
Performance Evaluation of Computer Systems and Networks, 15/06/2021 

Exercise 1 

A schedule is a sequence of events, which can be of two types, A and B: 

- The probability of an event of type A is 0.4, and the one of an event B is 0.6; 

- Event A lasts for 4ms, and event B lasts for 5 ms. 

- Events are independent of each other.  

 

Let 𝑆𝑛 denote the RV that measures the time duration of a schedule of 𝑛 events.  

1) Find the probability mass function of 𝑆4 and its mean value 𝐸[𝑆4]. 
2) Compute the PMF of 𝑆𝑛 and 𝐸[𝑆𝑛], for a generic value of 𝑛. 

 

3) Assume now that the distribution of the number of events in a schedule is as follows: there 

are never less than five events, and the probability of having more than five events is 𝑝5+𝑛 =

(
1

2
)
𝑛+1

, with 𝑛 ≥ 0. Under the above hypothesis, you measure 40ms as the duration of the 

schedule. Compute the PMF of the number of events in that schedule.  

 

 

Exercise 2 

A multiprogrammed computer system has 𝑁 running processes. These processes request I/O 

operations independently, each at a rate 𝜆, with exponentially distributed inter-request times. I/O 

operations are served by an array of 𝑁 identical I/O peripherals. Each I/O operation has a duration 

which is exponential with a mean 
1

𝜇
. 

1) Model the system as a queueing system and draw the transition rate diagram 

2) Compute the steady-state probabilities and the stability condition 

3) Compute the mean response time for a process 

4) Compute the mean number of processes blocked on an I/O operation 

5) Compute the throughput of the I/O subsystem. Interpret the result. 
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Exercise 1 - Solution 

1)  A sequence of four events can last for 16, 17, 18, 19, 20 ms, depending on the number of Bs in it. 

If you consider each digit as a Bernoullian experiment, the probability of having 𝑘 Bs is ~𝐵(4,0.6), 
hence we have: 

𝑃{𝑆4 = 16 + 𝑘} = (
4
𝑘
) 0. 6𝑘 ⋅ 0. 44−𝑘, with 0 ≤ 𝑘 ≤ 4. 

The mean value for 𝑆4 is 16 + 4 ⋅ 0.6 = 18.4. 

 

2) in the general case, 𝑆𝑛 is an integer ranging from 4𝑛 to 5𝑛, and we have: 

𝑃{𝑆𝑛 = 4 ⋅ 𝑛 + 𝑘} = (
𝑛
𝑘
)0. 6𝑘 ⋅ 0. 4𝑛−𝑘, with 0 ≤ 𝑘 ≤ 𝑛. 

The mean value for 𝑆𝑛 is (4 + 0.6) ⋅ 𝑛 = 4.6 ⋅ 𝑛. 

 

3) We first need to compute all the values of 𝑛 for which 4𝑛 ≤ 40 ≤ 5𝑛. They are the intersection of 

𝑛 ≤ 10 (left-hand inequality) with 𝑛 ≥ 8 (right-hand inequality). Hence, the transmission can be of 

8, 9 or 10 events. The “a priori” probabilities of a transmission of 8, 9, 10 digits are 
1

16
,
1

32
,
1

64
, 

respectively. After you observe that the transmission is 40ms long, you can apply Bayes’s theorem 

and compute the “a posteriori” probabilities as follows: 

𝑃(𝑛|40) =
𝑃(40|𝑛) ⋅ 𝑃𝑛

∑ 𝑃(40|𝑘) ⋅ 𝑃𝑘
10
𝑘=8

, 

with 𝑛 = 8,9,10. 

The a posteriori probabilities can be found in the rightmost column of the following table: 

 

n P(40|n) P(40|n) Pn Pn product P(n|40) 

8 

 

0.016796 

 

0.0625 0.00105 16.72% 

9 

 

0.167215 

 

0.03125 0.005225 83.25% 

10 

 

0.000105 

 

0.015625 1.64E-06 0.03% 

    total 0.006277  
 

 

Exercise 2 - Solution 

There are two ways to model this system. The simplest is to observe that, since there are as many I/O 

peripherals as running processes, no queueing ever occurs, hence the system can be seen as the 

juxtaposition of 𝑁 independent M/M/1/1 systems as the one in the figure: 

0 1

l

m

 
State “1” is the one where the process is doing some I/O operation, state “0” is when it is not 

occupying the I/O peripheral. The above system admits two SS probabilities, 𝜋0 =
1

(1+𝑢)
, 𝜋1 =

𝑢

(1+𝑢)
, 

with 𝑢 =
𝜆

𝜇
, and is always stable. Therefore, we can define the state of the multiprogrammed system 

as the number of occupied I/O peripherals, ranging from 0 to 𝑁.  

The probability that 𝑘 peripherals are occupied is thus a binomial RV, with a number of trials 𝑁 and 

a probability of success equal to 𝜋1, hence: 
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𝑃𝑘 = (
𝑁
𝑘
)𝜋1

𝑘 ⋅ (1 − 𝜋1)
𝑁−𝑘 = (

𝑁
𝑘
)𝜋1

𝑘 ⋅ 𝜋0
𝑁−𝑘 = (

𝑁
𝑘
) ⋅

𝑢𝑘

(1+𝑢)𝑁
. 

The system has a finite number of states, hence it is always stable.  

The same solution could be found using the canonical procedure, i.e. seeing the system as an 

M/M/N/./N one as follows: 

 

0 1

Nl

m

2

(N-1)l

3

(N-2)l

N-1

2l

N

l

2m 3m Nm(N-1)m

 
Developing the computations yields the selfsame results. 

 

3) The mean response time for a process is 
1

𝜇
, since there is no queueing. 

4) The mean number of blocked processes is the mean of the binomial, i.e., 𝑁 ⋅ 𝜋1 =
𝑁⋅𝑢

(1+𝑢)
. 

5)  The throughput of the I/O subsystem is  

 

 

𝛾 = ∑𝜇𝑛 ⋅ 𝑃𝑛

𝑁

𝑛=1

= ∑𝑛 ⋅ 𝜇 ⋅ (
𝑁
𝑛
) ⋅

𝑢𝑛

(1 + 𝑢)𝑁

𝑁

𝑛=1

= 

= ∑𝜆 ⋅
𝑁!

(𝑛 − 1)! ⋅ (𝑁 − 𝑛)!
⋅

𝑢𝑛−1

(1 + 𝑢)𝑁

𝑁

𝑛=1

= 

= 𝑁 ⋅
𝜆

1 + 𝑢
⋅∑

(𝑁 − 1)!

(𝑛 − 1)! ⋅ (𝑁 − 1 − (𝑛 − 1))!
⋅

𝑢𝑛−1

(1 + 𝑢)𝑁−1

𝑁

𝑛=1

= 

= 𝑁 ⋅
𝜆

1 + 𝑢
⋅ ∑ (

𝑁 − 1
𝑛

) ⋅ (
𝑢

1 + 𝑢
)
𝑛

⋅ (
1

1 + 𝑢
)
(𝑁−1)−𝑛𝑁−1

𝑛=0

= 

= 𝑁 ⋅
𝜆

1 + 𝑢
= 𝑁 ⋅ 𝜇 ⋅

𝑢

1 + 𝑢
 

The last result is easily explained, since it states that the throughput is equal to the serving rate of 

each I/O peripheral, times the probability that the latter is occupied, times their overall number 𝑁. 

 


