Exercise 1

Consider a MAC-layer protocol where a transmitter sends frames whose length is L bits over a line whose transmission speed is C bits per second. The receiver acknowledges the frames by sending back an ACK, if the frame has been received correctly, or a NACK, if the frame is corrupted. A frame is corrupted if at least one bit is corrupted, and the link's bit error rate (i.e., the probability that a single bit is corrupted) is constant and equal to p. The transmitter retransmits the same frame until it receives an ACK.
Assume that:

- all transmitted bits are independent of each other;
- an ACK/NACK never gets corrupted;
- the propagation time along both directions of the link is constant and equal to t;
- the time it takes to transmit an ACK/NACK is equal to t^{\prime}.

1) Compute the probability $p_{\text {err }}$ that a frame is corrupted;
2) Compute the values that the RV T, "correct transmission time of a frame" can assume;
3) Compute the PMF of the above RV;
4) Compute the mean time of correct transmission of a frame;
5) Assuming that a frame has been corrupted $k-1$ consecutive times, find the conditional probability that it will be corrupted at the subsequent transmission attempt. Justify the result.

Exercise 2

Consider a switch, whose output link has a capacity of C bits per second, connected to 50 input terminals. Each terminal sends packets whose length is exponentially distributed, with a mean of 1000 bits. The interarrival times of packets from a terminal are exponentially distributed. For half of the terminals, the mean interarrival time is 10 seconds. For the other half, it is 5 seconds.

1) Compute the value of C so that the mean number of packets in the switch is equal to 5
2) Compute the value of C so that the $99^{\text {th }}$ percentile of the number of packets in the switch is equal to 5 , call it C^{\prime}.
3) This point differs depending on the year when you attended the course
a. 2019 (last edition): assume that the length of packets is constant. Solve again point 1). Comment on your findings.
b. Previous editions: Find the condition on C by which the standard deviation of the number of jobs in the system is larger than the mean.
4) Compute the $99^{\text {th }}$ percentile of the response time of a packet as a function of C.

Exercise 1 - Solution

1) $p_{\text {err }}=1-\binom{L}{0} p^{0} \cdot(1-p)^{L-0}=1-(1-p)^{L}$
2) T can be equal to $t_{k}=k \cdot\left(2 t+t^{\prime}+\frac{L}{c}\right), k \geq 1$ being the number of required transmissions before an ACK is received back.
3) Call $P_{j}=P\left\{T=t_{j}\right\}$. It is:

$$
P_{j}=\left(\prod_{i=1}^{j-1} p_{e r r, i}\right) \cdot\left(1-p_{e r r, j}\right)=p_{e r r}^{j-1} \cdot\left(1-p_{e r r}\right)
$$

4) It can be easily seen that T is a (scaled) geometric variable, hence its mean value is

$$
E[T]=\frac{\left(2 t+t^{\prime}+L / C\right)}{\left(1-p_{e r r}\right)}
$$

5) The conditional probability is

$$
\begin{aligned}
& P\{\text { corrupted k-th time } \mid \text { corrupted k-1 times }\}=\frac{P\{\text { corrupted k consecutive times }\}}{P\{\text { corrupted } \mathrm{k}-1 \text { times }\}} \\
& =\frac{p_{\text {err }}^{k}}{p_{\text {err }}^{k-1}}=p_{\text {err }}=P\{\text { corrupted }\}
\end{aligned}
$$

This is obvious, since retransmissions are independent of each other.

Exercise 2-Solution

The system can be modeled as an $\mathrm{M} / \mathrm{M} / 1$ queueing system where:

- $\mu=\frac{C}{E[L]}=\frac{C}{1000}$
- $\lambda=25 \cdot \frac{1}{10}+25 \cdot \frac{1}{5}=7.5$

1) The mean number of jobs in an $M / M / 1$ is given by Kleinrock's formula, i.e. $E[N]=\frac{\rho}{1-\rho}=$ $\frac{\lambda}{\mu-\lambda}$. Imposing $E[N]=5$ and solving the latter for C yields $C=9000$.
2) We also know that, in an $\mathrm{M} / \mathrm{M} / 1$, SS probabilities are $p_{k}=\rho^{k} \cdot(1-\rho)$, hence we need to impose that:

$$
\sum_{k=0}^{5} p_{k}=(1-\rho) \cdot \frac{1-\rho^{6}}{1-\rho}=0.99
$$

This yields $\rho^{6}=0.01$, i.e. $\rho=\frac{1}{\sqrt[3]{10}} \cong 0.464$. Solving this equality for C yields

$$
C^{\prime} \cong 16163
$$

3) The variance of the number of jobs in the system is the variance of a geometric RV, i.e. $\operatorname{Var}(N)=\frac{\rho}{(1-\rho)^{2}}$. Hence the inequality that checks if the std is larger than the mean is the following:

$$
\sqrt{\frac{\rho}{(1-\rho)^{2}}}>\frac{\rho}{1-\rho}
$$

Which quickly boils down to $\rho<1$. Therefore, the required condition is the same as the stability condition, i.e. $C>7500$.

On the other hand, if the length of the packets is constant, the system is an M/D/1, for which PK's formula yields the mean number of jobs in the system:

$$
E[N]=\rho+\frac{\rho^{2}}{2(1-\rho)}
$$

Imposing $E[N]=5$ and solving the latter for ρ yields the following: $\rho=6 \pm \sqrt{26}$. Since stability requires $\rho<1$, the only good solution is $\rho=6-\sqrt{26} \cong 0.901$. Solving the latter for C yields $C \cong 8324$.
The value required is smaller than at point 1), since in this case there is no randomness in the transmission. Randomness increases queueing, as PK's formula shows.
4) In an $M / M / 1$ system, the response time is an exponential $R V$, whose CDF is the following:

$$
R(t)=1-e^{-\mu(1-\rho) t}
$$

Hence the required equation is $1-e^{-(\mu-\lambda) \pi_{99}}=0.99$, to be solved for π_{99}. After a few straightforward computations, one gets:

$$
\pi_{99}=\frac{2 \log 10 \cdot E[L]}{C-7.5 \cdot E[L]}
$$

