Exercise 1

A lake contains an unknown number of fishes, call it n. The environment protection officers take a (random) sample of m fish from the lake, mark each of them with red ink (so that it will be recognizable later on), and return it to the lake.
Later, they take a second (random) sample of k fish.
Call X the RV that counts the number of red fishes in the second sample

1) Assume that $k=1$. Compute the probability that $X=1$.
2) Assume that $k=2$. Compute the probability that $X=0,1,2$.
3) For a generic k, and compute the probability that $X=x, 0 \leq x \leq k$ (hint: reason about the probability model first).

Assume that $n \gg m \gg k$ from now on.
4) Find a suitable approximation for the previous expression;
5) Assume you observe x red fish in a sample of k. Using the result of point 4), compute an estimate of n and justify your result.

Exercise 2

Consider a system that can solve the same problem by running one among n different algorithms for that problem on a single processor. The system solves one problem at a time, and only accepts a new problem when it is idle. Problems arrive at rate λ. When a problem is admitted, the system selects the algorithm to be run in a probabilistic way: the probability that algorithm j is selected is equal to π_{j}. Each algorithm j has an exponential running time, whose mean is $\frac{1}{\mu_{j}}$.

1) Provide a suitable model for the system

2) find the steady-state probabilities and the stability condition
3) Compute the condition on the probabilities π_{j} such that it is equally likely to observe the system running any of the n algorithms at the steady state
4) Compute the mean number of jobs in the system and the mean response time. Justify the result for the latter.

Exercise 1 - solution

1) The probability that a fish is red is clearly $\frac{m}{n}$, hence this is the answer.
2) The probability that both fishes are red is $p_{2}=\frac{m}{n} \cdot \frac{m-1}{n-1}$. The probability that none are is $p_{0}=\frac{n-m}{n}$. $\frac{n-m-1}{n-1}$. The probability that one fish is marked is
$1-p_{2}-p_{0}=1-\frac{m}{n} \cdot \frac{m-1}{n-1}-\frac{n-m}{n} \cdot \frac{n-m-1}{n-1}$

$$
\begin{aligned}
& =\frac{n^{2}-n-\left(m^{2}-m\right)-\left[(n-m)^{2}-(n-m)\right]}{n \cdot(n-1)} \\
& =\frac{n^{2}-n-m^{2}+m-\left[n^{2}+m^{2}-2 n m-n+m\right]}{n \cdot(n-1)} \\
& =\frac{-m^{2}-m^{2}+2 n m}{n \cdot(n-1)} \\
& =2 \cdot \frac{(n-m) \cdot m}{n \cdot(n-1)}
\end{aligned}
$$

3) The sample space is the set of all possible subset of k fish taken from a set of n. Each subset is equally likely (sampling is done at random), hence we are in a UPM. The number of possible outcomes is therefore $\binom{n}{k}$. In order to count the favorable outcomes, we use the basic principle of counting: the favorable outcomes will be $A \cdot B$, where A is the number of subsets of x red fish taken from a set of m, and B is the number of $k-x$ non-red fish taken from a set of $n-m$. Therefore, the answer is:
$P\{X=x\}=\frac{\binom{m}{x} \cdot\binom{n-m}{k-x}}{\binom{n}{k}}$.
4) There are at least two ways to answer this question. The first one is to observe that, if $n \gg m \gg k$, then $\frac{m-\alpha}{n-\alpha} \approx \frac{m}{n}, 0 \leq \alpha \leq k$, hence the probability that the next fish will be red does not change significantly after you removed some fish from the lake. Therefore, you can regard picking red fish as a repeated trial experiment in (almost) independent conditions. Accordingly, the probability that you catch x red fish in a set of k will be (approximately) binomial, i.e.:
$P\{X=x\} \approx\binom{k}{x} p^{x}(1-p)^{k-x}$, with $p=\frac{m}{n}$.
You can get to the same result by simplifying the previous formula according to the approximations:

$$
\begin{aligned}
P\{X=x\} & =\frac{\binom{m}{x} \cdot\binom{n-m}{k-x}}{\binom{n}{k}} \\
& =\frac{\left(\frac{m!}{x!(m-x)!}\right) \cdot\left(\frac{(n-m)!}{(k-x)![(n-m)-(k-x)]!}\right)}{\frac{n!}{k!\cdot(n-k)!}} \\
& \approx \frac{\left(\frac{m^{x}}{x!}\right) \cdot\left(\frac{(n-m)^{k-x}}{(k-x)!}\right)}{\frac{n^{k}}{k!}} \\
& =\binom{k}{x} \cdot\left(\frac{m}{n}\right)^{x} \cdot\left(\frac{n-m}{m}\right)^{k-x}
\end{aligned}
$$

5) Again, there are two ways to answer this question. The first one is acknowledging that taking the second sample is a bernoullian experiment. An estimate for the success probability of a bernoullian, given a sample of k observations, is $p=\frac{x}{k}$. Since we know that $p=\frac{m}{n}$, then it follows that $n=\frac{m \cdot k}{x}$.

Alternatively, you can reason that, since you observed x red fish in a sample of k, this can expected be the most likely outcome. The mode of a binomial distribution is around its mean value, which is $k \cdot p=k \cdot \frac{m}{n}$. Hence $x=k \cdot \frac{m}{n}$, which yields the same result.

Exercise 2 - solution

1) The system can be modeled by splitting probabilistically the arrival (Poisson) process using probabilities π_{j}. Algorithms are modeled as servers. The CTMC is the one below.

2) The system is always stable, since it has a finite queue (of one job). The SS probabilities can be computed using global equilibrium equations as follows:

$$
\left\{\begin{array}{c}
P_{0} \cdot \lambda=\sum_{i=1}^{n} P_{i} \cdot \mu_{i} \\
P_{i} \cdot \mu_{i}=P_{0} \cdot \lambda \cdot \pi_{i} \quad 1 \leq i \leq n
\end{array}\right.
$$

From which - by imposing normalization - one easily finds:

$$
\left\{\begin{array}{c}
P_{0}=\frac{1}{1+\sum_{j=1}^{n} \frac{\lambda \cdot \pi_{j}}{\mu_{j}}} \\
P_{i}=\frac{\lambda \cdot \pi_{i}}{\mu_{i}} \cdot \frac{1}{1+\sum_{j=1}^{n} \frac{\lambda \cdot \pi_{j}}{\mu_{j}}} \quad 1 \leq i \leq n
\end{array}\right.
$$

3) The condition by which all algorithms have the same probability to be observed running at the steady state is the condition by which $P_{i}=K, 1 \leq i \leq n$. This is achieved if $\pi_{i} \propto \mu_{i}$: algorithms are as likely to be run as they are fast.
4) The system is empty in state 0 and holds one job in every other state. Hence $E[N]=0 \cdot P_{0}+$ $\left(1-P_{0}\right) \cdot 1=1-P_{0}$. Moreover, it is $\bar{\lambda}=\lambda \cdot P_{0}$, since the system does not accept jobs while an algorithm is running, hence $E[R]=\frac{E[\bar{\lambda}]}{\bar{\lambda}}=\frac{1}{\lambda}\left(\frac{1}{P_{0}}-1\right)=\sum_{i=1}^{n} \frac{\pi_{i}}{\mu_{i}}$. This last result has a straightforward interpretation: the only component of the response time is the service time, which is $\frac{1}{\mu_{j}}$ for algorithm j. However, algorithm j is run with probability π_{j}, hence the sum.
