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Exercise 1 

ACME components owns two switch production plants. In plant 1, each unit is defective with 

probability 𝑝1 = 10−5, independently from the others. In plant 2, the mean weekly number of 

defective units is equal to 5. The production of each plant is 𝑛 = 4 ⋅ 105 units per week.   

1) Compute mean and variance of the number of defective units produced by ACME in a week.  

2) Draw a qualitative plot (with as many details are possible) of the PMF of the number of 

defective units in a week.  

3) Compute the probability that the weekly number of defective units produced by ACME is 

equal to 5. 

4) Compute the probability that the weekly number of defective units produced by ACME is less 

than 3. 

5) Compute the probability that a randomly chosen unit is defective. 

A) B)

 
Suppose now that ACME units can be connected in series or in parallel as above, and that the resulting 

system works if there exists a way that connects both extremities traversing only non-defective 

systems.  

6) Explain which of the two systems has a higher chance to be functioning. Justify your findings.  

 

 

Exercise 2 

A network buffer has enough space for three packets. It employs a gated policy, meaning that it only 

accepts ingresses when the system is empty. Ingresses come in the form of messages, each one 

containing one, two or three packets, with probability 𝑞1, 𝑞2, 𝑞3 respectively. The interarrival time of 

messages is an exponentially distributed variable with a mean equal to 
1

𝜆
. The buffer processes packets 

(not messages), and the service time of a packet is an exponentially distributed variable with a mean 

equal to 
1

𝜇
. 

 

1) Model the system and draw the CTMC 

2) Compute the steady-state probabilities and the stability condition 

3) Determine which number of packets in the system is the most likely at the steady state 

4) Compute the mean number of packets in the system and in the queue. State the conditions 

under which the mean number of packets in the system is larger than one.  

5) Compute the system utilization. 

  



PECSN, 28/7/21 

Exercise 1 - Solution 

1) Given that 𝑛 is large and 𝑝 is small, we can approximate the failure probability of each plant 

using a Poisson variable, whose average is 𝜆𝑖 = 𝑛𝑖 ⋅ 𝑝𝑖. Hence, it is 𝜆1 = 4,  𝜆2 = 5. Thus, 

there are on average 9 defective units in a weekly production of 2𝑛 = 8 ⋅ 105 pieces. As for 

the variance, it is all the more reasonable to approximate the whole production using a Poisson 

variable, whose average and variance is equal to 9.  

2) The Poisson variable has a bell shape, with an infinite right tail. It peaks around its mean 

value, which is equal to 9.  

 

 

3) The probability that 5 pieces are defective is equal to 𝑝5 = 𝑒−9 ⋅
95

5!
= 0.060727 

4) The probability that less than 3 pieces are defective is equal to 𝑝0 + 𝑝1 + 𝑝2 = 1.23 ⋅ 10−4 +
1.11 ⋅ 10−3 + 4.998 ⋅ 10−3 = 6.232 ⋅ 10−3 

5) The probability is the following:  

𝑝𝑑 = 𝑃{defective} 
= 𝑃{defective|plant 1} ⋅ 𝑃{plant 1} + 𝑃{defective|plant 2} ⋅ 𝑃{plant 2} 

= 10−5 ⋅ 0.5 +
5

4 ⋅ 105
⋅ 0.5 

= 1.125 ⋅ 10−5 

6) System a) works with probability 𝑝𝑎 = 1 − 𝑝𝑑. System b) works with probability  

𝑝𝑏 = 1 − 𝑃{upper branch fails} ⋅ 𝑃{lower branch fails} 
= 1 − (1 − (1 − 𝑝𝑑)2) ⋅ 𝑝𝑑 

 

Thus, 𝑝𝑏 > 𝑝𝑎 if and only if  

1 − (1 − (1 − 𝑝𝑑)2) ⋅ 𝑝𝑑 > 1 − 𝑝𝑑 
𝑝𝑑 > (1 − (1 − 𝑝𝑑)2) ⋅ 𝑝𝑑 
1 > 1 − (1 − 𝑝𝑑)2 
𝑝𝑑 < 1 

 

which is always true. System b) is always more reliable than system a), no matter what the 

failure probability of a single component is. 

 

 

Exercise 2 – Solution 

1) The CTMC is as follows. Note that 𝑞1 + 𝑞2 + 𝑞3 = 1, obviously. 

0 1 2 3m m m

q1l

q2l

q3l

 
 

2) The steady state probabilities are computed by writing down the global equilibrium equations: 

𝑃0 ⋅ (𝑞1 + 𝑞2 + 𝑞3) ⋅ 𝜆 = 𝑃1 ⋅ 𝜇 

𝑃1 ⋅ 𝜇 = 𝑃2 ⋅ 𝜇 + 𝑃0 ⋅ 𝑞1 ⋅ 𝜆 

𝑃2 ⋅ 𝜇 = 𝑃3 ⋅ 𝜇 + 𝑃0 ⋅ 𝑞2 ⋅ 𝜆 

𝑃3 ⋅ 𝜇 = 𝑃0 ⋅ 𝑞3 ⋅ 𝜇 
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One of the above equations is redundant. The system is always stable, since it has a finite 

queue. By solving the above system, we obtain: 

𝑃0 =
1

1 +
𝜆
𝜇 ⋅ (𝑞1 + 2𝑞2 + 3𝑞3)

=
1

1 +
𝜆
𝜇 ⋅ (1 + 𝑞2 + 2𝑞3)

 

𝑃1 =
𝜆

𝜇
⋅ 𝑃0 =

𝜆

𝜇
⋅ (𝑞1 + 𝑞2 + 𝑞3)𝑃0 

𝑃2 =
𝜆

𝜇
(1 − 𝑞1) ⋅ 𝑃0 =

𝜆

𝜇
(𝑞2 + 𝑞3) ⋅ 𝑃0 

𝑃3 =
𝜆

𝜇
𝑞3 ⋅ 𝑃0 

3) From the above, it is clear that 𝑃1 ≥ 𝑃2 ≥ 𝑃3, whatever the values 𝑞𝑖. Whether 𝑃0 > 𝑃1 or 

vice versa instead depends on whether 𝜆 > 𝜇 or vice versa. Thus, the answer is 𝑃0 if 𝜆 > 𝜇, 

and 𝑃1 otherwise. 

4) It is: 

𝐸[𝑁] = ∑ 𝑛 ⋅ 𝑃𝑛

3

𝑛=1

=
𝜆

𝜇
⋅ 𝑃0 ⋅ [1 ⋅ (𝑞1 + 𝑞2 + 𝑞3) + 2(𝑞2 + 𝑞3) + 3𝑞3]

=
𝑞1 + 3𝑞2 + 6𝑞3

𝜇
𝜆

+ 𝑞1 + 2𝑞2 + 3𝑞3

=
1 + 2𝑞2 + 5𝑞3

𝜇
𝜆

+ 1 + 𝑞2 + 2𝑞3

 

𝐸[𝑁𝑞] = 1 ⋅ 𝑃2 + 2 ⋅ 𝑃3 =
𝜆

𝜇
⋅ 𝑃0 ⋅ (𝑞2 + 3𝑞3) =

𝑞2 + 3𝑞3

𝜇
𝜆

+ 𝑞1 + 2𝑞2 + 3𝑞3

=
𝑞2 + 3𝑞3

𝜇
𝜆

+ 1 + 𝑞2 + 2𝑞3

 

In order to have 𝐸[𝑁] > 1 we need to have 𝑞1 + 3𝑞2 + 6𝑞3 >
𝜇

𝜆
+ 𝑞1 + 2𝑞2 + 3𝑞3, which 

translates to 

𝑞2 + 3𝑞3 >
𝜇

𝜆
. 

 

The system utilization is 1 − 𝑃0, i.e. 𝑈 =
𝑞1+2𝑞2+3𝑞3

𝜇

𝜆
+𝑞1+2𝑞2+3𝑞3

=
1+𝑞2+2𝑞3

𝜇

𝜆
+1+𝑞2+2𝑞3

. 

 


