Exercise 1

A chemical reaction may yield either an alkaline or an acid result. The probability that the result is alkaline is p. A lab technician repeats the above reaction in independent conditions, and stops when both an alkaline and an acid result have occurred at least once. Let N_{k} and N_{a} be the number of alkaline and acid outcomes recorded by the technician at the end of her experiment.

1) Compute the CDF of N_{k} and N_{a}
2) Find the probability that N_{k} exceeds N_{a}, as a function of p. Draw a graph of the latter.
3) Compute the mean values of N_{k} and N_{a}. Check limit case and justify the answer.
4) State whether or not N_{k} and N_{a} are independent and justify your answer.

Exercise 2

A system serves job at a rate μ. When it is idle, it goes into power saving (immediately). On arrival of a new job, the system wakes up again. The wake-up operation takes an exponentially distributed time, with a mean $1 / \beta$. During wake-up, the system does not accept jobs. Jobs arrive at a rate λ.

1) Model the system as a queueing system and draw its CTMC;
2) Compute the steady-state probabilities and the stability condition. State explicitly what happens of the stability condition when β increases;
3) Compute the mean number of jobs in the system;
4) Compute the mean response time of a job. Draw a graph of the latter with β on the abscissa.

Exercise 1 - Solution

1) Let us start from N_{k}.

$$
\begin{aligned}
P\left\{N_{k}=1\right\}= & \sum_{n=1}^{+\infty} P\{n \text { consecutive acid and one alkaline }\}+P\{\text { one alkaline and one acid }\} \\
& =\sum_{n=1}^{+\infty}(1-p)^{n} \cdot p+p \cdot(1-p)=(1-p) \cdot p \cdot\left(\frac{1}{p}+1\right)=(1-p) \cdot(1+p)=1-p^{2}
\end{aligned}
$$

And, for $n>1, P\left\{N_{k}=n\right\}=P\{n$ consecutive acid and one alkaline $\}=p^{n} \cdot(1-p)$
The CDF of N_{k} is:

$$
\begin{gathered}
F_{k}(1)=1-p^{2} \\
F_{k}(n)=1-p^{2}+\sum_{i=2}^{n} p^{i} \cdot(1-p)=(1-p)\left[\frac{1-p^{n+1}}{1-p}-(1+p)+(1+p)\right]=1-p^{n+1}
\end{gathered}
$$

Therefore, it is $F_{k}(n)=1-p^{n+1} \forall n \geq 1$
Define $q=1-p$: for N_{a} it is $P\left\{N_{a}=1\right\}=(1-q) \cdot(1+q)=p \cdot(2-p), P\left\{N_{a}=n\right\}=q^{n} \cdot p=$ $(1-p)^{n} \cdot p$.

Symmetrically, it is $F_{a}(n)=1-(1-p)^{n+1} \forall n \geq 1$
2) Event $\left\{N_{k}>N_{a}\right\}$ occurs when three or more reactions are observed, and the last one is acid. Hence:

$$
P\left\{N_{k}>N_{a}\right\}=\sum_{n=2}^{+\infty} P\left\{N_{k}=n\right\}=\sum_{n=2}^{+\infty} p^{n} \cdot q=1-q \cdot(1+p)=p^{2}
$$

3) From the formula, we obtain:

$$
\begin{aligned}
& E\left[N_{k}\right]=1 \cdot P\left\{N_{k}=1\right\}+\left[\sum_{n=2}^{+\infty} n \cdot P\left\{N_{k}=n\right\}\right]= \\
& (1-p) \cdot(1+p)+(1-p) \cdot\left[\left(\sum_{n=2}^{+\infty} n \cdot p^{n}\right)\right]= \\
& (1-p) \cdot(1+p)+(1-p) \cdot\left[\left(\sum_{n=1}^{+\infty} n \cdot p^{n}\right)-p\right]= \\
& (1-p) \cdot\left[\left(\frac{p}{(1-p)^{2}}-p+1+p\right)\right]= \\
& \frac{p}{1-p}+(1-p)
\end{aligned}
$$

We have $\lim _{p \rightarrow 1} E\left[N_{k}\right]=+\infty$. This can be explained by observing that, if no acid outcome ever appears, the sequence of alkaline ones becomes infinitely long. Furthermore, we have $\lim _{p \rightarrow 0} E\left[N_{k}\right]=1$. In fact, if no alkaline outcome ever appears, the only sequences that we may ever obtain are infinitely long sequences of acid outcomes, terminated by an alkaline one anyway (this is mandatory for the experiment to terminate). Hence the mean number of alkaline outcomes will be equal to one.

PECSN - 1st appello 2021

Symmetrically, we get:

$$
E\left[N_{a}\right]=\frac{1-p}{p}+p
$$

And symmetric explanations hold in limit cases, mutatis mutandis.
4) The two RVs are not independent. In fact, $P\left\{N_{k}=a, N_{a}=b\right\}=0$ if $a>1, b>1$. On the other hand, it is $P\left\{N_{k}=a\right\} \cdot P\left\{N_{a}=b\right\} \neq 0$.

Exercise 2 - Solution

State w is the one during which the system wakes up. Global equilibrium equations in states 0 and w yield the following:

$$
p_{0} \cdot \lambda=p_{1} \cdot \mu, p_{w} \cdot \beta=p_{0} \cdot \lambda
$$

And then we have

$$
p_{j} \cdot \lambda=p_{j+1} \cdot \mu, j \geq 1
$$

After a few straightforward manipulations, normalization reads:

$$
p_{0} \cdot\left[1+\frac{\lambda}{\beta}+\sum_{j=1}^{+\infty}\left(\frac{\lambda}{\mu}\right)^{j}\right]=1
$$

Call $u=\lambda / \mu$ for simplicity. The stability condition is $u<1$, and does not depend on β. SS probabilities are:

$$
\begin{gathered}
p_{0}=\frac{(1-u) \cdot \beta}{\beta+\lambda \cdot(1-u)} \\
p_{w}=\frac{(1-u) \cdot \lambda}{\beta+\lambda \cdot(1-u)} \\
p_{j}=\frac{(1-u) \cdot \beta \cdot u^{j}}{\beta+\lambda \cdot(1-u)}, j \geq 1
\end{gathered}
$$

To compute the mean number of jobs in the system, one has to remember that the system contains one job in state w as well. Therefore:

$$
E[N]=\sum_{j=1}^{+\infty} j \cdot p_{j}+1 \cdot p_{w}=\cdots=1+\frac{2 u-1}{1-u} \cdot \frac{1}{1+\frac{\lambda}{\beta}(1-u)}
$$

One can check that $\lim _{\beta \rightarrow+\infty} E[N]=\frac{u}{1-u}$, and that $\lim _{\beta \rightarrow 0} E[N]=1$. Both limits make sense intuitively.
In order to compute the mean response time, one needs to remember that this is not a PASTA system, since the system does not accept jobs when in state w. Therefore, it is $\bar{\lambda}=\lambda \cdot\left(1-p_{w}\right)=\frac{\lambda}{1+\frac{\lambda}{\beta}(1-u)}$. This said, one can apply Little's law and find:

$$
E[R]=\frac{E[N]}{\bar{\lambda}}=\cdots=\frac{1}{\lambda} \cdot \frac{u}{1-u}+\frac{1-u}{\beta}
$$

The first term in the above expression is the mean response time of a standard $M / M / 1$. The second term is due to the added wake-up time, and goes to zero as β increases.

