Exercise 1

You have two independent unfair coins. The probability of heads are p and q, respectively, for coin 1 and 2. You play the following game: flip coin 1 until heads come up, and then flip coin 2 once. If coin 2 is heads, the game ends, otherwise you resume flipping coin 1 , and so on.
Let T be the RV that counts the number of flips of coin 1 before the game ends.

1) Compute the PMF and the CDF of RV T.
2) Compute the mean value of T and its variance

Exercise 2

A network server handles job lists, which are sent from the outside world at a constant rate λ, with exponential interarrival times. A list includes an arbitrary number of jobs. The probability that a list includes n jobs is equal to π_{n}. The server processes individual jobs in FIFO order. A job's service time is an exponential RV with a mean equal to $\frac{1}{\mu}$. The server only accepts a new job list when it is idle.

1) model the system and draw the CTMC;
2) compute the steady-state probabilities and the stability condition; provide an interpretation for your findings.
3) compute the probability that a job list is rejected;
4) compute the distribution of the job's response time;
5) compute the server utilization.

Exercise 1-Solution

The model is no different from the following: you always flip both coins simultaneously, and you win when you get two heads simultaneously. Since the coins are independent, the probability of getting two heads simultaneously is $p q$, hence T is a geometric RV with a probability of success $p q$ (to be more specific, the version of a geometric RV that counts the number of trials before the first success). For the latter, we have:

$$
\begin{gathered}
p_{k}=P\{T=k\}=(1-p q)^{k-1} \cdot p q \\
F(k)=P\{T \leq k\}=1-(1-p q)^{k} \\
E[T]=\frac{1}{p q} \\
\operatorname{Var}(T)=\frac{1-p q}{(p q)^{2}}
\end{gathered}
$$

To compute the mean and variance, one may resort to the PGF:

$$
G(z)=\sum_{k=1}^{+\infty} z^{k} \cdot(1-p q)^{k-1} \cdot p q=\frac{z p q}{1-z+z p q}
$$

And use the well-known relationships $E[T]=G^{\prime}(1), \operatorname{Var}(T)=G^{\prime \prime}(1)+G^{\prime}(1)-G^{\prime}(1)^{2}$
If one misses the above trick, the PMF and CDF can still be found by taking an alternative (though considerably longer) route. Start from small values of k and compute the PMF and CDF manually:

$$
\begin{aligned}
& \text { - } \quad k=1: p_{1}=p q \text { and } F(1)=p q \\
& \text { - } \quad k=2 \text { : } \\
& p_{2}=(1-p) p q+p(1-q) p q=p q(1-p q) \\
& F(2)=F(1)+p_{2}=1-(1-p q)^{2}
\end{aligned}
$$

One can then observe the following general relationships

$$
\begin{gathered}
p_{k}=P\{T=k \mid T>k-1\} \cdot P\{T>k-1\}=p q \cdot[1-F(k-1)] \\
F(k)=F(k-1)+p_{k}=p q+(1-p q) \cdot F(k-1)
\end{gathered}
$$

From which one gets:

$$
\begin{gathered}
p_{3}=p q \cdot[1-F(k-1)]=p q \cdot(1-p q)^{2} \\
F(3)=p q+(1-p q) \cdot F(2)=1-(1-p q)^{3}
\end{gathered}
$$

At this point, it is easy to venture that the general forms for the PMF and CDF should be:

$$
\begin{aligned}
& p_{k}=p q \cdot(1-p q)^{k-1} \\
& F(k)=1-(1-p q)^{k}
\end{aligned}
$$

The above thesis can be proved by induction, exploiting the two general relationships above.

Exercise 2 - Solution

1) The CTMC is as follows. Normalization must hold in the π_{n} probabilities, i.e., $\sum_{n=1}^{+\infty} \pi_{n}=1$.

2) The steady state probabilities are computed by writing down the global equilibrium equations:

$$
\begin{gathered}
p_{0} \cdot \lambda=p_{1} \cdot \mu \\
p_{j} \cdot \mu=p_{j+1} \cdot \mu+p_{0} \cdot \lambda \cdot \pi_{j}, \quad j \geq 1
\end{gathered}
$$

From the above one readily obtains:

$$
p_{j}=p_{0} \cdot \frac{\lambda}{\mu} \cdot \sum_{i=j}^{+\infty} \pi_{i}, j \geq 0
$$

By imposing the normalization condition $\sum_{j=0}^{+\infty} p_{j}=1$, one obtains the following:

$$
\begin{aligned}
& p_{0}+\sum_{j=1}^{+\infty}\left(p_{0} \cdot \frac{\lambda}{\mu} \cdot \sum_{i=j}^{+\infty} \pi_{i}\right)=1 \\
& p_{0}\left[1+\frac{\lambda}{\mu} \cdot \sum_{j=1}^{+\infty}\left(\sum_{i=j}^{+\infty} \pi_{i}\right)\right]=1 \\
& p_{0}\left[1+\frac{\lambda}{\mu} \cdot \sum_{j=1}^{+\infty} j \cdot \pi_{j}\right]=1 \\
& p_{0}\left[1+\frac{\lambda}{\mu} \cdot E[\Pi]\right]=1 \\
& p_{0}=\frac{1}{1+\frac{\lambda}{\mu} \cdot E[\Pi]}
\end{aligned}
$$

The stability condition is that $E[\Pi]$ should be finite. Stability does not depend on λ or μ, since the server does not accept job lists unless idle, hence the rate of services and arrivals are immaterial. Moreover, we get:

$$
p_{j}=\frac{\frac{\lambda}{\mu} \cdot \sum_{i=j}^{+\infty} \pi_{i}}{1+\frac{\lambda}{\mu} \cdot E[\Pi]}=\frac{1-F_{\Pi}(j-1)}{\frac{\mu}{\lambda}+E[\Pi]}, j \geq 1
$$

3) The probability that a job list is rejected is:

$$
p_{L}=1-p_{0}=\frac{E[\Pi]}{\frac{\mu}{\lambda}+E[\Pi]}
$$

4) Whenever a list arrives, the system is empty by hypothesis. Therefore, the response time of a job arriving in a list that has $n-1$ jobs ahead of it will be an Erlang with n stages. The probability that an arriving job is the $n^{\text {th }}$ in a list is:

$$
\sum_{j=n}^{+\infty} \pi_{j} \cdot \frac{1}{j}
$$

Since i) that list must include at least n jobs, and ii) that job must be the $n^{\text {th }}$ in that list (while it could be any other with the same probability). Therefore, the required answer is:

$$
\begin{gathered}
P\{R \leq t\}=\sum_{n=1}^{+\infty} P\left\{R \leq t \mid n^{t h} j o b s\right\} \cdot P\left\{n^{t h} j o b\right\}= \\
\sum_{n=1}^{+\infty}\left\{\left[1-\sum_{k=0}^{n-1} e^{-\mu t} \frac{(\mu t)^{k}}{k!}\right] \cdot\left[\sum_{j=n}^{+\infty} \pi_{j} \cdot \frac{1}{j}\right]\right\}
\end{gathered}
$$

5) The server utilization is equal to the loss probability:

$$
U=p_{L}=1-p_{0}=\frac{E[\Pi]}{\frac{\mu}{\lambda}+E[\Pi]}
$$

