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Exercise 1 

1. Flip a fair coin twice. What is the probability that you get two heads (HH)? What is the probability 

that you get heads followed by tails (HT)? Are these probabilities the same? 

2. Flip a fair coin repeatedly until you get heads and tails in a row (HT). What is the probability that it 

takes 𝑛 flips to win?  

3. Flip a fair coin repeatedly until you get two heads in a row (HH). What is the probability that it takes 

𝑛 flips to win? (suggestion: go all the way up to 𝑛 = 8 before making conclusions). 

4. Based on the answers to points 2 and 3, is the probability of a large value of 𝑛 equal in the two cases? 

If it is not, which probability is the highest?  

5. Player A and B play the following game: they flip a coin repeatedly until either HH occurs (A wins) 

or HT occurs (B wins). Is the game fair (i.e., are the two players equally likely to win)? 

 

 

Exercise 2 

Consider a system where messages arrive (exponentially, at a rate 𝜆) and packets are buffered and served 

(exponentially, at a rate 𝜇). Each message carries two packets. The system has enough memory to store two 

packets, and will reject a message unless it can store both packets.  

1. Model the system as a queuing system and draw the CTTC (or transition-rate diagram) 

2. Compute the stability condition, the SS probabilities and the mean number of packets in the system 

3. Compute the probability that a message is lost, and, from the latter, the mean rate of accepted 

packets 

4. Compute the system throughput (in packets per second) 

5. Compute the z-transform of the number of packets in the system and, using the latter, the mean and 

the variance of the number of packets in the system. 

  



PECSN 7/7/2020 

Exercise 1 - Solution 

1. The two probabilities are obviously the same, and each one is (
1

2
)
2

=
1

4
 

2. This is clearly a uniform probability model. The number of 𝑛-sequences is 2𝑛, whereas the number of good 

𝑛-sequences can be computed by constructing a tree. The topmost two levels of the tree are HT, and every 

time a level 𝑗 is added, only feasible sequences are generated (i.e., you only add a child T to a parent T, whereas 

you add both children H and T to a parent H). The tree is in the figure besides. The number of good 𝑛-sequences 

increases by one at each step, i.e., it grows linearly and is equal to 𝑛 − 1. Hence: 

𝑃{𝑁𝐻𝑇 = 𝑛} =
𝑛−1

2𝑛
, 𝑛 ≥ 2 

 

THT

H

T

H

T

T

T

T

T

T

7 6 5 4 3 2

6 5 4 3 2 1

level

count

T

TTT

H

H

TT

T

H
 

 

3. We repeat the same argument as before and find that the number of good 𝑛-sequences is different. The 

highest two levels of the tree are HH, and every time a level 𝑗 is added, you only add a child T to a parent H, 

whereas you add both children H and T to a parent T. The tree is in the figure below. By counting the number 

of nodes at each level, one immediately gets that the number of good 𝑛-sequences is the 𝑛 − 1 number in the 

Fibonacci sequence 𝑆𝑛−1. Therefore: 

𝑃{𝑁𝐻𝐻 = 𝑛} =
𝑆𝑛−1

2𝑛
, 𝑛 ≥ 2 
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4. Given the above, we can observe that 𝑆𝑛−1 > 𝑛 − 1 starting from 𝑛 = 6 (The fact that the Fibonacci 

sequence is superlinear is well known). Therefore, the probability of observing long sequences is larger if you 

bet on HH.  

 

5. Counterintuitively, the game is fair, despite the fact that you observe longer sequences more often with HH 

than with HT. This can be proved by observing that the only 𝑛-sequence that can go on indefinitely without 

either player winning is {TT...TT} (every other sequence has at least one H in the middle, hence leads to one 

of the two winning). As soon as one H appears, the winner is decided by the next flip. So, there is only one 

sequence that leads to the decisive flip, and it is {TTT…TT}H. After that, both players have the same 50% 

chance to win.  

 

Exercise 2 – solution 

It is expedient to use the number of packets as a state characterization. This way, the system has a finite 

memory, equal to 2, and only admits arrivals in state 0. The CTTC is the following: 

 

The SS equations are: 

𝑝0 ∙ 𝜆 = 𝑝1 ∙ 𝜇 

𝑝1 ∙ 𝜇 = 𝑝2 ∙ 𝜇 

𝑝2 ∙ 𝜇 = 𝑝0 ∙ 𝜆 

And the normalization condition is: 

𝑝0 + 𝑝1 + 𝑝2 = 1 

 

Using two out of three SS equations (one is linearly dependent on the other two) and the normalization, one 

straightforwardly obtains: 

𝑝1 = 𝑝2 =
𝜆

2𝜆 + 𝜇
 

𝑝0 =
𝜇

2𝜆 + 𝜇
 

The system is always stable, as are all a finite-memory ones. The mean number of packets in the system is: 

𝐸[𝑁] = 0 ∙ 𝑝0 + 1 ∙ 𝑝1 + 2 ∙ 𝑝2 =
3𝜆

2𝜆 + 𝜇
 

The loss probability is the probability that the system is in states 1 or 2. Therefore, it is: 

𝑝𝐿 = 𝑝1 + 𝑝2 =
2𝜆

2𝜆 + 𝜇
 

The rate at which the system accepts packets is instead: 

𝜆𝑝𝑘𝑡 = 2 ∙ 𝜆 ∙ (1 − 𝑝𝐿) =
2𝜆 ∙ 𝜇

2𝜆 + 𝜇
 

The throughput (in packets per second) is obviously 𝛾 = 𝜆𝑝𝑘𝑡. The definition yields: 

𝛾 = 𝜇 ∙ (𝑝1 + 𝑝2) = 𝜇 ∙
2𝜆

2𝜆 + 𝜇
 

Which is obviously the same expression.  

By definition, we have 𝑃(𝑧) = ∑ 𝑝𝑘 ∙ 𝑧
𝑘+∞

𝑘=0 , i.e.: 

𝑃(𝑧) =
𝜇

2𝜆 + 𝜇
+ (𝑧 + 𝑧2) ∙

𝜆

2𝜆 + 𝜇
=
𝜆 ∙ 𝑧2 + 𝜆 ∙ 𝑧 + 𝜇

2𝜆 + 𝜇
 

 

We compute: 

𝑃′(𝑧) =
2𝜆∙𝑧+𝜆

2𝜆+𝜇
,  𝑃′′(𝑧) =

2𝜆

2𝜆+𝜇
 

And we know from the theory that: 

𝐸[𝑁] = 𝑃′(1) =
3𝜆

2𝜆 + 𝜇
 

𝑉𝑎𝑟(𝑁) = 𝑃"(1) + 𝑃′(1) − 𝑃′(1)2 =
2𝜆

2𝜆 + 𝜇
+

3𝜆

2𝜆 + 𝜇
− (

3𝜆

2𝜆 + 𝜇
)
2

=
𝜆2 + 5𝜆 ∙ 𝜇

(2𝜆 + 𝜇)2
 

 


