PECSN, 7° appello 2022

Exercise 1

A lake contains an unknown number of fishes, call it n. The environment protection officers take a
(random) sample of m fish from the lake, mark each of them with red ink (so that it will be
recognizable later on), and return it to the lake.

Later, they take a second (random) sample of k fish.

Call X the RV that counts the number of red fishes in the second sample

1) Assume that k = 1. Compute the probability that X = 1.

2) Assume that k = 2. Compute the probability that X = 0,1,2.

3) For a generic k, and compute the probability that X = x, 0 < x < k (hint: reason about the
probability model first).

Assume that n > m > k from now on.

4) Find a suitable approximation for the previous expression;
5) Assume you observe x red fish in a sample of k. Using the result of point 4), compute an
estimate of n and justify your result.

Exercise 2
Consider a system that can solve the same problem by running one among n different algorithms for

that problem on a single processor. The system solves one problem at a time, and only accepts a new
problem when it is idle. Problems arrive at rate 1. When a problem is admitted, the system selects the
algorithm to be run in a probabilistic way: the probability that algorithm j is selected is equal to ;.

. . . . ) .1
Each algorithm j has an exponential running time, whose mean is ”
j

1) Provide a suitable model for the system

2) find the steady-state probabilities and the stability condition

3) Compute the condition on the probabilities 7r; such that it is equally likely to observe the system
running any of the n algorithms at the steady state

4) Compute the mean number of jobs in the system and the mean response time. Justify the result for
the latter.
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Exercise 1 — solution
1) The probability that a fish is red is clearly % hence this is the answer.

2) The probability that both fishes are red is p, = 2 - % The probability that none are is p, = ——

n-m-—

1 The probability that one fish is marked is
mm-1 n-mn-m-1
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3) The sample space is the set of all possible subset of k fish taken from a set of n. Each subset is
equally likely (sampling is done at random), hence we are in a UPM. The number of possible

outcomes is therefore (Z) In order to count the favorable outcomes, we use the basic principle of

counting: the favorable outcomes will be A - B, where A is the number of subsets of x red fish taken
from a set of m, and B is the number of k — x non-red fish taken from a set of n — m. Therefore, the
answer is:

my (n—m
PX = x) = &) (n"‘x).
()
4) There are at least two ways to answer this question. The first one is to observe that, if n > m > k,
—, 0 < a <k, hence the probability that the next fish will be red does not change

srgnrfrcantly after you removed some fish from the lake. Therefore, you can regard picking red fish
as a repeated trial experiment in (almost) independent conditions. Accordingly, the probability that
you catch x red fish in a set of k will be (approximately) binomial, i.e.:

P{X =x}= (I;) p*(1 —p)k==* withp = %
You can get to the same result by simplifying the previous formula according to the approximations:
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5) Again, there are two ways to answer this question. The first one is acknowledging that taking the
second sample is a bernoullian experiment. An estimate for the success probability of a bernoullian,

given a sample of k observations, is p = % Since we know that p = % then it follows that n = mTk

Alternatively, you can reason that, since you observed x red fish in a sample of k, this can expected
be the most likely outcome. The mode of a binomial distribution is around its mean value, which is

k-p=k- % Hence x = k - % which yields the same result.

Exercise 2 — solution
1) The system can be modeled by splitting probabilistically the arrival (Poisson) process using
probabilities ;. Algorithms are modeled as servers. The CTMC is the one below.

System empty /H 0 J—
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2) The system is always stable, since it has a finite queue (of one job). The SS probabilities can be
computed using global equilibrium equations as follows:

n
Po')h:zpi'#i
i=1

Pi-,ui=P0-A-7Tl- 1S1Sn

From which — by imposing normalization - one easily finds:
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3) The condition by which all algorithms have the same probability to be observed running at the
steady state is the condition by which P; = K, 1 < i < n. This is achieved if &r; « y;: algorithms are
as likely to be run as they are fast.

4) The system is empty in state 0 and holds one job in every other state. Hence E[N] =0 P, +
(1-Py)-1=1-—P,. Moreover, it is 1 = A - Py, since the system does not accept jobs while an

algorithm is running, hence E[R] = % = %(Pi - 1) = ?=1%. This last result has a straightforward
0 i
interpretation: the only component of the response time is the service time, which is i for algorithm

Hj
Jj. However, algorithm j is run with probability 7z;, hence the sum.



