Each unblocked task issues blocking requests at a rate λ, and the service rate of the server is equal to μ. Call π_{n} the probability of unblocking n tasks.

1) Draw the CTMC
2) Compute the stability condition and the steady-state probabilities Assuming from now on that $\pi_{n}=$ const,
3) Specialize the SS probabilities
4) Find the condition under which the PMF of the SS probabilities is a monotonic sequence.
5) Compute the SS probabilities seen by a blocking task.

Exercise 1 - solution

1) Quite obviously T is a geometric RV. Since $E(T)=\frac{1-p}{p}=3$. Therefore, it is $p=\frac{1}{4}$. For a geometric RV , we have $F_{T}(k)=1-(1-p)^{k+1}$. This means that $P\left\{-\frac{1}{3} \leq T \leq \sqrt{11}\right\}=\sum_{j=0}^{3} P\{T=j\}=F_{T}(3)=1-$ $(1-p)^{4}=\frac{175}{256}$.
2) We have:

$$
\begin{aligned}
P\{Z>k\} & =P\left\{T_{1}>k, T_{2}>k\right\} \\
& =P\left\{T_{1}>k\right\} \cdot P\left\{T_{2}>k\right\} \\
& =\left(1-F_{T}(k)\right)^{2} \\
& =(1-p)^{2 \cdot(k+1)}
\end{aligned}
$$

Therefore, it is $F_{Z}(k)=1-(1-p)^{2 \cdot(k+1)}=F_{T}(2 k)$. From the latter, we obtain:

$$
\begin{aligned}
p_{Z}(k) & =F_{Z}(k)-F_{Z}(k-1) \\
& =\left[1-(1-p)^{2 \cdot(k+1)}\right]-\left[1-(1-p)^{2 k}\right] \\
& =(1-p)^{2 k}\left[1-(1-p)^{2 \cdot}\right]
\end{aligned}
$$

Call $q=(1-p)^{2}$, and the latter becomes $p_{Z}(k)=q^{k}(1-q)$, which is again a geometric RV , with a success probability equal to $1-q=1-(1-p)^{2}$.

Like with exponential RVs (of which the geometric are the discrete counterparts), a minimum property can be formulated: the min of 2 IID geometric RVs is itself a geometric RV, whose success probability is $1-$ $(1-p)^{2 \cdot}$, i.e. the complement of the probability that both trials will fail.
3) The $95^{\text {th }}$ percentile of Z is obtained by solving the following equation $F_{Z}(k)=0.95$ for k :

$$
\begin{aligned}
F_{Z}(k) & =0.95 \\
1-(1-p)^{2 \cdot(k+1)} & =0.95 \\
\left(\frac{3}{4}\right)^{2 \cdot(k+1)} & =\frac{1}{20}
\end{aligned}
$$

$$
2(k+1) \cdot[\log (3)-\log (4)]=-\log 20
$$

$$
k=\left\lceil\frac{1+\log (2)}{2[\log (4)-\log (3)]}\right\rceil-1=5
$$

Moreover, it is:

$$
\begin{aligned}
\operatorname{Var}\left(\frac{25}{9} Z-\sqrt{6}\right) & =\left(\frac{25}{9}\right)^{2} \operatorname{Var}(Z) \\
& =\left(\frac{25}{9}\right)^{2} \cdot \frac{1-\left[1-q^{2 \cdot}\right]}{\left[1-q^{2 \cdot}\right]^{2}}, \\
& =\frac{25^{2}}{81} \cdot \frac{81}{256} \cdot \frac{256^{2}}{25^{2} \cdot 7^{2}} \\
& =\frac{256}{49}
\end{aligned}
$$

Exercise 2 - Solution

Note that the system has a finite capacity, hence it is always stable.
2) The steady-state global equations are the following:
$P_{0} \cdot N \cdot \lambda=P_{N} \cdot \pi_{N} \cdot \mu$,
$P_{j} \cdot(N-j) \cdot \lambda=P_{j-1} \cdot(N-(j-1)) \cdot \lambda+P_{N} \cdot \pi_{N-j} \cdot \mu, \quad 1 \leq j \leq \mathrm{N}-1$
$P_{N} \cdot \mu=P_{N-1} \cdot \lambda$.
After a few algebraic manipulations, the following recurrence can be easily obtained:

$$
P_{j}=P_{0} \cdot \frac{N}{N-j} \cdot \sum_{i=0}^{j} \frac{\pi_{N-i}}{\pi_{N}}
$$

With $0 \leq j \leq \mathrm{N}-1$, and

$$
P_{N}=P_{0} \cdot \frac{N \cdot \lambda}{\mu \cdot \pi_{N}}
$$

From the above we obtain the following normalization condition:

$$
P_{0} \cdot\left(\frac{N \cdot \lambda}{\mu \cdot \pi_{N}}+\sum_{j=0}^{N-1}\left[\frac{N}{N-j} \cdot \sum_{i=0}^{j} \frac{\pi_{N-i}}{\pi_{N}}\right]\right)=1
$$

From which we obtain the SS probabilities:

$$
\begin{aligned}
P_{j} & =\frac{\frac{1}{N-j} \cdot \sum_{i=0}^{j} \frac{\pi_{N-i}}{\pi_{N}}}{\frac{\lambda}{\mu \cdot \pi_{N}}+\sum_{k=0}^{N-1}\left[\frac{1}{N-k} \cdot \sum_{i=0}^{k} \frac{\pi_{N-i}}{\pi_{N}}\right]} \\
P_{N}= & \frac{\lambda}{\frac{\lambda}{\mu \cdot \pi_{N}}+\sum_{k=0}^{N-1}\left[\frac{1}{N-k} \cdot \sum_{i=0}^{k} \frac{\pi_{N-i}}{\pi_{N}}\right]}
\end{aligned}
$$

3) If $\pi_{n}=$ const it is $\pi_{n}=1 / N$, hence the above SS probabilities become:

$$
P_{j}=\frac{\frac{j+1}{N-j}}{\frac{N \lambda}{\mu}+\sum_{k=0}^{N-1} \frac{k+1}{N-k}}, P_{N}=\frac{\frac{\lambda}{\mu \cdot \pi_{N}}}{\frac{N \lambda}{\mu}+\sum_{k=0}^{N-1} \frac{k+1}{N-k}}
$$

Considering that $\sum_{k=0}^{N-1} \frac{k+1}{N-k}=\sum_{n=1}^{N} \frac{N-n+1}{n}=\sum_{n=1}^{N}\left(\frac{N+1}{n}-1\right)=(N+1) H_{N}-N$, we obtain:

$$
P_{j}=\frac{\frac{j+1}{N-j}}{(N+1) H_{N}+N\left(\frac{\lambda}{\mu}-1\right)}, P_{N}=\frac{\frac{N \lambda}{\mu}}{(N+1) H_{N}+N\left(\frac{\lambda}{\mu}-1\right)}
$$

Where H_{N} is the N-th harmonic number.
4) Let us check that $P_{j}<P_{j+1}$. In fact, $\frac{P_{j+1}}{P_{j}}=\frac{j+2}{N-j-1-} \frac{N-j}{j+1}>1$. Moreover, it is $P_{N-1}<P_{N}$ if

$$
\frac{(N-1)+1}{N-(N-1)}<\frac{N \lambda}{\mu}
$$

i.e., if $\lambda>\mu$. Therefore, under the above condition the PMF of the SS probabilities is an increasing sequence.
5) The system is non PASTA, hence:

$$
r_{j}=\frac{\lambda_{j} P_{j}}{\sum_{i=0}^{N} \lambda_{i} P_{i}}=\frac{(N-j) P_{j}}{\sum_{i=0}^{N-1}(N-i) P_{i}}=\frac{j+1}{\sum_{i=1}^{N} i}=2 \frac{j+1}{N \cdot(N+1)}
$$

With $0 \leq j \leq N-1$.

