PECSN - 14/06/23

Exercise 1

Consider the following function:

$$
f(x)=\left\{\begin{array}{cc}
0 & x<1 \\
\alpha \cdot x^{-(\alpha+1)} & x \geq 1
\end{array}\right.
$$

With α being an integer.

1) State the conditions under which $f(x)$ is a PDF;
2) Compute the CDF and the mean.

Let X be a RV distributed according to the above PDF.
3) Compute the PDF for $\mathrm{RV} Y=\log (X)$;
4) Assume that RVs $X_{1}, X_{2}, \ldots, X_{n}$ are IID according to $F_{X}(x)$ computed at point 2 . Compute the CDF for $W=\max _{i}\left\{1 / X_{i}\right\}$. Discuss the behavior of the CDF as a function of n.

Exercise 2

SpeedyMatch is a blind speed-dating agency that arranges dates between strangers of opposite sexes. A male that wants to use their services shows up at their premises, and:

- If there are already females at the premises, he picks up the longest-waiting one and they leave (instantly);
- Otherwise, he queues up (FIFO) behind other males.

Dually, a female that wants to use SpeedyMatch shows up at their premises, and:

- If there are already males at the premises, she picks up the longest-waiting one and they leave (instantly);
- Otherwise, she queues up (FIFO) behind other females.

Speedymatch has K seats available for queueing at its premises, and it does not let customers queue up if they cannot seat. Males and females arrive with exponential interarrival times, at a rate λ_{M} and λ_{F} respectively.

1) Model the system as a queueing system and draw a CTMC;
2) Write down the local equilibrium equations and find the stability condition and the SS probabilities;
3) Find the probability that a customer is rejected;
4) Find the mean response time for a female customer (assuming $\lambda_{M}=\lambda_{F}$). Verify your answer in the limit case $K=1$ and explain the result.

Exercise 1 - Solution

$f(x)$ is a PDF if it is always non-negative and normalization holds. The first condition is verified if $\alpha \geq 0$. The second is verified if:

$$
\int_{1}^{+\infty} \alpha \cdot x^{-(\alpha+1)} d x=1
$$

The above integral converges if and only if $\alpha \geq 1$, which is therefore the required condition. Under the latter hypothesis, we have:

$$
F(x)=\int_{1}^{x} \alpha \cdot y^{-(\alpha+1)} d x\left[-y^{-\alpha}\right]_{1}^{x}=1-\frac{1}{x^{\alpha}}
$$

The mean value is:

$$
E[x]=\int_{1}^{+\infty} x \cdot \alpha \cdot x^{-(\alpha+1)} d x=\int_{1}^{+\infty} \alpha \cdot x^{-\alpha} d x
$$

The above integral is infinite unless $\alpha \geq 2$. Under the latter hypothesis, we have:

$$
\begin{gathered}
E[x]=\frac{\alpha}{\alpha-1} \cdot\left[-x^{-(\alpha-1)}\right]_{1}^{+\infty}=\frac{\alpha}{\alpha-1} \\
F_{Y}(y)=P\{Y \leq y\}=P\{\log (X) \leq y\}=P\left\{\mathrm{X} \leq e^{y}\right\}=1-\frac{1}{\left(e^{y}\right)^{\alpha}}=1-e^{-\alpha y}
\end{gathered}
$$

And, since $X \geq 1$, then $Y \geq 0$. Therefore, it is $f_{Y}(y)=\alpha \cdot e^{-\alpha y}$.
Call $Z=1 / X_{i}$. We have:
$F_{Z}(z)=P\{Z \leq z\}=P\{\mathrm{X}>1 / z\}=1-F_{X}(1 / z)=z^{\alpha}$.
And, since $X \geq 1$, then $0 \leq Z \leq 1$.
Now, it is:

$$
F_{W}(w)=P\left\{Z_{1} \leq w, Z_{2} \leq w, \ldots, Z_{n} \leq w\right\}=\left[F_{Z}(w)\right]^{n}=w^{n \alpha}
$$

Since the support of RV Z is limited, then the CDF will decrease with n, and will tend to a step function as n goes to infinity.

Exercise 2 - Solution

1) Given the requirements, it is impossible that males and females queue up simultaneously. Therefore, if there is a queue, it will only contain either males or females, and it will be of at most K customers. When there is a queue, the arrival of a customer of the same sex increases the queue, and the arrival of a customer of the opposite sex decreases the queue. Thus, a state description for this system is given by the length of the queue and a binary information (male, female), which can be represented by a sign (arbitrarily, + is female and - is male). The system has $2 K+1$ states, and the transition diagram is the following:

The system is always stable since it has a finite number of states.
2) The local equilibrium equations are $p_{j} \cdot \lambda_{F}=p_{j+1} \cdot \lambda_{M},-K \leq j<K$.

From the above, one obtains straightforwardly that $p_{j}=p_{-K} \cdot \rho^{j+K},-K \leq j \leq K$, where $\rho=\frac{\lambda_{F}}{\lambda_{M}}$.
The normalization condition reads $\sum_{-K}^{+K} p_{j}=1$, hence:

$$
\sum_{-K}^{K} p_{-K} \cdot \rho^{j+K}=p_{-K} \cdot \sum_{0}^{2 K} \rho^{j}= \begin{cases}p_{-K} \cdot \frac{1-\rho^{2 K+1}}{1-\rho} & \text { if } \rho \neq 1 \\ p_{-K} \cdot(2 K+1) & \text { if } \rho=1\end{cases}
$$

Therefore,

$$
p_{j}=\left\{\begin{array}{cl}
\frac{1-\rho}{1-\rho^{2 K+1}} \cdot \rho^{j+K} & \text { if } \rho \neq 1 \\
\frac{1}{2 K+1} & \text { if } \rho=1
\end{array}, \quad-K \leq j \leq K\right.
$$

3) The probability that a customer is rejected is $p_{R}=p_{-K}+p_{+K}$. Therefore:

$$
p_{R}=\left\{\begin{array}{cc}
\frac{1-\rho}{1-\rho^{2 K+1}}\left(1+\rho^{2 K}\right) & \rho \neq 1 \\
\frac{2}{2 K+1} & \rho=1
\end{array}\right.
$$

4) This is a non-PASTA system. The mean arrival rates for females and males are, respectively:

$$
\begin{gathered}
\overline{\lambda_{F}}=\lambda_{F} \cdot\left(1-p_{K}\right) \\
\overline{\lambda_{M}}=\lambda_{M} \cdot\left(1-p_{-K}\right)
\end{gathered}
$$

The response time of a female client is:

- null, if males are queued, i.e., with probability $p=\sum_{-K}^{-1} r_{j}$, where

$$
r_{j}=\frac{\lambda_{F}}{\overline{\lambda_{F}}} \cdot p_{j}=\frac{p_{j}}{1-p_{K}}=\frac{1}{2 K}
$$

- equal to the sum of the arrival times of $j+1$ males if she arrives when the system is in state j (i.e., with probability $r_{j}, 0 \leq j \leq K-1$). The sum of $j+1$ exponentials is an Erlang distribution with as many stages, and its mean value is $(j+1) / \lambda_{M}$. Therefore:

$$
E[R]=\sum_{j=0}^{K-1} \frac{j+1}{\lambda_{M}} \cdot \frac{1}{2 K}+\sum_{j=-K}^{-1} 0 \cdot \frac{1}{2 K}=\frac{1}{\lambda_{M}} \cdot \frac{1}{2 K} \cdot \frac{K \cdot(K+1)}{2}=\frac{1}{\lambda_{M}} \cdot \frac{K+1}{4}
$$

PECSN - 14/06/23

In the limit case $K=1$ the above expression boils down to $\frac{1}{\lambda_{M}} \cdot \frac{1}{2}$. In fact, in this case an arrival of a female may occur only in state -1 or 0 , with equal probability. In the first case, the response time will be zero, and in the second case it will be the mean arrival time of a male customer, which explains the result.

