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Exercise 1 

A safety-critical distributed application exchanges messages via a noisy channel. The sender keeps 

sending copies of the same message until it receives 𝑘 ACKs from the receiver. The protocol is run 

on a slotted network: on every slot the sender sends a new copy of the message, and it receives an 

ACK with probability 𝑝. Transmissions in different slots are independent.  

Call 𝑋𝑘 the random variable that counts the number of slots until the communication is considered 

completed by the sender. 

1) Find the set of values for 𝑋𝑘; 

2) Compute the PMF of 𝑋1, and explain your result; 

3) Compute the PMF of 𝑋2; 

4) Compute the PMF of 𝑋3 and generalize the above result to any value of 𝑘; 

5) Compute the mean value of 𝑋𝑘. 

 

Exercise 2 

Consider a processing system where jobs arrive with exponential interarrival times with a mean 1/𝜆 

and request a service time which is also exponentially distributed with a mean 1/𝜇. To save power, 

the system server is switched off whenever the system is empty, and it is switched back on again when 

𝑘 jobs are in the system. 

 

1) Model the system and draw the CTMC. Verify your model in the limit case 𝑘 = 1; 

2) Write the equilibrium equations, find the stability condition, and state explicitly its 

dependence on 𝑘. Justify your answer; 

3) Compute the probability of having 𝑛 jobs in the system at the steady state; 

4) Compute the server utilization and the throughput. 
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Exercise 1 – Solution 

This is a repeated-trial experiment, with slots being trials.  

1) The set of values for 𝑋𝑘 is 𝑘,+∞). 
2) 𝑋1 is the number of trials to the first success, hence is a geometric RV: 𝑃{𝑋1 = 𝑗} =

(1 − 𝑝)𝑗−1 ⋅ 𝑝. Note that there is only one sequence of Bernoullian outcomes that terminates 

the repeated-trial experiment on trial 𝑗. 
3) 𝑋2 is the number of trials to the second success. 𝑃{𝑋2 = 𝑗} can be computed by reasoning in 

terms of a composite experiment: one experiment consists in obtaining a success at the 𝑗𝑡ℎ 

trial, and the other consists in obtaining one success in 𝑗 − 1 trials. The first probability is 

equal to 𝑝, whereas the second one is equal to (
𝑗 − 1
1
) (1 − 𝑝)𝑗−2 ⋅ 𝑝 = (𝑗 − 1) ⋅ (1 − 𝑝)𝑗−2 ⋅

𝑝. Therefore, we have: 𝑃{𝑋2 = 𝑗} = (𝑗 − 1) ⋅ (1 − 𝑝)𝑗−2 ⋅ 𝑝2. 

4) 𝑋3 is the number of trials to the third success. Again, this can be split into the probability of 

having a success on the 𝑗𝑡ℎ trial, times the probability of having 3 − 1 = 2 successes in the 

first 𝑗 − 1 trials. The result is therefore: 𝑃{𝑋3 = 𝑗} = 𝑝 ⋅ [(
𝑗 − 1
2
) ⋅ (1 − 𝑝)𝑗−3 ⋅ 𝑝2] =

(
𝑗 − 1
2
) ⋅ (1 − 𝑝)𝑗−3 ⋅ 𝑝3. From the above, it is clear that the correct expression is 

𝑃{𝑋𝑘 = 𝑗} = 𝑝 ⋅ [(
𝑗 − 1
𝑘 − 1

) ⋅ (1 − 𝑝)𝑗−𝑘 ⋅ 𝑝𝑘−1] = (
𝑗 − 1
𝑘 − 1

) ⋅ (1 − 𝑝)𝑗−𝑘 ⋅ 𝑝𝑘, 𝑗 ≥ 𝑘. 

5) One can observe that 𝑋𝑘 is the sum of 𝑘 geometric RVs, each one having a mean 1/𝑝. 

Therefore, it is 𝐸[𝑋𝑘] = 𝑘/𝑝. The same conclusion can be reached even without the above 

observation, via a modicum of algebra. 

 

Exercise 2 - Solution 

1) When 𝑗 jobs are in the system, 0 < 𝑗 < 𝑘, the server may be either on or off. In either case, the 

system behaves differently. Thus, we need two states for each number of jobs in the system 0 < 𝑗 <
𝑘. The CTMC is therefore the following: 
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Starred states are traversed when the server is switched off. When 𝑘 = 1, the interval 0 < 𝑗 < 𝑘 is 

empty, hence the system behaves like an M/M/1 and there are no starred states. 

 

2) The stability condition should not depend on 𝑘. In fact, if the server is faster than the arrivals, the 

fact that 𝑘 jobs are allowed to queue up does not thwart its ability to empty the queue. This must be 

confirmed by the computations. 

The global equilibrium equations for the starred states are: 𝜆 ⋅ 𝑃0 = 𝜆 ⋅ 𝑃1∗ =. . . = 𝜆 ⋅ 𝑃(𝑘−1)∗. 

Therefore, it is 𝑃𝑗∗ = 𝑃0, 1 < 𝑗 ≤ 𝑘 − 1. 

Moreover, it is easy to write local equilibrium equations along “vertical” cuts, as follows: 

𝜆 ⋅ 𝑃𝑜 = 𝜇 ⋅ 𝑃1 

𝜆 ⋅ (𝑃𝑗 + 𝑃𝑗∗) = 𝜇 ⋅ 𝑃𝑗+1 1 ≤ 𝑗 ≤ 𝑘 − 1 

𝜆 ⋅ 𝑃𝑗 = 𝜇 ⋅ 𝑃𝑗+1    𝑗 ≥ 𝑘 

 

Setting 𝜌 =
𝜆

𝜇
 for ease of writing, we get: 
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𝑃1 = 𝜌 ⋅ 𝑃𝑜 

𝑃𝑗+1 = 𝜌 ⋅ (𝑃𝑗 + 𝑃0) 1 ≤ 𝑗 ≤ 𝑘 − 1 

𝑃𝑗+1 = 𝜌 ⋅ 𝑃𝑗     𝑗 ≥ 𝑘 

 

Therefore, we get: 

𝑃1 = 𝜌 ⋅ 𝑃𝑜 
𝑃2 = 𝜌 ⋅ (𝑃1 + 𝑃0) = (𝜌

2 + 𝜌) ⋅ 𝑃0 
𝑃3 = 𝜌 ⋅ (𝑃2 + 𝑃0) = (𝜌

3 + 𝜌2 + 𝜌) ⋅ 𝑃0 
. . . 

𝑃𝑗 = (∑𝜌𝑖
𝑗

𝑖=1

) ⋅ 𝑃0 =
𝜌 − 𝜌𝑗+1

1 − 𝜌
⋅ 𝑃0   1 ≤ 𝑗 ≤ 𝑘 

𝑃𝑗 = 𝜌𝑗−𝑘 ⋅ 𝑃𝑘 = 𝜌
𝑗−𝑘 ⋅

𝜌 − 𝜌𝑘+1

1 − 𝜌
⋅ 𝑃0    𝑗 > 𝑘 

[The last two expressions are correct only if 𝜌 ≠ 1. This condition is necessary for stability in any 

case.] 

 

The normalization condition is therefore the following: 

𝑃0 +∑𝑃𝑗∗

𝑘−1

𝑗=1

+∑𝑃𝑗

𝑘

𝑗=1

+ ∑ 𝑃𝑗

∞

𝑗=𝑘+1

= 1 

 

Which can be rewritten as: 

𝑃0 ⋅ [𝑘 +∑
𝜌 − 𝜌𝑗+1

1 − 𝜌

𝑘

𝑗=1

+
𝜌 − 𝜌𝑘+1

1 − 𝜌
⋅∑𝜌𝑗

∞

𝑗=1

] = 1 

 

From the latter it clearly appears that the stability condition is 𝜌 < 1. In fact, the first two terms are 

finite. The condition is thus independent of 𝑘, as was expected. Through a few algebraic 

manipulations, we get: 

𝑃0 ⋅ [𝑘 +∑
𝜌 − 𝜌𝑗+1

1 − 𝜌

𝑘

𝑗=1

+
𝜌 − 𝜌𝑘+1

1 − 𝜌
⋅∑𝜌𝑗

∞

𝑗=1

] = 

𝑃0 ⋅ [𝑘 +∑
𝜌

1 − 𝜌

𝑘

𝑗=1

−∑
𝜌𝑗+1

1 − 𝜌

𝑘

𝑗=1

+
𝜌 − 𝜌𝑘+1

1 − 𝜌
⋅

𝜌

1 − 𝜌
] = 

𝑃0 ⋅ [𝑘 + 𝑘 ⋅
𝜌

1 − 𝜌
−

𝜌

1 − 𝜌
⋅
𝜌 − 𝜌𝑘+1

1 − 𝜌
+
𝜌 − 𝜌𝑘+1

1 − 𝜌
⋅

𝜌

1 − 𝜌
] = 

𝑃0 ⋅
𝑘

1 − 𝜌
= 1 

 

3) From the above expressions we obtain: 

𝑃0 =
1 − 𝜌

𝑘
 

𝑃𝑗∗ =
1 − 𝜌

𝑘
   1 ≤ 𝑗 ≤ 𝑘 − 1 

𝑃𝑗 = 𝜌 ⋅
1 − 𝜌𝑗

𝑘
   1 ≤ 𝑗 ≤ 𝑘 



PECSN, 18/1/2022 

𝑃𝑗 = 𝜌
𝑗−𝑘+1 ⋅

1 − 𝜌𝑘

𝑘
   𝑗 > 𝑘 

(Note that, when 𝑘 = 1, we get the usual M/M/1 steady-state probabilities). Call 𝜋𝑗 the SS probability 

to have 𝑗 jobs in the system. It is: 

𝜋𝑗 = {

𝑃𝑗 𝑗 = 0

𝑃𝑗 + 𝑃𝑗∗ 1 ≤ 𝑗 ≤ 𝑘 − 1

𝑃𝑗 𝑗 ≥ 𝑘
 

Hence: 

𝜋𝑗 =

{
  
 

  
 

1 − 𝜌

𝑘
𝑗 = 0

1 − 𝜌𝑗+1

𝑘
1 ≤ 𝑗 ≤ 𝑘 − 1

𝜌𝑗−𝑘+1 ⋅
1 − 𝜌𝑘

𝑘
𝑗 ≥ 𝑘

 

 

4) When the system is stable, it is 𝛾 = 𝜆. Since 𝛾 = 𝑈 ⋅ 𝜇, we get 𝑈 = 𝜌. The same result can be 

obtained by observing that: 

𝑈 =∑𝑃𝑗

+∞

𝑗=1

= 1 − 𝑃0 −∑𝑃𝑗
∗

𝑘−1

𝑗=1

= 1 − 𝑘 ⋅
1 − 𝜌

𝑘
= 𝜌 

 

 


