Name and surname: \qquad Matricola: \qquad
I will sit for the oral examination in:
\square February
April (*)
The above decision cannot be changed later.
(*) If you are ineligible, your written test will be discarded.

Exercise 1

Consider function:

$$
f(x)=\left\{\begin{array}{cc}
-\alpha \cdot x^{2}+1 & x \in\left[-\frac{1}{\sqrt{\alpha}} ;+\frac{1}{\sqrt{\alpha}}\right] \\
0 & \text { otherwise }
\end{array}\right.
$$

1) Find α such that the above one is a PDF.
2) Let X be a RV having $f(x)$ as a PDF. Compute its mean, median and variance.
3) Let $Y=\log \left(X+\frac{1}{\sqrt{\alpha}}\right)$. Compute $f_{Y}(y)$.

Exercise 2

A smart-service industry operates a fleet of N identical robots, each one composed of m electro-mechanic subsystems. When a robot is switched on, the mean-time-to-failure of subsystem j is exponential, with a rate $\lambda_{j}, 1 \leq j \leq m$. As soon as one subsystem fails, the robot must be switched off, removed from operation and repaired. Repairs occur in a maintenance bay, which has a FIFO queue, and they take an exponential time whose mean is $1 / \mu$, regardless of which subsystem is being repaired. After the repairment, the robot is switched on and put back into operation.

1) Model the system and draw its CTMC (or transition-rate diagram)
2) Compute the probability that there are n operating robots at the steady state, and the stability condition under which a steady state is reached.
3) Compute the mean number of operating robots.
4) Compute the mean downtime for a robot following a failure of one of its subsystems.

Exercise 1 - Solution

1) One should compute α such that:

$$
\int_{-\frac{1}{\sqrt{\alpha}}}^{+\frac{1}{\sqrt{\alpha}}}\left(-\alpha \cdot x^{2}+1\right) d x=\left[\frac{-\alpha \cdot x^{3}}{3}+x\right]_{-\frac{1}{\sqrt{\alpha}}}^{+\frac{1}{\sqrt{\alpha}}}=1
$$

After a few straightforward manipulations, one gets $\alpha=16 / 9$.
2) Function $f(x)$ is even, hence its mean and median are null. From the above, one obtains

$$
\operatorname{Var}(X)=E\left[X^{2}\right]=\int_{-\frac{3}{4}}^{+\frac{3}{4}} x^{2}\left(-\frac{16}{9} \cdot x^{2}+1\right) d x=\frac{3}{80}
$$

3) $Y=\log \left(X+\frac{3}{4}\right)$. Therefore, Y is defined in $[-\infty ; \log (3 / 2)]$, and

$$
F_{Y}(k)=P\{Y \leq k\}=P\left\{\log \left(X+\frac{3}{4}\right) \leq k\right\}=P\left\{X+\frac{3}{4} \leq e^{k}\right\}=P\left\{X \leq e^{k}-\frac{3}{4}\right\}=F_{X}\left(e^{k}-\frac{3}{4}\right)
$$

It is:

$$
F_{X}(x)=\int_{-\frac{3}{4}}^{x}\left(-\frac{16}{9} \cdot y^{2}+1\right) d y=\left[\frac{-16}{27} y^{3}+y\right]_{-\frac{3}{4}}^{x}=\left[-\frac{16}{27} x^{3}+x\right]-\left[\frac{16}{27} \cdot \frac{27}{64}-\frac{3}{4}\right]=-\frac{16}{27} x^{3}+x+\frac{1}{2}
$$

Therefore:

$$
\begin{gathered}
F_{Y}(k)=-\frac{16}{27}\left(e^{k}-\frac{3}{4}\right)^{3}+\left(e^{k}-\frac{3}{4}\right)+\frac{1}{2}=-\frac{16}{27}\left(e^{3 k}-\frac{27}{64}-\frac{9}{4} e^{2 k}+\frac{27}{16} e^{k}\right)+e^{k}-\frac{1}{4} \\
=-\frac{16}{27} e^{3 k}+\frac{4}{3} e^{2 k}
\end{gathered}
$$

From the above, we get:

$$
f_{Y}(k)=\frac{d F_{Y}(k)}{d k}=-\frac{16}{9} e^{3 k}+\frac{8}{3} e^{2 k}=\frac{8}{3} e^{2 k}\left(1-\frac{2}{3} e^{k}\right)
$$

Exercise 2 - Solution

1) The system is a finite population one, the population being N robots. Call $\lambda=\sum_{j=1}^{m} \lambda_{j}$. When all robots are operating, the arrival (i.e., subsystem failure) rate is thus $N \cdot \lambda$ due to independence. However, whenever one subsystem fails, the robot it belongs to is halted, hence there will be $N-1$ operating robots, hence an arrival rate of $(N-1) \cdot \lambda$, etc.
All in all, the CTMC can be deduced from the one of a finite-population system having N individuals (i.e., products) and an arrival rate λ. This is also consistent with the view that a robot can individually fail with a rate λ, since it contains independent subsystems whose failure rate are λ_{j} (recall the well-known theorem about the minimum of independent exponential distributions). We use the number of repaired robots as a state characterization (substitute N for U in the graph below):

$2,3,4$) Once the above interpretation is understood, the computation for the above results can be found on my handouts (see "finite-population systems"). Here are the results:

- The system is always stable (since it has a finite population). The number of operating robots is the complement to N of the number of repaired robots.
$p_{N-n}=\left(\frac{\lambda}{\mu}\right)^{n} \cdot \frac{N!}{(N-n)!} \cdot p_{0}, 0 \leq n \leq N$ with $p_{0}=\frac{1}{\sum_{j=0}^{N}\left(\frac{\lambda}{\mu}\right)^{j} \cdot \frac{N!}{(N-j)!}}$, is the steady-state probability to have $N-n$ repaired robots, hence: $\pi_{x}=\frac{\left(\frac{\lambda}{\mu}\right)^{N-x} \cdot \frac{N!}{x!}}{\sum_{j=0}^{N}\left(\frac{\lambda}{\mu}\right)^{j} \cdot \frac{N!}{(N-j)!}}, 0 \leq x \leq N$, is the SS probability to have x operating robots.
- The mean number of operating robots is $N-E[n]=\frac{\mu}{\lambda} \cdot\left(1-p_{0}\right)$
- The mean downtime of a repaired robot is $E[R]=\frac{N}{\mu \cdot\left(1-p_{0}\right)}-\frac{1}{\lambda}$

