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Exercise 1 

A lake contains an unknown number of fishes, call it 𝑛. The environment protection officers take a 

(random) sample of 𝑚 fish from the lake, mark each of them with red ink (so that it will be 

recognizable later on), and return it to the lake.  

Later, they take a second (random) sample of 𝑘 fish.  

Call 𝑋 the RV that counts the number of red fishes in the second sample 

 

1) Assume that 𝑘 = 1. Compute the probability that 𝑋 = 1. 

2) Assume that 𝑘 = 2. Compute the probability that 𝑋 = 0,1,2. 

3) For a generic 𝑘, and compute the probability that 𝑋 = 𝑥, 0 ≤ 𝑥 ≤ 𝑘 (hint: reason about the 

probability model first). 

 

Assume that 𝑛 ≫ 𝑚 ≫ 𝑘 from now on.  

 

4) Find a suitable approximation for the previous expression; 

5) Assume you observe 𝑥 red fish in a sample of 𝑘. Using the result of point 4), compute an 

estimate of 𝑛 and justify your result. 

 

 

Exercise 2 

Consider a system that can solve the same problem by running one among 𝑛 different algorithms for 

that problem on a single processor. The system solves one problem at a time, and only accepts a new 

problem when it is idle. Problems arrive at rate 𝜆. When a problem is admitted, the system selects the 

algorithm to be run in a probabilistic way: the probability that algorithm 𝑗 is selected is equal to 𝜋𝑗. 

Each algorithm 𝑗 has an exponential running time, whose mean is 
1

𝜇𝑗
. 

1) Provide a suitable model for the system 

2) find the steady-state probabilities and the stability condition 

3) Compute the condition on the probabilities 𝜋𝑗 such that it is equally likely to observe the system 

running any of the 𝑛 algorithms at the steady state 

4) Compute the mean number of jobs in the system and the mean response time. Justify the result for 

the latter. 
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Exercise 1 – solution 

1) The probability that a fish is red is clearly 
𝑚

𝑛
, hence this is the answer. 

2) The probability that both fishes are red is 𝑝2 =
𝑚

𝑛
⋅
𝑚−1

𝑛−1
. The probability that none are is 𝑝0 =

𝑛−𝑚

𝑛
⋅

𝑛−𝑚−1

𝑛−1
. The probability that one fish is marked is  
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3) The sample space is the set of all possible subset of k fish taken from a set of n. Each subset is 

equally likely (sampling is done at random), hence we are in a UPM. The number of possible 

outcomes is therefore (
𝑛
𝑘
). In order to count the favorable outcomes, we use the basic principle of 

counting: the favorable outcomes will be 𝐴 ⋅ 𝐵, where 𝐴 is the number of subsets of 𝑥 red fish taken 

from a set of 𝑚, and 𝐵 is the number of 𝑘 − 𝑥 non-red fish taken from a set of 𝑛 −𝑚. Therefore, the 

answer is: 

𝑃{𝑋 = 𝑥} =
(𝑚𝑥 )⋅(

𝑛−𝑚
𝑘−𝑥 )

(
𝑛
𝑘)

. 

 

4) There are at least two ways to answer this question. The first one is to observe that, if 𝑛 ≫ 𝑚 ≫ 𝑘, 

then 
𝑚−𝛼

𝑛−𝛼
≈

𝑚

𝑛
, 0 ≤ 𝛼 ≤ 𝑘, hence the probability that the next fish will be red does not change 

significantly after you removed some fish from the lake. Therefore, you can regard picking red fish 

as a repeated trial experiment in (almost) independent conditions. Accordingly, the probability that 

you catch x red fish in a set of k will be (approximately) binomial, i.e.: 

𝑃{𝑋 = 𝑥} ≈ (
𝑘
𝑥
)𝑝𝑥(1 − 𝑝)𝑘−𝑥, with 𝑝 =

𝑚

𝑛
. 

You can get to the same result by simplifying the previous formula according to the approximations:  
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5) Again, there are two ways to answer this question. The first one is acknowledging that taking the 

second sample is a bernoullian experiment. An estimate for the success probability of a bernoullian, 

given a sample of k observations, is 𝑝 =
𝑥

𝑘
. Since we know that 𝑝 =

𝑚

𝑛
, then it follows that 𝑛 =

𝑚⋅𝑘

𝑥
. 

 

Alternatively, you can reason that, since you observed 𝑥 red fish in a sample of 𝑘, this can expected 

be the most likely outcome. The mode of a binomial distribution is around its mean value, which is 

𝑘 ⋅ 𝑝 = 𝑘 ⋅
𝑚

𝑛
. Hence 𝑥 = 𝑘 ⋅

𝑚

𝑛
, which yields the same result. 

 

 

Exercise 2 – solution 

1) The system can be modeled by splitting probabilistically the arrival (Poisson) process using 

probabilities 𝜋𝑗. Algorithms are modeled as servers. The CTMC is the one below. 
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2) The system is always stable, since it has a finite queue (of one job). The SS probabilities can be 

computed using global equilibrium equations as follows: 

{
𝑃0 ⋅ 𝜆 =∑𝑃𝑖 ⋅ 𝜇𝑖

𝑛

𝑖=1

𝑃𝑖 ⋅ 𝜇𝑖 = 𝑃0 ⋅ 𝜆 ⋅ 𝜋𝑖   1 ≤ 𝑖 ≤ 𝑛

 

 

From which – by imposing normalization - one easily finds: 
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 𝑃0 =

1

1 + ∑
𝜆 ⋅ 𝜋𝑗
𝜇𝑗

𝑛
𝑗=1

𝑃𝑖 =
𝜆 ⋅ 𝜋𝑖
𝜇𝑖

⋅
1

1 + ∑
𝜆 ⋅ 𝜋𝑗
𝜇𝑗

𝑛
𝑗=1

  1 ≤ 𝑖 ≤ 𝑛

 

 

3) The condition by which all algorithms have the same probability to be observed running at the 

steady state is the condition by which 𝑃𝑖 = 𝐾, 1 ≤ 𝑖 ≤ 𝑛. This is achieved if 𝜋𝑖 ∝ 𝜇𝑖: algorithms are 

as likely to be run as they are fast. 

 

4) The system is empty in state 0 and holds one job in every other state. Hence 𝐸[𝑁] = 0 ⋅ 𝑃0 +

(1 − 𝑃0) ⋅ 1 = 1 − 𝑃0. Moreover, it is 𝜆 = 𝜆 ⋅ 𝑃0, since the system does not accept jobs while an 

algorithm is running, hence 𝐸[𝑅] =
𝐸[𝑁]

𝜆
=

1

𝜆
(
1

𝑃0
− 1) = ∑

𝜋𝑖

𝜇𝑖

𝑛
𝑖=1 . This last result has a straightforward 

interpretation: the only component of the response time is the service time, which is 
1

𝜇𝑗
 for algorithm 

𝑗. However, algorithm 𝑗 is run with probability 𝜋𝑗, hence the sum. 

 


