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Exercise 1 

Consider a system where a client can be randomly routed to one (and only one) among n servers, with 

probability 𝑝𝑖, 1 ≤ 𝑖 ≤ 𝑛. Each server’s service time is an exponentially distributed RV, with a mean 
1

𝜇𝑖
. All servers are independent. 

1) Find the CDF and PDF of the service time of a client 

2) Find the mean of the service time 

3) Consider an alternative design of the same system, where a client request is sent to all the 

servers simultaneously, and is only considered served when  

a. at least one server has processed it 

b. all the servers have processed it.  

Find the CDF of the service time of a client in these cases.   

4) Assume that 𝜇𝑖 = 𝜇. Is one design of the system (among the initial option and options a and 

b at point 3) faster? Why?  

 

 

Exercise 2 

A counseling practice offers individual advice to its clients. It admits both singles and couples, but 

counsels its clients individually (spouses are requested to wait outside the counseling room). The 

arrival rate at the counseling practice is 𝜆. An arrival may be a single, with probability 𝜋, and a couple, 

with probability 1 − 𝜋. Individual counseling takes an exponentially distributed time, with a rate 𝜇.  

 

1) Model the practice as a queueing system, draw the CTMC and write down the global 

equilibrium equations.  

2) Find the stability condition, justify it, and compute the PGF of the SS probabilities. 

3) Compute the mean number of jobs in the system. Verify in the limit cases. 

4) Compute the probability 𝑝0 that the practice is empty, and the probability that only one client 

is in, 𝑝1 
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Solution of Exercise 1 

1) Call 𝑆 the service time RV. Due to the Law of Total Probability, we have: 
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Hence: 
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𝑑
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𝑑𝑠
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𝑛
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2) The mean service time is ∑
1

𝜇𝑖

𝑛
𝑖=1 ⋅ 𝑝𝑖, since integrals and sums commute. 

3) Case a. is a textbook case of minimum of independent exponential RVs. The theory says that the 

answers are 𝐹(𝑠) = 1 − 𝑒−𝜏⋅𝑠, where 𝜏 = ∑ 𝜇𝑖
𝑛
𝑖=1  

 

For case b, we have:  

( )     

 

( )

( )

1 2

1

1

max

, ,...,

1 i

i

n

n s

i

n

ii

F s P S s P S s

P S s S s S s

e

F s

− 

=

=

=  = 

=   

= −

=





 

4) When all the servers are indistinguishable, the CDF for the three systems is, respectively:  

- 𝐹𝑜(𝑠) = 1 − 𝑒−𝜇⋅𝑠 (original) 

- 𝐹𝑎(𝑠) = 1 − 𝑒−𝑛⋅𝜇⋅𝑠 (design a) 

- 𝐹𝑏(𝑠) = (1 − 𝑒−𝜇⋅𝑠)𝑛 (design b) 

 

It is easy to see that ∀𝑠 > 0, 𝐹𝑎(𝑠) > 𝐹𝑜(𝑠) > 𝐹𝑠(𝑠). In fact: 

 

𝐹𝑎(𝑠) > 𝐹𝑜(𝑠) 
1 − 𝑒−𝑛⋅𝜇⋅𝑠 > 1 − 𝑒−𝜇⋅𝑠 
𝑒−𝑛⋅𝜇⋅𝑠 < 𝑒−𝜇⋅𝑠 
−𝑛𝜇𝑠 < −𝜇𝑠 
𝑛 > 1 

Moreover, 𝐹𝑜(𝑠) > 𝐹𝑠(𝑠) iff 1 − 𝑒−𝜇⋅𝑠 > (1 − 𝑒−𝜇⋅𝑠)𝑛, which is obvious since the l.h.s. is between 0 

and 1.  

The above implies that design a is (probabilistically) faster than the original design, which is faster 

than 𝑏. 

 

Exercise 2 – Solution 

1) The system is an M/M/1 with bulk arrivals, and the CTMC diagram is below.  
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The global equilibrium equations are: 
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- State 0: 𝜆 ⋅ 𝑝0 = 𝜇 ⋅ 𝑝1 

- State 1: (𝜆 + 𝜇) ⋅ 𝑝1 = 𝜇 ⋅ 𝑝2 + 𝜆 ⋅ 𝜋 ⋅ 𝑝0 

- State 2: (𝜆 + 𝜇) ⋅ 𝑝2 = 𝜇 ⋅ 𝑝3 + 𝜆 ⋅ 𝜋 ⋅ 𝑝1 + 𝜆 ⋅ (1 − 𝜋) ⋅ 𝑝0 

- State 𝑛: (𝜆 + 𝜇) ⋅ 𝑝𝑛 = 𝜇 ⋅ 𝑝𝑛+1 + 𝜆 ⋅ 𝜋 ⋅ 𝑝𝑛−1 + 𝜆 ⋅ (1 − 𝜋) ⋅ 𝑝𝑛−2 

 

 

2) The RV that describes the size of the arrival is a Bernoullian 𝑔, such that 𝑔1 = 𝑃{𝑔 = 1} = 𝜋, 

𝑔2 = 𝑃{𝑔 = 2} = 1 − 𝜋, hence 𝐸[𝑔] = 1 ⋅ 𝜋 + 2 ⋅ (1 − 𝜋) = 2 − 𝜋, 𝑮(𝑧) = 𝜋 ⋅ 𝑧 + (1 − 𝜋) ⋅ 𝑧2. 

The computations for a generic 𝑮(𝑧) can be found on the QT notes, and read: 

- 𝜌 =
𝜆

𝜇
𝐸[𝑔] =

𝜆

𝜇
⋅ (2 − 𝜋). Note that, if 𝜋 = 1, then the system is an M/M/1, and the stability 

condition is the usual one. Instead, if 𝜋 = 0, the system is one with constant-batch bulk arrivals.  

- 𝑷(𝑧) =
𝜇⋅(1−𝜌)⋅(1−𝑧)

𝜇⋅(1−𝑧)−𝜆⋅𝑧⋅[1−𝑮(𝑧)]
. 

By substituting the above 𝑮(𝑧) into the above expression, after a few straightforward computations, 

we get: 

( )
( ) ( )

( ) ( )

( ) ( )

2

1 1

1 1 1

1 1

z
z

z z z z

z

 

 l p p

 

 −  −
=

  − −   −  − −  

 −  −
=

P

( )1 z  − ( )1z zl−   −  

( )

( )2

1

2

1

z z

z z

p

 l p

 l l p

+ − 

−  −
=

−  −   −

 

3) Both expressions require computing the first derivative of the above expression, which is: 

𝜕

𝜕𝑧
𝑷(𝑧) =

𝜕

𝜕𝑧
(

𝜇 − 𝜆 ⋅ (2 − 𝜋)

𝜇 − 𝜆 ⋅ 𝑧 − 𝜆 ⋅ 𝑧2 ⋅ (1 − 𝜋)
) =

𝜆 ⋅ [1 + 2𝑧 ⋅ (1 − 𝜋)] ⋅ [𝜇 − 𝜆 ⋅ (2 − 𝜋)]

[𝜇 − 𝜆 ⋅ 𝑧 − 𝜆 ⋅ 𝑧2 ⋅ (1 − 𝜋)]2
 

 

From the above, we obtain: 

𝐸[𝑁] =
𝜕

𝜕𝑧
𝑷(𝑧)|

𝑧=1
=
𝜆 ⋅ [3 − 2𝜋] ⋅ [𝜇 − (2 − 𝜋)𝜆]

[𝜇 − (2 − 𝜋)𝜆]2
=

(3 − 2𝜋)𝜆

𝜇 − (2 − 𝜋)𝜆
 

 

When 𝜋 = 1 the system is an M/M/1, and the above expression reads 𝐸[𝑁] =
𝜆

𝜇−𝜆
=

𝜌

1−𝜌
.  

When 𝜋 = 0 the system is a constant-batch one, with 𝑏 = 2, and the expression is 𝐸[𝑁] =
3𝜆

𝜇−2𝜆
. The 

expression on the notes reads 𝐸[𝑁] =
𝜌⋅(𝑏+1)

2⋅(1−𝜌)
, which is equal to the former after some straightforward 

substitutions. 

 

4) It is 𝑝0 = 𝑙𝑖𝑚
𝑧→0

𝑷(𝑧) = 1 −
𝜆

𝜇
⋅ (2 − 𝜋) = 1 − 𝜌. This was expected, since 𝜌 is the system 

utilization. Moreover, it is 𝑝1 =
𝜕

𝜕𝑧
𝑷(𝑧)|

𝑧=0
=

𝜆⋅[𝜇−𝜆⋅(2−𝜋)]

𝜇2
=

𝜆

𝜇
⋅ [1 − (

𝜆

𝜇
) ⋅ (2 − 𝜋)] =

𝜌⋅(1−𝜌)

2−𝜋
. If 

𝜋 = 1, the expression is the one of an M/M/1 system. 

 

 


