
Exercise 1 

Consider a system where two entities 𝐴 and 𝐵 allocate elements in their own vectors of 𝑁 elements, 

numbered from 1 to 𝑁. We say that there is interference on element 𝑗 if it is allocated in both 𝐴 and 

𝐵’s vectors. Assume that each entity allocates its elements at random, and independently, and call 

𝑛𝐴, 𝑛𝐵 the number of elements allocated by each entity, 0 ≤ 𝑛𝑥 ≤ 𝑁. 
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1) Compute the probability that the allocation of 𝐴 includes element 1. 

2) Compute the probability that the allocation of 𝐴 includes element 𝑗. 

3) Compute the probability that there is interference on element 𝑗. Verify your answer in limit cases. 

4) Compute 𝐿, 𝑈, i.e., the minimum and maximum number of interfering elements among all 

possible allocations. 

5) Compute the probability that the allocations of 𝐴 and 𝐵 have exactly 𝑘 interfering elements, for 

a generic k, 𝐿 ≤ 𝑘 ≤ 𝑈. 

6) Assume that 𝑛𝐴 = 𝑛𝐵 = 𝑛. Compute the probability that the two allocations are completely 

overlapping. Find a combinatorial rationale for the result. 

 

Exercise 2 

A car repair service company has 𝑛 repair bays, and expects customers’ cars to come in for repair 

with exponentially distributed interarrivals, at a rate 𝜆. The repair of a car takes an exponentially 

distributed time with a mean of 
1

𝜇
. The company wants to man the smallest possible number of repair 

bays (so as to save money), but knows that its customers find it unacceptable to have to wait.  

1) Model the above system as a birth-death process and draw its CTMC. 

2) Compute the steady-state probabilities. Express the stability condition. 

3) Compute the probability 𝑃𝑤𝑎𝑖𝑡 that a car that breaks has to wait before entering a repair bay. 

4) Assume 𝜆 = 𝜇. Compute 𝑃𝑤𝑎𝑖𝑡 as a function of 𝑛 and study its behavior with 𝑛. 

5) Under the above hypothesis, state whether 6 manned repair bays are enough to have 𝑃𝑤𝑎𝑖𝑡 
smaller than 5 ⋅ 10−4. 

 

It may be useful to observe that 𝑙𝑖𝑚
𝑛→∞

∑
1

𝑗!

𝑛
𝑗=0 = 𝑙𝑖𝑚

𝑛→∞
[∑

𝑥𝑗

𝑗!

𝑛
𝑗=0 ]

𝑥=1
= [𝑒𝑥]𝑥=1 = 𝑒, and that ∑

1

𝑗!

𝑛
𝑗=0 ≈ 𝑒 

when 𝑛 ≥ 5. 

  



Exercise 1 - Solution 

1) This is a uniform probability model. Therefore, the answer is 𝑃 =
(
𝑁−1
𝑛𝐴−1

)

( 𝑁𝑛𝐴
)
=

𝑛𝐴

𝑁
. 

2) The answer is the same as before, there being nothing special about any particular element in the 

vectors. 

3) Since the two allocations are independent, the answer is 
𝑛𝐴

𝑁
⋅
𝑛𝐵

𝑁
=

𝑛𝐴⋅𝑛𝐵

𝑁2
. The result is null if either 

of the two allocations is null, and it is equal to one only if both entities allocate the whole vector. 

4) It is fairly obvious that the number of interfering elements is upper bounded by 𝑈 = 𝑚𝑖𝑛(𝑛𝐴, 𝑛𝐵). 

The lower bound is zero, if 𝑛𝐴 + 𝑛𝐵 ≤ 𝑁, and 𝑛𝐴 + 𝑛𝐵 −𝑁 otherwise. Thus, 𝐿 = 𝑚𝑎𝑥(0, 𝑛𝐴 + 𝑛𝐵 −

𝑁). 

5) We are in a UPM. The sample space is the set of all possible allocations, whose cardinality is: 

|𝑺| = (
𝑁
𝑛𝐴
) ⋅ (

𝑁
𝑛𝐵
). There are (

𝑁
𝑘
) subset of 𝑘 interfering elements. These must be common to both 

allocations. This leaves 𝐴 with (
𝑁 − 𝑘
𝑛𝐴 − 𝑘

) ways to allocate the remaining 𝑛𝐴 − 𝑘 non-interfering 

elements, and 𝐵 with (
𝑁 − 𝑛𝐴
𝑛𝐵 − 𝑘

) possible ways to allocate the remaining 𝑛𝐵 − 𝑘  (note that the two 

expressions are different, since we cannot allow interference between the remaining 𝑛𝐴 − 𝑘 of vector 

𝐴 and the remaining 𝑛𝐵 − 𝑘 elements of vector 𝐵). By applying the basic principle of counting, we 

obtain: 

𝑃 =
(
𝑁
𝑘
) ⋅ (

𝑁 − 𝑘
𝑛𝐴 − 𝑘

) ⋅ (
𝑁 − 𝑛𝐴
𝑛𝐵 − 𝑘

)

(
𝑁
𝑛𝐴
) ⋅ (

𝑁
𝑛𝐵
)

 

The alert reader can easily check that – despite the appearances – the above formula is symmetric 

(i.e., swapping 𝑛𝐴, 𝑛𝐵 yields the same result). 

 

6) From the above, we obtain:  

𝑃 =
(
𝑁
𝑛
) ⋅ (

𝑁 − 𝑛
𝑛 − 𝑛

) ⋅ (
𝑁 − 𝑛
𝑛 − 𝑛

)

(
𝑁
𝑛
) ⋅ (

𝑁
𝑛
)

=
1

(
𝑁
𝑛
)
 

The result can be easily explained as follows: assume 𝐴 allocates 𝑛 elements. Of all the possible 

allocations at 𝐵, which are (
𝑁
𝑛
), there is only one that has exactly the same elements as the other.  

 

  



Exercise 2 - Solution 

1) The system is an M/M/n one, hence the CTMC is the following: 

0 1 2 n-1 n n+1

l

m 2m (n-1)m nm nm3m

lllll l

 
 

2) We know from the theory that the system is stable if 𝜌 =
𝜆

(𝑛⋅𝜇)
< 1. This should also emerge 

from the computation of the steady-state probabilities. The global equilibrium equations are 

the following:  

 

𝑃0 ⋅ 𝜆 = 𝑃1 ⋅ 𝜇 
𝑃1 ⋅ 𝜆 = 𝑃2 ⋅ 2𝜇 
. . . 
𝑃𝑛−1 ⋅ 𝜆 = 𝑃𝑛 ⋅ 𝑛 ⋅ 𝜇 
𝑃𝑛 ⋅ 𝜆 = 𝑃𝑛+1 ⋅ 𝑛 ⋅ 𝜇 
. . . 
𝑃𝑛+𝑗 ⋅ 𝜆 = 𝑃𝑛+𝑗+1 ⋅ 𝑛 ⋅ 𝜇 𝑗 ≥ 0 

 

From which we get: 

𝑃𝑗 =

{
 
 

 
 
(
𝜆

𝜇
)
𝑗

⋅
1

𝑗!
⋅ 𝑃0 𝑗 < 𝑛

𝜌𝑗 ⋅
𝑛𝑛

𝑛!
⋅ 𝑃0 𝑗 ≥ 𝑛

 

 

Hence, the normalization condition is: 

𝑃0 ⋅ {∑ [(
𝜆

𝜇
)
𝑗

⋅
1

𝑗!
] +

𝑛𝑛

𝑛!
⋅∑𝜌𝑛

∞

𝑗=𝑛

𝑛−1

𝑗=0

} = 1 

The infinite sum converges if and only if 𝜌 < 1, as expected. This said, 

𝑃0 ⋅ {∑ [(
𝜆

𝜇
)
𝑗

⋅
1

𝑗!
] +

𝑛𝑛

𝑛!
⋅ [∑𝜌𝑛

∞

𝑗=0

−∑𝜌𝑛
𝑛−1

𝑗=0

]

𝑛−1

𝑗=0

} = 1 

𝑃0 ⋅ {∑ [(
𝜆

𝜇
)
𝑗

⋅
1

𝑗!
] +

1

𝑛!
⋅
(𝑛 ⋅ 𝜌)𝑛

1 − 𝜌

𝑛−1

𝑗=0

} = 1 

𝑃0 = {∑ [(
𝜆

𝜇
)
𝑗

⋅
1

𝑗!
] +

1

𝑛!
⋅
(𝑛⋅𝜌)𝑛

1−𝜌

𝑛−1
𝑗=0 }

−1

. 

If n is large, the following approximation is reasonable: 𝑃0 =
1

𝑒
𝜆
𝜇+

1

𝑛!
⋅
(𝑛⋅𝜌)𝑛

1−𝜌

 

3) Since the system enjoys the PASTA property, the probability that a car that breaks has to wait 

before entering service is the probability that 𝑗 ≥ 𝑛 customers are in the system, i.e. ∑ 𝑟𝑗
∞
𝑗=𝑛 =

∑ 𝑃𝑗
∞
𝑗=𝑛 . This can be written as: 

𝑃𝑤𝑎𝑖𝑡 =∑𝑃𝑗

∞

𝑗=𝑛

=
𝑛𝑛

𝑛!
⋅ 𝑃0 ⋅∑𝜌𝑗

∞

𝑗=𝑛

=
(𝑛 ⋅ 𝜌)𝑛

𝑛! (1 − 𝜌)
⋅ 𝑃0 =

(𝑛 ⋅ 𝜌)𝑛

𝑛! (1 − 𝜌)

∑ [(
𝜆
𝜇)

𝑗

⋅
1
𝑗!] +

(𝑛 ⋅ 𝜌)𝑛

𝑛! (1 − 𝜌)
𝑛−1
𝑗=0

 



Again, if n is large, the following approximation is reasonable: 

𝑃𝑤𝑎𝑖𝑡 ≈
1

𝑛! (1 − 𝜌) ⋅ 𝑒
𝜆
𝜇

(𝑛 ⋅ 𝜌)𝑛
+ 1

 

 

4) Note that 𝜆 = 𝜇 implies 𝑛 > 1, otherwise the system is unstable. When 𝜆 = 𝜇, we get: 

𝑃𝑤𝑎𝑖𝑡 =

(𝑛 ⋅
1
𝑛)

𝑛

𝑛! (1 −
1
𝑛)

∑ [
1
𝑗!] +

(𝑛 ⋅
1
𝑛)

𝑛

𝑛! (1 −
1
𝑛)

𝑛−1
𝑗=0

=
1

(𝑛 − 1)! (𝑛 − 1) ⋅ ∑ [
1
𝑗!]

𝑛−1
𝑗=0 + 1

 

 

The above statement is confirmed by the fact that (𝑛 − 1) appears in the denominator. 

𝑃𝑤𝑎𝑖𝑡 is obviously decreasing with n (since the denominator increases with n). Moreover, 

𝑃𝑤𝑎𝑖𝑡(𝑛) ≥
1

(𝑛−1)!(𝑛−1)⋅𝑒+1
, with 𝑃𝑤𝑎𝑖𝑡(𝑛) ≈

1

(𝑛−1)!(𝑛−1)⋅𝑒+1
 when 𝑛 ≥ 5. The first few values 

are reported in the table: 

 
n Pwait 

expr. 
Numerical 
value 

2 1

3
 

0.333333 

3 1

11
 

0.090909 

4 1

49
 

0.020408 

5 1

261
 

0.003831 

5) When 𝑛 = 6, it is 𝑃𝑤𝑎𝑖𝑡(𝑛) ≈
1

600⋅𝑒+1
. Since 𝑒 < 3, it is 𝑃𝑤𝑎𝑖𝑡(𝑛) >

1

1800
>

1

2000
= 5 ⋅ 10−4, 

so the answer is no. 

 

 


