
 

1 

 

Notes on Queueing Theory 

New version, 2019 

Student version 

 

Last saved: 04/08/2022 09:52 



 

2 

 

Index 

1 General Information ....................................................................................................... 5 

2 Introduction to Queueing Theory ................................................................................... 6 

3 Analysis of queueing nodes in isolation ........................................................................ 9 

3.1 Characterizing the state of a queueing node ............................................................ 9 

3.1.1 Birth-only process .......................................................................................... 12 

3.1.2 Two-state birth-death process ........................................................................ 13 

3.2 Steady-state analysis of birth-death systems ......................................................... 14 

3.3 M/M/1 systems ...................................................................................................... 17 

3.3.1 Mean performance indexes ............................................................................ 20 

3.3.2 An alternative way to compute mean performance indexes .......................... 22 

3.3.3 Arrival-time and random-observer probabilities............................................ 24 

3.3.4 Distribution of response and waiting times.................................................... 25 

3.3.5 Exercise .......................................................................................................... 28 

3.4 M/M/C systems ..................................................................................................... 29 

3.4.1 Exercise: comparison of the response time for queueing systems ................. 34 

3.4.2 Delay centers: M/M/∞ systems ..................................................................... 34 

3.4.3 Models, CTMCs and performance indexes .................................................... 35 

3.5 Discouraged arrivals .............................................................................................. 36 

3.6 Systems with finite memory: M/M/1/K ................................................................ 37 

3.6.1 Adding queueing space does increase the utilization..................................... 39 

3.7 Systems with finite populations: M/M/1/*/U ........................................................ 40 

3.8 Systems with bulk arrivals .................................................................................... 43 

3.9 Systems with non-exponential service time distributions ..................................... 46 

3.9.1 M/G/∞ systems and insensitivity ................................................................... 49 

3.9.2 Exercise: M/En/1 system ................................................................................ 49 

4 Queueing Networks...................................................................................................... 51 

4.1 Characterizing the output of a service center ........................................................ 53 

4.2 From Burke’s theorem to queueing networks ....................................................... 54 

4.2.1 Queueing networks with feedback loops ....................................................... 56 

4.3 General results for open queueing networks ......................................................... 57 

4.4 Closed Queueing Networks ................................................................................... 60 

4.4.1 Buzen’s convolution algorithm ...................................................................... 63 



Notes on queueing theory (student version) – Giovanni Stea – last saved: 04/08/22 

3 

 

4.4.2 Performance indexes in Closed Queueing Networks ..................................... 64 

4.5 Classed queueing networks ................................................................................... 68 

4.5.1 Classed queueing systems in isolation ........................................................... 69 

4.5.2 Open classed queueing networks ................................................................... 70 

4.5.3 Exercise – response times in a routed network .............................................. 71 

4.6 Closing remarks on FCFS queueing networks ...................................................... 72 

5 Processor-sharing queueing systems ............................................................................ 73 

6 Exercises ...................................................................................................................... 77 

6.1 Single-queue systems ............................................................................................ 77 

6.1.1 Problem .......................................................................................................... 77 

6.1.2 Problem .......................................................................................................... 78 

6.1.3 Problem .......................................................................................................... 80 

6.2 Queueing networks ................................................................................................ 84 

6.2.1 Problem (open queueing network) ................................................................. 84 

6.2.2 Problem (open queueing network) ................................................................. 85 

6.2.3 Problem (closed queueing network) .............................................................. 87 

6.2.4 Problem (classed open queueing network) .................................................... 89 

6.2.5 Problem (classed open QN of PS systems) .................................................... 91 

7 Appendix ...................................................................................................................... 93 

7.1 Stochastic processes .............................................................................................. 93 

7.1.1 Markov processes ........................................................................................... 96 

7.1.2 Example: Bernoulli process ........................................................................... 97 

7.1.3 Example: Poisson process .............................................................................. 98 

7.1.4 Properties of Poisson processes ................................................................... 100 

7.2 Formal derivation of Chapman-Kolmogorov equations ..................................... 101 

7.2.1 M/M/1 system .............................................................................................. 101 

7.2.2 M/M/2 system .............................................................................................. 104 

7.3 Useful mathematical series .................................................................................. 107 

7.3.1 Sums of powers ............................................................................................ 107 

7.3.2 Power series ................................................................................................. 107 

7.3.3 Exponential functions .................................................................................. 107 

7.3.4 Binomial coefficients ................................................................................... 107 

 



Notes on queueing theory (student version) – Giovanni Stea – last saved: 04/08/22 

4 

 

placeholder



 

5 

 

1 General Information 

Prof. Ing. Giovanni Stea 

Dipartimento di Ingegneria dell'Informazione, University of Pisa  

Largo L. Lazzarino 1, 56122 Pisa - Italy  

Ph. : (+39) 050-2217.653 (direct) .599 (switch)  

Fax : (+39) 050-2217.600 

E-mail: giovanni.stea@unipi.it 

 

 

Useful references:  

Most of the material found in these notes can be found on the following book: 
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2 Introduction to Queueing Theory 

Queueing theory is an analytical technique to model systems and get performance measures out of 

them. It is based on the observation that most of the work in computer systems/networks (and in many 

other, non-computer-related contexts) is performed by entities (e.g., a CPU, a disk, a peripheral) that 

handle one job at a time. Thus, if there are many jobs requiring service, they will queue up in a 

waiting queue, and will eventually get served when those ahead of them have been served.  

Why should one employ a queue at all? Because queues increase system utilization. In fact, if there 

is no queue, then the system will just reject jobs when it is busy, and then will have to wait for the 

next job arrival when it is idle. Instead, if we allow jobs to queue up, then the next (queued) job will 

seize the server as soon as it finishes processing the current job. This comes at the price of adding 

delay. Queued jobs spend time doing nothing, waiting for their turn. 

A typical example is the output interface of a router, with a line whose speed is 𝐶 bits/s.  

If packets arrive fast enough (e.g., from the other 

input interfaces) they queue up, and they are 

transmitted sequentially in FCFS order (or, pos-

sibly, according to other scheduling disciplines).  

According to the figure, there are five packets in 

the system: one is being transmitted (packet 0), i.e., is in the server; four are queued (packets 1 to 

4). Let us assume that packet 0 has just started transmission at time 𝑡. Then we know that it will leave 

at time 𝑡 + 𝐿0 𝐶⁄ , 𝐿0 𝐶⁄  being its service time. On the other hand, packet 4 will: 

- Start being served at 𝑡4
𝑆 = 𝑡 +

∑ 𝐿𝑖
3
𝑖=0

𝐶
, i.e. it will stop waiting in the queue at that time instant; 

- Leave at time 𝑡4
𝐷 = 𝑡4

𝑆 +
𝐿4
𝐶
= 𝑡 +

∑ 𝐿𝑖
4
𝑖=0

𝐶
. 

Assuming that packet 4 has arrived at time 𝑡4
𝐴 < 𝑡4

𝑆 < 𝑡4
𝐷, then 𝑡4

𝑆 − 𝑡4
𝐴 will be its waiting time (or 

queueing time), and 𝑡4
𝐷 − 𝑡4

𝐴 will be its response time. We will always assume that our servers are 

work conserving, i.e., they always serve queued jobs if the queue is non-empty.  
 

In a system like this we would like to answer the following questions: 

- What is the distribution of the number of packets in the queue (or in the system)? 

You would need to know this, for instance, to size the buffer, to bound the probability of 

dropping a packet due to a buffer overflow; 

- What is the distribution of the response times? 

- What happens if you change the link speed to 2𝐶? 

CL
1

L
2

L
3

queue
server

L
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- How much do you need to increase the speed of the line if you want the 90th percentile of the 

response time to be less than 𝑥? (capacity planning) 

In a system like this, most of the above questions can be answered once we define what the workload 

is. In this case, a workload is given by: 

a) The interarrival time of the packets, which will be some random variable; 

b) The service demand, i.e., the time for which they keep the server busy. In this case, it is given 

by the packet lengths (divided by a constant link speed). 
 

Another example: a till at the supermarket. In this case the service demand may be inferred from 

the number of items in the shopping cart (assuming that the cashier keeps a constant speed). The 

model is the same, i.e. a queue plus a server, with interarrivals (new customers joining the queue) and 

departures (customers checking out).  
 

Yet another example: consider a web server, that accepts HTTP requests, performs some computa-

tions, may or may not need to access a database, and then 

returns the response. In this case it would probably be in-

appropriate to model this using a simple queue and 

server. In fact, it is still true that requests are served in 

sequence, but they may interest several components, and 

visit the same component more than once.  

In fact, some requests will only require computations at the CPU (and will not interest the disk), 

others will access the CPU first, then the disk and the CPU again, possibly several times. A more 

appropriate model for this example would then be the following: 

This is a queueing network, where each service center can be modeled as a queue+server. There is 

probabilistic routing, i.e., jobs (or requests, or transactions, etc.) that leave the CPU may leave the 

system altogether (with probability 𝜋) or may be routed to the disk (with probability 1 − 𝜋). Obvi-

ously, the service demand for the same transaction at the two service centers may be different (it 

may differ by orders of magnitude, given the relative speeds of the devices), and if the same request 

traverses twice the same service center it will place a different service demand at that center.  

For such a system, we can answer questions like the ones that we formulated previously both sepa-

rately, i.e., per service center, and globally, for the system as a whole. In this case, we can also 

perform a bottleneck analysis, i.e., find out which of the two components limits the performance 

of the system. This is interesting, because the bottleneck is the component that we need to upgrade 

first if we want our system to scale up (i.e., be able to handle a higher workload). If the CPU is the 

CPU

workload

disk

p

1-p
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bottleneck, then upgrading the disk will not yield a faster response or allow this system to handle 

more transactions per unit of time. Upgrading to a faster CPU will instead provide tangible benefits.  

The bottleneck is the service center with the highest utilization. Utilization is defined as the per-

centage of time for which a server is busy, i.e. is dequeuing and serving jobs. The device with the 

highest utilization is the one to upgrade first. If you upgrade another – non-bottleneck - device, you 

will simply reduce its utilization (i.e., you will have it idle for a higher percentage of time), but the 

overall performance of the system will not improve.  
 

The power of QT is that you can (almost always) obtain at least average performance metrics (e.g., 

mean response times, mean number of jobs in the queue), and very often in a closed form, just by 

solving few simple equations. In the simplest cases, you can often obtain more detailed performance 

metrics (e.g., a CDF of the response time), and not just average values. Having closed-form solutions 

is important if you want to predict what happens when the parameters change, e.g., to identify pos-

sible bottlenecks.  
 

At the very least, you can use QT to model systems as queuing networks, and then simulate their 

behavior and get numerical results instead. This is less insightful, but you can always do it. Thus, 

QT is also a modeling paradigm. Its power derives from the fact that it is quite abstract: you need 

to describe your fragment of reality at a very high level, without going into too many details. If you 

can model a physical system in terms of service centers, queues, interarrivals and service demands, 

then you can quickly get some insight into the performance of that system.  

Compare this modeling style, and the (weak) insight it requires, to the level of detail that you may 

want to attain in an in-depth simulation modeling (e.g., simulating the fetch and execution phases of 

a CPU with real instructions, etc.). The two are clearly different, and they will require different time 

and money.  

 

On the other hand, QT has its limitations. It is quite apt an instrument if you want to do a quick and 

dirty evaluation, but QT modeling may incur the risk of oversimplification. Neglecting crucial as-

pects just because they complicate your QT model too much happens all too often.  

What can you expect from QT? 

Those in the know assert that, if your model is correct, then normally you obtain fairly accurate 

throughput predictions (say, within 10% of the actual throughput). On the other hand, response 

times tend to be less accurate, and the error that you get will be load dependent (the higher the load, 

i.e., the nearer your system is to saturation, the larger your errors are going to be). 
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3 Analysis of queueing nodes in isolation 

3.1 Characterizing the state of a queueing node 

Let us start with an example: a single queue + server (something that we will study a lot in the future), 

often called a service center or node. This may model anything (e.g., a network interface queue just 

as well as a post office’s). 

We need to characterize the state of this system at a 

given time 𝑡. The way we characterize its state de-

pends on what we want to observe. For instance, 

we may be interested in the number of jobs in the 

system at time 𝑡 (also called the backlog at that time) 

Job 1 
arrives

Job 2 
arrives

Job 3 
arrives

Job 4 
arrives

Job 1 
leaves

Job 2 
leaves

j1 response time

j2 response time

j1 service time

j2 service timej2 q-ing time

N(t)

t

 

𝑁(𝑡) is a discrete quantity (it is an integer), which is a function of a continuous parameter (time). 

The above is a trajectory (or realization, or sample path), which depends on the (possibly random) 

interarrival times of the customers at the queue, as well as on the (possibly random) service times 

(or service demands). Given different interarrival and service times, the trajectory is going to be dif-

ferent. We call such random trajectories random (or stochastic) processes.  

Let us start from one where: 

- The interarrival times between jobs are IID exponentials, with a rate 𝜆 (or a mean interarri-

val time 1 𝜆⁄ ). 

- The service demands are IID exponentials with a mean 1 𝜇⁄ . 

- Interarrivals and service demands are independent. 

- The queue is infinite and FCFS. 

 

queue
server

Jobs,
Customers,

Transactions,
Packets,
Users,

Etc.

Service center, node

 

l m
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In such a system (which is often called a birth-death system), jobs will get in, they will queue up, 

and whenever the system is non-empty the server will pick the head-of-line job in the queue, work 

on it for an exponential time, etc. etc. 

We are interested in computing the distribution of the number of jobs in the system, from which (as 

we will see) we will be able to derive the one of the response time, etc. 

The trajectories of this system can go up and down. We first observe that, if both interarrivals and 

service times are exponentially distributed, then 𝑵(𝒕) describes the state of this process com-

pletely. There is no need, in fact, to know the last time of arrival/departure in the past, since this does 

not yield any more insight: exponentials are memoryless. This means that the future evolutions of 

this system can be predicted (in a stochastic sense) only by knowing 𝑵(𝒕). 

As a counterexample, consider a system where: 

- Arrivals are exponential; 

- Service times are constant. 

For the above system, 𝑁(𝑡) alone would not be a complete state characterization. The time at 

which the next departure event will occur is univocally determined by the time of the last departure, 

hence the future does depend on the past.  

This means that we can setup a state diagram, describing the evolution of such a system in time, as 

follows: 

0

ll

1

ll

n….2

l

m m m m m

 

The circles are the system states at time t, and the arcs are the transitions from one state to another. 

The above is sometimes called a transition-rate diagram, since 𝜆 and 𝜇 are in fact transition rates 

between adjacent states, and – more often – continuous-time Markov chain (CTMC).  

We will always assume that 𝜆 and 𝜇 are time-independent, i.e. they do not change over time. They 

might, instead, be state-dependent, i.e. they may depend on the state of the system. There are many 

practical cases in which they do: 

- In some CPUs, the clock frequency is varied depending on the number of tasks to be exe-

cuted: more tasks mean higher frequency, hence higher service rates depending on the state 

of the system. 

- Most people will be less likely to join a queue (e.g., to enter a museum) if the queue is long. 

In this case, the arrival rates would clearly depend on the system state.  
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Therefore, it may be worthwhile to use 𝜆𝑛 instead of 𝜆, to denote the arrival rate when the system 

holds 𝒏 jobs, and 𝜇𝑛 in place of 𝜇. The resulting CTMC would be the following. Note that the earlier 

CTMC was a special case of this one, when  𝜆𝑛=𝜆 and 𝜇𝑛=𝜇 for all the values of 𝑛.  

0

l1l0

1

lnln-1

n….2

l2

m1 m2 m3 mn mn+1

 

The probability of two simultaneous events (i.e., one arrival and one departure, or two arrivals, or 

two departures) is negligible. For this reason, there are only arcs reaching out to the nearest (left 

or right) neighbors in the graph. Systems that admit only nearest-neighbor transitions are quite easy 

to analyze.  

Focus now on one state 𝑛 > 0, and fix a time 𝑡. Call 𝑝𝑛(𝑡) 
the probability that there are 𝑛 jobs at time 

𝑡, i.e. 𝑝𝑛(𝑡) = 𝑃{𝑁(𝑡) = 𝑛}. If you circle that state, you can quickly write a probability flow-balance 

equation involving that state, just by looking at the CTMC: 

n

mn mn+1

 

0

m1

 

{

𝑑

𝑑𝑡
𝑝𝑛(𝑡) = −(𝜆𝑛 + 𝜇𝑛) ⋅ 𝑝𝑛(𝑡)+ 𝜇𝑛+1 ⋅ 𝑝𝑛+1(𝑡)+ 𝜆𝑛−1 ⋅ 𝑝𝑛−1(𝑡) 𝑛 > 0

𝑑

𝑑𝑡
𝑝0(𝑡) = −𝜆0 ⋅ 𝑝0(𝑡)+ 𝜇1 ⋅ 𝑝1(𝑡) 𝑛 = 0

 

The intuitive explanation for the above set of equations is the following: the term on the left is the 

variation in the flow of probability. That variation stems from the balance of: 

- An outgoing flow, with a minus sign 

- An incoming flow, with a plus sign.  

Both of which are at the right-hand side of the equations. This way, 𝜆𝑛 can be interpreted as the tran-

sition rate from state 𝑛 to state 𝑛 + 1, and 𝜇𝑛 as the transition rate from state 𝑛 to 𝑛 − 1. 𝜆𝑛 ⋅ 𝑝𝑛(𝑡) 

is the flow of probability which is poured from state 𝑛 to state 𝑛 + 1, etc. 

( ) ( ) ( ) ( ) ( )1 1 1 1n n n n n n n n

d
p t p t p t p t

dt
l m m l+ + − −= − +  +  + 

Variation of 
flow

Outgoing flow
Incoming flow
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The above equations are called Chapman-Kolmogorov’s equations1. The one for 𝑛 = 0 is slightly 

different, since the incoming and outgoing arcs from state 0 are different.  

The evolution of such a system over time (i.e., for each 𝑡) is thus completely specified once we solve 

the CK system of (an infinite number of) differential equations. Systems of differential equations can 

be solved once initial conditions are given in the form of a PMF for the state at time 0, i.e. 𝑝𝑛(0) ∀𝑛, 

such that ∑ 𝑝𝑛(0)
+∞
𝑛=0 = 1. A typical initial condition is 𝑝0(0) = 1, 𝑝𝑛(0) = 0 for 𝑛 > 0, i.e. the sys-

tem is initially empty. This is tough, in general, and – as we will show – not necessary for our pur-

poses. However, we now solve the CK system in two very simple cases (we will not need to solve it 

in general, but it pays to do it a couple of times to figure out how things are). 

3.1.1 Birth-only process 

This can be seen as an instance of the above, obtained by setting 𝜇𝑛 = 0 ∀𝑛. In the simplest case 𝜆𝑛 =

𝜆, ∀𝑛, the CK equations become: 

{

𝑑

𝑑𝑡
𝑝𝑛(𝑡) = −𝜆 ⋅ 𝑝𝑛(𝑡)+ 𝜆 ⋅ 𝑝𝑛−1(𝑡) 𝑛 > 0

𝑑

𝑑𝑡
𝑝0(𝑡) = −𝜆 ⋅ 𝑝0(𝑡) 𝑛 = 0

 

Assuming as initial conditions the usual ones, i.e., 𝑝0(0) = 1, 𝑝𝑛(0) = 0 for 𝑛 > 0, we can easily 

solve the equations. In fact: 

- 𝑛 = 0: 
𝑑

𝑑𝑡
𝑝0(𝑡) = −𝜆 ⋅ 𝑝0(𝑡) admits as a solution 𝑝0(𝑡) = 𝑘 ⋅ 𝑒

−𝜆𝑡. The constant 𝑘 can be set 

using the initial condition 𝑝0(0) = 1, hence 𝑘 = 1. Thus, 𝑝0(𝑡) = 𝑒
−𝜆𝑡. 

- 𝑛 = 1: 
𝑑

𝑑𝑡
𝑝1(𝑡) = −𝜆 ⋅ 𝑝1(𝑡) + 𝜆 ⋅ 𝑝0(𝑡) = −𝜆 ⋅ 𝑝1(𝑡) + 𝜆 ⋅ 𝑒

−𝜆𝑡. The solution to this one is 

𝑝1(𝑡) = 𝜆𝑡 ⋅ 𝑒−𝜆𝑡. 

- 𝑛 > 1: by generalizing the same computations, one easily gets 𝑝𝑛(𝑡) =
(𝜆𝑡)𝑛

𝑛!
⋅ 𝑒−𝜆𝑡.  

Therefore, the general expression is 𝑝𝑛(𝑡) =
(𝜆𝑡)𝑛

𝑛!
⋅ 𝑒−𝜆𝑡, ∀𝑛.  

The above one is a Poisson distribution, with a mean 𝜆𝑡. This is why we normally call “Poisson 

processes” those whose interarrival times are IID exponentials2. Moreover, we get that, as time in-

creases, lim
𝑡→∞

𝑝𝑛(𝑡) = 0,  ∀𝑛. Again, this should not surprise us, since in a birth-only process the 

                                                 

1 A more formal derivation of CK equations can be found in the Appendix 

2 A more formal definition of a Poisson process can be found in the Appendix 
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trajectory grows indefinitely with time, so the probability that 𝑛 jobs have arrived in an infinite time 

must go to zero for each finite 𝑛.   

3.1.2 Two-state birth-death process 

This is a model for a single-slot buffer. If a job arrives when the system is in state 1, then that job is 

discarded. Thus, it is 𝜆0 = 𝜆, 𝜆1 = 0, and 𝜇1 = 𝜇 (the fact that 𝜇0 = 0 is pretty obvious). 

The CK equations for this system are the following:  

{

𝑑

𝑑𝑡
𝑝1(𝑡) = −𝜇 ⋅ 𝑝1(𝑡)+ 𝜆 ⋅ 𝑝0(𝑡)

𝑑

𝑑𝑡
𝑝0(𝑡) = −𝜆 ⋅ 𝑝0(𝑡)+ 𝜇 ⋅ 𝑝1(𝑡)

 

Summing both equations, we get 
𝑑

𝑑𝑡
𝑝1(𝑡)+

𝑑

𝑑𝑡
𝑝0(𝑡) = 0, which means that 𝑝0(𝑡)+ 𝑝1(𝑡) = 𝑐𝑜𝑛𝑠𝑡, 

which is obviously true, with 𝑐𝑜𝑛𝑠𝑡 = 1 ∀𝑡.  

We can solve this system using standard techniques (therein including using the LST), and get the 

following result: 

{
 
 

 
 𝑝0(𝑡) =

𝜇

𝜆 + 𝜇
+ [𝑝0(0)−

𝜇

𝜆 + 𝜇
] 𝑒−(𝜆+𝜇)𝑡

𝑝1(𝑡) =
𝜆

𝜆 + 𝜇
+ [𝑝1(0)−

𝜆

𝜆 + 𝜇
] 𝑒−(𝜆+𝜇)𝑡

 

Now, these expressions describe the probability of being in either state as time progresses. They do 

depend on the initial state, i.e., on 𝑝𝑖(0). It is always 𝑝0(𝑡)+ 𝑝1(𝑡) = 1 

If we let 𝑡 → +∞, we observe the following: 

{
 

 𝑝0 ≜ lim
𝑡→+∞

𝑝0(𝑡) =
𝜇

𝜆 + 𝜇

𝑝1 ≜ lim
𝑡→+∞

𝑝1(𝑡) =
𝜆

𝜆 + 𝜇

 

And, again, 𝑝0 + 𝑝1 = 1. We call 𝑝0, 𝑝1 the steady-state probabilities. At the steady state, in fact, 

they do not depend on the time anymore. On the other hand, 𝑝𝑖(𝑡) is called the transient probability. 

Note that, while the transient probability does depend on the initial conditions (see the above formu-

las), the steady-state probability does not. It is independent of the initial conditions. Depending 

on the initial conditions, the steady-state probability will be approached from below (e.g., if 𝑝0(0) <

𝜇 (𝜇 + 𝜆)⁄ ), or from above (if the opposite inequality holds). If, instead, 𝑝0(0) = 𝜇 (𝜇+ 𝜆)⁄ , then the 

system will be in the steady state ∀𝑡. However, the fact that a steady state is reached and the value 

of the SS probabilities will not change. 

 

0 1

m1
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Note that, if we are only interested in SS probabilities, there is a much quicker way to obtain them 

– notably, one that does not involve differential equations. In fact, by the very definition of steady 

state, we have that: 

∀𝑛,
𝑑

𝑑𝑡
𝑝𝑛(𝑡) = 0 

Hence, under this hypothesis, we can compute the SS probabilities by solving the following system: 

{
0 = −𝜇 ⋅ 𝑝1 + 𝜆 ⋅ 𝑝0
0 = −𝜆 ⋅ 𝑝0 + 𝜇 ⋅ 𝑝1

 

Which is only algebraic. In this case, the two equations are clearly not independent, so we can 

discard one and use the normalization condition in its stead: 𝑝0 + 𝑝1 = 1. The system is thus: 

{
0 = −𝜇 ⋅ 𝑝1 + 𝜆 ⋅ 𝑝0
𝑝0 + 𝑝1 = 1

 

And its solution is the one that we have just found – yet computed considerably faster. 

3.2 Steady-state analysis of birth-death systems 

The above example reveals something that is indeed general. If we want to compute the steady-state 

probabilities in a birth-death system (whatever its number of states), there are two ways: 

a) The complex one, which consists in formulating the CK (differential) equations, solving the 

system – thus obtaining a solution in the form 𝑝𝑛(𝑡), and getting 𝑝𝑛 = lim
𝑡→+∞

𝑝𝑛(𝑡).  

b) The simple one, which consists in equating 
𝑑

𝑑𝑡
𝑝𝑛(𝑡) = 0 ∀𝑛 in the CK equations, solving an 

algebraic system, and getting 𝑝𝑛, ∀𝑛.  

The complex one has the (slight) advantage of providing us with the transient probabilities as well, 

but these are normally uninteresting for our purposes, hence we will use the simple method from now 

on. 

 

Note that the system of the first example – the birth-only process – does not admit a steady state. 

In fact, it is 𝑝𝑛 = lim
𝑡→∞

𝑝𝑛(𝑡) = 0,  ∀𝑛. It is an unpleasant fact that systems may or may not admit a 

steady state, and – when they do – they might reach it only under specific conditions (e.g., a con-

straint on the arrival rates, or something similar). The simple method can only be used if the system 

does reach a steady state (this is what allows us to set the derivatives to zero in the first place), and 

this hypothesis must always be tested a posteriori.  
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Both methods can be applied to systems with an arbitrary number of states, as long as they do admit 

a steady state. The physical interpretation of “reaching a steady state” is the following: 

0

m1

 

n

mn mn+1

 

The flow of probability through the dashed surface, which is the derivative at the left-hand side of the 

CK equation, is null. Thus, the outgoing and incoming flows must balance each other, i.e.  

{
(𝜆𝑛 + 𝜇𝑛) ⋅ 𝑝𝑛 = 𝜆𝑛−1 ⋅ 𝑝𝑛−1 + 𝜇𝑛+1 ⋅ 𝑝𝑛+1 𝑛 > 0

𝜆0 ⋅ 𝑝0 = 𝜇1 ⋅ 𝑝1
 

This said, computing the SS probabilities in a birth-death system is straightforward: 

a) You draw the CTMC, according to the modeling of your system; 

b) You formulate the above steady-state equilibrium equations; 

c) You add the normalization condition, i.e. ∑ 𝑝𝑛
+∞
𝑛=0 = 1  

This way you get a non-homogeneous algebraic system (non-homogeneity been assured by the con-

stant “1” in the normalization condition), which – as such – admits only one solution.  

That solution can be computed quite easily, starting from 𝑛 = 0 and working your way up for in-

creasing values of 𝑛. 

- 𝑛 = 0: from the equation we get 𝑝1 =
𝜆0

𝜇1
⋅ 𝑝0 

- 𝑛 = 1 : we instantiate (𝜆𝑛 + 𝜇𝑛) ⋅ 𝑝𝑛 = 𝜆𝑛−1 ⋅ 𝑝𝑛−1 + 𝜇𝑛+1 ⋅ 𝑝𝑛+1  and substitute 𝑝1 =
𝜆0

𝜇1
⋅

𝑝0, thus obtaining: 

(𝜆1 + 𝜇1) ⋅ 𝑝1 = 𝜆0 ⋅ 𝑝0 + 𝜇2 ⋅ 𝑝2 

(𝜆1 + 𝜇1) ⋅
𝜆0
𝜇1
⋅ 𝑝0 = 𝜆0 ⋅ 𝑝0 + 𝜇2 ⋅ 𝑝2 

𝑝2 =
1

𝜇2
[(𝜆1 + 𝜇1) ⋅

𝜆0
𝜇1
− 𝜆0] ⋅ 𝑝0 =

𝜆0 ⋅ 𝜆1
𝜇1 ⋅ 𝜇2

𝑝0 

- 𝑛 > 1 : after few algebraic manipulations, it is clear that we always obtain 𝑝𝑛 =

𝜆0⋅𝜆1⋅...⋅𝜆𝑛−1

𝜇1⋅𝜇2⋅...⋅𝜇𝑛
𝑝0 = ∏

𝜆𝑖

𝜇𝑖+1
𝑝0

𝑛−1
𝑖=0 . Note that this expression holds also when 𝑛 = 1. 

Thus, in the end, we get the following: 
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{
 
 

 
 
𝑝𝑛 =∏

𝜆𝑖
𝜇𝑖+1

𝑝0

𝑛−1

𝑖=0

,    𝑛 ≥ 1

∑ 𝑝𝑛 = 1

+∞

𝑛=0

 

And the normalization condition can be rewritten as follows:  

𝑝0 [1 +∑(∏
𝜆𝑖
𝜇𝑖+1

𝑛−1

𝑖=0

)

+∞

𝑛=1

] = 1 

 

A necessary and sufficient condition for the system to admit a steady state (i.e., to be stable) is 

that the above sum be finite. 

 

If that sum if finite, call S the term between square brackets, and we get: 

{
 
 

 
 𝑝0 =

1

𝑆

𝑝𝑛 =
1

𝑆
⋅∏

𝜆𝑖
𝜇𝑖+1

𝑛−1

𝑖=0

,    𝑛 ≥ 1
 

Otherwise, we get 𝑝𝑛 = 0    ∀𝑛. 

Note that the problem of stability only exists with systems with an infinite number of states. In 

fact, in system with finite states (such as the single-slot buffer) the above sum would only include a 

finite number of terms, hence would always be finite. Therefore, only systems with infinite states 

may not reach a steady state. Systems with finite states always do.  

 

The above method for computing the SS probabilities is entirely general and can be applied to any 

birth-death system. The above way of computing probabilities, i.e. “circling” each single state and 

balancing its outgoing and incoming flow, leads to the so-called global equilibrium equations, and 

it is not the only one. In fact, at the equilibrium, the outgoing and incoming flow through every 

surface, circling any number of states, must balance each other out (otherwise some derivative would 

be non-null). Therefore, one may choose arbitrary perimeters across which to enforce the flow 

balance, and this sometimes leads to simpler computations.  

For instance, local equilibrium equations are those written balancing the flows through perimeters 

including all the states from 0 to n included, and they are the following: 
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𝜆0 ⋅ 𝑝0 = 𝜇1 ⋅ 𝑝1
𝜆1 ⋅ 𝑝1 = 𝜇2 ⋅ 𝑝2
. . .
𝜆𝑛 ⋅ 𝑝𝑛 = 𝜇𝑛+1 ⋅ 𝑝𝑛+1

 

0 1 n….2

m1 m2 m3 mn mn+1

 

From which we get 𝑝𝑛 = ∏
𝜆𝑖
𝜇𝑖+1

𝑝0
𝑛−1
𝑖=0 , even more quickly than before.  

As will be apparent later on, global equations are always easy to write. Local equations are easy to 

write (possibly easier than global ones) when the CTMC is simple, but they quickly get overly com-

plicated if the CTMC is messy: if there are too many arcs around, you run the risk of forgetting 

something.   

3.3 M/M/1 systems 

Let us now discuss in some detail the simplest birth-death system, which is called an M/M/1 system. 

The latter is known as Kendall’s notation, and consists of (at least) three indications: 

- The distribution of interarrival times: M for memoryless (D for deterministic, E for Erlang, G 

for Generic, etc.) 

- The distribution of service times: the same letters can appear 

- The number of servers, one in this case. 

There can be other indications following these three, such as the system capacity (the max. number 

of jobs allowed in the system), or the population from which arrivals are drawn. These are both 

assumed to be infinite in our case, and – when they are – they need not be stated explicitly. We will 

discuss systems with finite queues and finite populations later on. 

0

ll

1

ll

n….2

l

m m m m m

 

Assume 𝜆𝑛 = 𝜆,    𝜇𝑛 = 𝜇, i.e. arrival and departure rates are constant (or state-independent, or load-

independent), and the queue is infinite. In this case, the relationship derived for generic birth-death 

processes becomes: 

𝑝𝑛 =∏
𝜆𝑖
𝜇𝑖+1

𝑝0

𝑛−1

𝑖=0

= (
𝜆

𝜇
)
𝑛

𝑝0    𝑛 ≥ 0 
l m
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We call 𝜌 = 𝜆 𝜇⁄  the utilization of this system (the reason why it is called like that will be given in 

a minute). Then the normalization condition is the following: 

𝑝0 [1 +∑(∏
𝜆𝑖
𝜇𝑖+1

𝑛−1

𝑖=0

)

+∞

𝑛=1

] = 1 ⇒ 𝑝0 [∑ 𝜌𝑛
+∞

𝑛=0

] = 1 

Which means that the stability condition is 𝜌 < 1. Under that condition, the above infinite sum con-

verges to 
1

1−𝜌
, hence 𝑝0 = (1 − 𝜌) and 𝑝𝑛 = (1 − 𝜌) ⋅ 𝜌𝑛. 

The fact that 𝑝0 = (1 − 𝜌) justifies the name of utilization given to 𝜌: in fact, it is 𝜌 = 1 − 𝑝0 = 0 ⋅

𝑝0 + 1 ⋅ (1 − 𝑝0), hence 𝜌 is the mean number of jobs in the server – or the fraction of time for 

which it is busy, hence its utilization. It also helps us to get a physical explanation of the stability 

condition: if 𝜌 is a utilization, it cannot grow beyond one: as it approaches one, the system becomes 

unstable, and queues grow to infinity.  

In fact, 𝜌 < 1 means 𝜆 < 𝜇, i.e. the mean interarrival time 1 𝜆⁄  is larger than the mean service time 

1 𝜇⁄ .  We call a system where 𝜌 < 1 positive recurrent. 

When the opposite occurs, 𝜆 > 𝜇, then the system accumulates more and more jobs in the queue as 

time progresses, hence lim
𝑡→∞

𝑝𝑛(𝑡) = 0 for all finite values of 𝑛. A system where 𝜌 > 1 is called tran-

sient. 

The case 𝜌 = 1, i.e. 𝜆 = 𝜇, is somewhat tricky to understand. In this case the system is not stable, 

and the reason why it is not is that it may happen that a very large service time occurs at least once 

(recall that exponentials have a tail extending to infinity), during which the queue gets so large that it 

is never able to empty again. We call a system where 𝜌 = 1 null recurrent.  

 

For a positive recurrent system, the distribution of the number of jobs in the system at the steady state 

is geometric: 𝑝𝑛 = (1 − 𝜌) ⋅ 𝜌𝑛, with a success probability 𝑝 = 1 − 𝜌. Therefore, it is straightfor-

ward to compute its mean and its variance, i.e. the main indexes of the number of jobs in the sys-

tem. It is: 

𝐸[𝑁] = ∑ 𝑛 ⋅ 𝑝𝑛
+∞
𝑛=0 =

𝜌

1−𝜌
, 𝑉𝑎𝑟(𝑁) =

𝜌

(1−𝜌)2
 

It is particularly interesting to observe the behavior of 𝐸[𝑁] as a function of 𝜌. This function is called 

the Kleinrock function (also called the “hockey-stick”), and its shape is the one in the figure: it is 

practically flat until 𝜌 = 0.5 (when it reaches 1), and then exhibits a knee and has a vertical asymp-

tote for 𝜌 → 1. This is the typical behavior of systems under a varying workload:  

- In low-load conditions, the mean number of jobs in the system is below one (i.e., the system 

is either empty or serving the one and only job present, most of the time). 
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- As 𝜌 grows beyond 0.5, queueing starts to occur frequently. As 𝜌 → 1, the system saturates, 

hence a marginal increase in 𝜌 translates to a huge increase in the number of jobs. When you 

provision a system, the region to the right of the knee point is the one which you will want to 

avoid.  

 

Exercise 

You have to dimension a network interface for your system. Its workload consists in packets whose 

length is exponentially distributed with a mean 1 𝛾⁄ . Packet interarrival times at the interface with are 

exponential with a mean 1 𝜆⁄ . Compute the line speed 𝐶 so that: 

1)  the mean backlog is 𝐵 packets 

2) the 95th percentile of the backlog is Π packets 

 

We observe that this is an M/M/1 system, with an arrival rate 𝜆. As for the service rate, we get that 

𝐸[𝑡𝑠] =
𝐸[𝑙𝑒𝑛𝑔𝑡ℎ]

𝐶
=

1

𝜇
, hence we get 𝜇 = 𝛾 ⋅ 𝐶. 

The first question can be readily answered by observing that the mean backlog is 𝐵 = 𝐸[𝑁] =
𝜌

1−𝜌
=

𝜆 (𝛾⋅𝐶)⁄

1−𝜆 (𝛾⋅𝐶)⁄
. We solve the latter for 𝐶 and we get 𝐶 =

𝜆⋅(1+𝐵)

𝛾⋅𝐵
. 

Note that this only holds if the system does admit a steady state, hence if 𝜌 = 𝜆 (𝛾 ⋅ 𝐶)⁄ < 1. 

The second question can be answered by solving the following equation: 𝑃{𝑁 ≤ Π} = 0.95. How-

ever, we quickly get 𝑃{𝑁 ≤ 𝑥} = ∑ 𝑝𝑛
𝑥
𝑛=0 = ∑ (1 − 𝜌) ⋅ 𝜌𝑛𝑥

𝑛=0 = (1 − 𝜌) ⋅
1−𝜌𝑥+1

1−𝜌
= 1 − 𝜌𝑥+1.  

Therefore, the equation that we need to solve is 1 − 𝜌Π+1 = 0.95, i.e.𝐶Π+1 = 20 ⋅ (𝜆 𝛾⁄ )Π+1, i.e. 𝐶 =

√20
(Π+1)

⋅
𝜆

𝛾
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3.3.1 Mean performance indexes 

The important mean performance indexes in queueing systems are the following: 

- The mean number of jobs in the system 𝐸[𝑁]. We have already computed it. 

- The mean number of jobs in the queue (i.e., not counting the one being served), called 𝐸[𝑁𝑞] 

- The mean response time 𝐸[𝑅], i.e. the mean time between the arrival and the departure of the 

same job.  

- The mean waiting time 𝐸[𝑊] (or queueing time), i.e. the mean time between the arrival and 

the start of the service of the same job. This is what people care about, normally. 

The optimum would be to be able to compute the distributions of all the above quantities. From 

these, in fact, we can compute everything: mean value, variance, percentiles, etc. However, this is 

only possible if the system is simple enough. If the system is too complex, we will have to settle for 

the mean values which are always easy to compute.  

We have already discussed how to compute 𝐸[𝑁].  

Number of jobs in the queue  

We move to analyzing RV 𝑁𝑞.The latter takes on the following values: 

- 0, with probability 𝑝0 + 𝑝1 (in fact, our queueing systems are work-conserving). 

- 1, with probability 𝑝2 

- 𝑘 ≥ 1, with probability 𝑝𝑘+1. 

From the above, computing the mean value is quite straightforward:  

𝐸[𝑁𝑞] =∑ 𝑘 ⋅ 𝑝𝑘+1

+∞

𝑘=1

=∑(𝑘 − 1) ⋅ 𝑝𝑘

+∞

𝑘=2

=∑(𝑘 − 1) ⋅ 𝑝𝑘

+∞

𝑘=1

=∑ 𝑘 ⋅ 𝑝𝑘

+∞

𝑘=1

−∑⋅ 𝑝𝑘

+∞

𝑘=1

= 𝐸[𝑁]− (1 − 𝑝0)

= 𝐸[𝑁]− 𝜌

 

This result (which is common to all the systems with one server) could have been obtained much 

more easily by observing that mean values are additive, and that 𝜌 is the server’s utilization, i.e., 

the mean number of jobs in the server. Therefore, it must be 𝐸[𝑁𝑞] + 𝜌 = 𝐸[𝑁].  

 

Response time 

The mean response time can be computed using a general result, which is very useful in many cases. 

This is called Little’s Law (or Little’s Theorem), and it states the following:  
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Consider a system in a steady state, such that no jobs are cre-

ated/destroyed within the system and let 𝜆 be its mean arrival 

rate: then the mean response time is 𝐸[𝑅] = 𝐸[𝑁] 𝜆⁄ .  

 

Little’s law can be applied to every system at the steady state, under very loose hypotheses: the system 

may not be FCFS, it may have non-exponential arrivals/departures, whatever. The only requirement 

is that no jobs are created/destroyed within the system, so that the average arrival rate 𝜆 is also the 

average departure rate.  

An intuitive rationale behind Little’s law is the following: if the system is in a steady state, when a 

job arrives, the number of jobs that it sees ahead of itself is statistically equal to the number of jobs 

it will leave behind on its departure. The latter is equal to 𝐸[𝑁], and has arrived at a rate 𝜆 during the 

response time of that job 𝐸[𝑅]. Hence, it makes sense that 𝐸[𝑅] = 𝐸[𝑁] 𝜆⁄ . Note that Little’s law 

only applies to mean values, not to distributions.  

We can use Little’s law to compute 𝐸[𝑅]. In an M/M/1 system it is 𝜆 = ∑ 𝜆𝑛 ⋅ 𝑝𝑛
+∞
𝑛=0 = 𝜆 ⋅ ∑ 𝑝𝑛

+∞
𝑛=0 =

𝜆, so it is fairly easy to see that 𝐸[𝑅] =
1

𝜆
⋅
𝜌

1−𝜌
=

1 𝜇⁄

1−𝜌
=

1

𝜇−𝜆
 .  

 

When the load is small 𝜌 ≪ 1,the response time tends to 1 𝜇⁄ , which is in fact the mean service time 

𝐸[𝑡𝑠]. This makes perfect sense, since the system will always be empty, and any arriving job will 

only spend time in the server. As 𝜌 increases, queueing starts to occur frequently, until the system 

saturates and the response time grows to infinity.  

 

Waiting time 
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The mean waiting time can be computed by applying Little’s law to the queue at the equilibrium. 

Note that Little’s law can be applied anywhere, under very broad conditions.  

Since the system “queue” is in equilibrium, then its arrival and departure rates are equal to 𝜆, hence 

𝐸[𝑊] =
𝐸[𝑁𝑞]

𝜆
=

𝐸[𝑁]−𝜌

𝜆
= 𝐸[𝑅] −

1

𝜇
. 

The last expression is obvious, since mean values are additive and the mean service time is  

𝐸[𝑡𝑠] =
1

𝜇
 

 

Throughput 

In queueing systems, it is often required to compute the throughput, i.e., the number of jobs served 

per unit of time. The throughput is often denoted with 𝛾. We start with an intuitive reasoning: 

- If 𝛾 > 𝜆, then it means that there are jobs that get out without having been injected in the 

system. In other words, the system should create jobs internally for this to be possible. This 

is not the case, of course. 

- If, on the other hand, 𝛾 < 𝜆, there would be jobs that stay in the queue indefinitely (since they 

do get in, but they never get out). This is impossible, since the system is FCFS and stable.  

Therefore, the only possibility is that 𝛾 = 𝜆. This is a given in systems without losses. The only case 

when 𝛾 < 𝜆 is possible is when systems have finite memory: in this case, due to the interplay of the 

random arrival and service times, there might be cases when some jobs are rejected. 

In any case, the formal definition of throughput is the following: 

𝛾 ≜ ∑ 𝜇𝑛 ⋅ 𝑝𝑛
+∞
𝑛=1 , which in this case is  

𝛾 = 𝜇∑𝑝𝑛

+∞

𝑛=1

= 𝜇 ⋅ (1 − 𝑝0) = 𝜇 ⋅ 𝜌 = 𝜆 

3.3.2 An alternative way to compute mean performance indexes 

Sometimes computing the steady-state probabilities using the direct method is challenging, because 

the computations involved are non-trivial. In many cases, we can still compute the mean performance 

indexes without computing the SS probabilities. The method is quite general (i.e., it can be applied 

to any birth-death system) and will be exemplified on the M/M/1 for simplicity. 

Consider the global steady-state equations: 

{
𝜆 ⋅ 𝑝0 = 𝜇 ⋅ 𝑝1
(𝜆 + 𝜇) ⋅ 𝑝𝑛 = 𝜆 ⋅ 𝑝𝑛−1 + 𝜇 ⋅ 𝑝𝑛+1      𝑛 ≥ 1
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The technique is as follows: you multiply each equation by 𝒛𝒏, 𝑧 ∈ ℂ, |𝑧| < 1, and then sum eve-

rything up. We obtain: 

{
𝜆 ⋅ 𝑧0 ⋅ 𝑝0 = 𝜇 ⋅ 𝑧

0 ⋅ 𝑝1
(𝜆 + 𝜇) ⋅ 𝑧𝑛 ⋅ 𝑝𝑛 = 𝜆 ⋅ 𝑧

𝑛 ⋅ 𝑝𝑛−1 + 𝜇 ⋅ 𝑧
𝑛 ⋅ 𝑝𝑛+1      𝑛 ≥ 1

 

𝜆 ⋅ 𝑧0 ⋅ 𝑝0 +∑(𝜆 + 𝜇) ⋅ 𝑧𝑛 ⋅ 𝑝𝑛

+∞

𝑛=1

= 𝜇 ⋅ 𝑧0 ⋅ 𝑝1 +∑𝜆 ⋅ 𝑧𝑛 ⋅ 𝑝𝑛−1

+∞

𝑛=1

+∑𝜇 ⋅ 𝑧𝑛 ⋅ 𝑝𝑛+1

+∞

𝑛=1

   

Then we recall the definition of PGF of a discrete non-negative RV: 𝐏(𝑧) ≜ 𝐸[𝑧𝑁] = ∑ 𝑧𝑘 ⋅ 𝑝𝑘
+∞
𝑘=0 . 

In this case, the state of the system 𝑁 is a discrete and non-negative RV. We manipulate the above 

expression to obtain 𝐏(𝑧): 

𝜆 ⋅ 𝑧0 ⋅ 𝑝0 +∑(𝜆 + 𝜇) ⋅ 𝑧𝑛 ⋅ 𝑝𝑛

+∞

𝑛=1

= 𝜇 ⋅ 𝑧0 ⋅ 𝑝1 +∑ 𝜆 ⋅ 𝑧𝑛 ⋅ 𝑝𝑛−1

+∞

𝑛=1

+∑ 𝜇 ⋅ 𝑧𝑛 ⋅ 𝑝𝑛+1

+∞

𝑛=1

  

−𝜇 ⋅ 𝑝0 + (𝜆 + 𝜇) ⋅∑ 𝑧𝑛 ⋅ 𝑝𝑛

+∞

𝑛=0

= 𝜆 ⋅ 𝑧 ⋅∑ 𝑧𝑛−1 ⋅ 𝑝𝑛−1

+∞

𝑛=1

+ 𝜇 ⋅∑ 𝑧𝑛 ⋅ 𝑝𝑛+1

+∞

𝑛=0

  

−𝜇 ⋅ 𝑝0 + (𝜆 + 𝜇) ⋅∑ 𝑧𝑛 ⋅ 𝑝𝑛

+∞

𝑛=0

= 𝜆 ⋅ 𝑧 ⋅∑ 𝑧𝑛 ⋅ 𝑝𝑛

+∞

𝑛=0

+
𝜇

𝑧
⋅∑ 𝑧𝑛+1 ⋅ 𝑝𝑛+1

+∞

𝑛=0

  

(𝜆 + 𝜇) ⋅ 𝐏(𝑧)− 𝜇 ⋅ 𝑝0 = 𝜆 ⋅ 𝑧 ⋅ 𝐏(𝑧)+
𝜇

𝑧
⋅ [𝐏(𝑧)− 𝑝0]

(𝜆 + 𝜇) ⋅ 𝑧 ⋅ 𝐏(𝑧)− 𝜇 ⋅ 𝑧 ⋅ 𝑝0 = 𝜆 ⋅ 𝑧
2 ⋅ 𝐏(𝑧)+ 𝜇 ⋅ [𝐏(𝑧)− 𝑝0]

 

We rearrange the terms and obtain: 

𝐏(𝑧) =
𝜇 ⋅ 𝑝0 ⋅ (𝑧 − 1)

(𝜆 + 𝜇) ⋅ 𝑧 − 𝜆 ⋅ 𝑧2 − 𝜇
=

𝜇 ⋅ 𝑝0 ⋅ (𝑧 − 1)

𝜇 ⋅ (𝑧 − 1) − 𝜆 ⋅ 𝑧 ⋅ (𝑧 − 1)
=

𝜇 ⋅ 𝑝0
𝜇 − 𝜆 ⋅ 𝑧

=
𝑝0

1 − 𝜌 ⋅ 𝑧
 

The latter depends on 𝑝0, which is unknown and can be set by imposing the normalization condition. 

From 𝐏(𝑧) ≜ 𝐸[𝑧𝑁] = ∑ 𝑧𝑘 ⋅ 𝑝𝑘
+∞
𝑘=0  we obtain that 𝐏(1) ≜ 𝐸[1𝑁] = ∑ 1𝑘 ⋅ 𝑝𝑘

+∞
𝑘=0 = 1, which yields 

𝑝0 = 1− 𝜌, hence: 

𝐏(𝑧) =
1 − 𝜌

1 − 𝜌 ⋅ 𝑧
 

Note that the above expression can be anti-transformed (this is because this case is particularly sim-

ple). In fact, from 𝐏(𝑧) ≜ 𝐸[𝑧𝑁] = ∑ 𝑧𝑘 ⋅ 𝑝𝑘
+∞
𝑘=0 =

1−𝜌

1−𝜌⋅𝑧
= (1 − 𝜌) ⋅ ∑ (𝜌 ⋅ 𝑧)𝑘+∞

𝑘=0  we immediately 

obtain that 𝑝𝑘 = (1 − 𝜌) ⋅ 𝜌𝑘, which we already knew. 

However, once you have 𝐏(𝑧), you can compute average performance indexes without anti-trans-

forming it, by only using the well-known properties of the PGF: 
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- Mean number of jobs: 𝐸[𝑁] =
𝑑

𝑑𝑧
𝐏(𝑧)|𝑧=1 . In this case, we get: 𝐸[𝑁] =

𝑑

𝑑𝑧
𝐏(𝑧)|𝑧=1 =

𝜌⋅(1−𝜌)

(1−𝜌⋅𝑧)2
|
𝑧=1

=
𝜌

1−𝜌
. From the latter using simple algebra, one can compute the missing mean 

performance indexes 𝐸[𝑁𝑞], 𝐸[𝑅], 𝐸[𝑊]. 

- Mean squared number of jobs: 𝐸[𝑁2] = [
𝑑2

𝑑𝑧2
𝐏(𝑧) +

𝑑

𝑑𝑧
𝐏(𝑧)]

𝑧=1
. 

If needed, one can also compute some SS probabilities by deriving the PGF. In fact, it is: 

- 𝑝0 = lim
𝑧→0

𝐏(𝑧) 

- 𝑝𝑘 =
𝐏(𝑘)(0)

𝑘!
=

1

𝑘!
⋅
𝑑𝑘

𝑑𝑧𝑘
𝐏(𝑧)|

𝑧=0
 

Therefore, at least the first few SS probabilities (often the most relevant) can be easily computed.  

3.3.3 Arrival-time and random-observer probabilities 

The SS probabilities that we have computed so far are those that a random observer would observe. 

In other words, if anyone looks at the system at a random time (in the steady state), 𝑝𝑛 is the proba-

bility that she will observe 𝑛 jobs in the system.  

There is another important probability, which is the one seen by an arriving job. We call it arrival-

time or tagged-job SS probability, to distinguish it from the random observer’s one, and denote it 

with 𝑟𝑛. In general, the two SS probabilities are different. We show this via a simple yet illuminating 

example.  

Consider a queueing system with constant interarrival times, equal to 2s, and constant service times 

equal to 1s (a D/D/1 system). Such a system is always in a steady state, being deterministic. 

A trajectory of this system is the following: 
t

N(t)

 

A random observer will observe: 

- One job in the system, half of the time 

- Zero jobs in the system, half of the time. 

Hence it is 𝑝0 = 𝑝1 = 1 2⁄ . However, an arriving job always finds the system empty, hence it is 

𝑟0 = 1, and 𝑟𝑗 = 0,    𝑗 > 0. Therefore, it is in general 𝑟𝑛 ≠ 𝑝𝑛. 

■ 

In a (generic) birth-death system with exponential interarrival times, arrival-time probabilities can be 

found using Bayes’ theorem, as follows. Define: 

𝑟𝑛(𝑡) = lim
Δ𝑡→0

𝑃{𝑁(𝑡) = 𝑛|𝐴(𝑡, 𝑡 + Δ𝑡)} 
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Where 𝐴(𝑡, 𝑡 + Δ𝑡) means that there is an arrival in [𝑡, 𝑡 + Δ𝑡)3. We develop the computations as: 

𝑟𝑛(𝑡) = lim
Δ𝑡→0

𝑃{𝑁(𝑡) = 𝑛|𝐴(𝑡, 𝑡 + Δ𝑡)} 

= lim
Δ𝑡→0

𝑃{𝑁(𝑡) = 𝑛, 𝐴(𝑡, 𝑡 + Δ𝑡)}

𝑃{𝐴(𝑡, 𝑡 + Δ𝑡)}
 

= lim
Δ𝑡→0

𝑃{𝐴(𝑡, 𝑡 + Δ𝑡)|𝑁(𝑡) = 𝑛} ⋅ 𝑃{𝑁(𝑡) = 𝑛}

∑ 𝑃{𝐴(𝑡, 𝑡 + Δ𝑡)|𝑁(𝑡) = 𝑘} ⋅ 𝑃{𝑁(𝑡) = 𝑘}+∞
𝑘=0

 

= lim
Δ𝑡→0

𝑃{𝐴(𝑡, 𝑡 + Δ𝑡)|𝑁(𝑡) = 𝑛} ⋅ 𝑃{𝑁(𝑡) = 𝑛}

∑ 𝑃{𝐴(𝑡, 𝑡 + Δ𝑡)|𝑁(𝑡) = 𝑘} ⋅ 𝑃{𝑁(𝑡) = 𝑘}+∞
𝑘=0

 

= lim
Δ𝑡→0

[𝜆𝑛 +
𝑜(Δ𝑡)
Δ𝑡 ] ⋅ 𝑝𝑛(𝑡)

∑ [𝜆𝑘 +
𝑜(Δ𝑡)
Δ𝑡

] ⋅ 𝑝𝑘(𝑡)
+∞
𝑘=0

 

=
𝜆𝑛 ⋅ 𝑝𝑛(𝑡)

∑ 𝜆𝑘 ⋅ 𝑝𝑘(𝑡)
+∞
𝑘=0

 

 

The above equalities hold ∀𝑡, hence it holds also at the steady state. At the steady state, we get: 

𝑟𝑛 = lim
𝑡→+∞

𝑟𝑛(𝑡) =
𝜆𝑛 ⋅ 𝑝𝑛

∑ 𝜆𝑘 ⋅ 𝑝𝑘
+∞
𝑘=0

=
𝜆𝑛

𝜆
⋅ 𝑝𝑛 

where 𝜆̅ is the mean arrival rate.  

Note that, when 𝜆𝑛 = 𝜆    ∀𝑛, and only under that condition, it is 𝑟𝑛 = 𝑝𝑛. Systems where 𝑟𝑛 = 𝑝𝑛 are 

said to possess the PASTA property (Poisson Arrivals See Time Average). Nevertheless, there is 

still a conceptual difference between the two distributions, even when they have the same values, 

hence we will take some care to use the correct symbol whenever possible.  
 

Tagged-job probabilities are useful to compute the distribution of the response and waiting times. In 

fact, the response time of a job within a system does not start at a random time instant: it starts 

when that job arrives, hence its distribution must be related to probabilities 𝑟𝑛. 

3.3.4 Distribution of response and waiting times 

We have already computed the mean response and waiting time, 𝐸[𝑅], 𝐸[𝑊], through Little’s Law. 

We now show how to compute the distribution of the response and waiting times, i.e. 𝐹𝑅(𝑥), 𝐹𝑊(𝑥). 

We start with the former.  

                                                 

3 Recall that, with continuous RVs (such as arrival times), we cannot posit that anything occurs “at” time 𝑡 with non-null 

probability. However, we can have it occur within an interval [𝑡, 𝑡 + Δ𝑡), and then let Δ𝑡 → 0. 

The probability that the next arrival occurs 

by 𝑡 + Δ𝑡 when the system is in state 𝑛 is:  

𝑃{𝐴(𝑡, 𝑡 + Δ𝑡)|𝑁(𝑡) = 𝑛} = 1 − 𝑒−𝜆𝑛⋅Δ𝑡 

However, since we are letting Δ𝑡 → 0, we 

substitute the expansion of the exponential: 

𝑒−𝜆𝑛⋅Δ𝑡 =∑
(−𝜆𝑛 ⋅ Δ𝑡)

𝑗

𝑗!

+∞

𝑗=0

= 1− 𝜆𝑛 ⋅ Δ𝑡 + 𝑜(Δ𝑡) 

Hence: 

1 − 𝑒−𝜆𝑛⋅Δ𝑡 = 1 − (1 − 𝜆𝑛 ⋅ Δ𝑡 + 𝑜(Δ𝑡)) 

= 𝜆𝑛 ⋅ Δ𝑡 + 𝑜(Δ𝑡) 
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Suppose a job arrives in the system at time 𝑡. Let 𝑛 be the number of jobs already in the system at 

time 𝑡−. We know that – at the steady state – the probability to have 𝑛 jobs in the system at the time 

of an arrival is 𝑟𝑛 (which may or may not be equal to 𝑝𝑛 in general – it is in this case).  

Now, the time that the tagged job will have to spend in the system (i.e., its response time) is composed 

of: 

- The residual service time of the one job being served at time 𝑡.  

- The sum of the service times of all the other 𝑛 jobs, including the tagged one. 

m

transmittedresidualtagged job

n jobs 1 (partial) 

job  

However, since service times are exponential (hence memoryless), the residual service time has the 

same distribution as the service time: 𝑃{𝑡𝑠 > 𝑥 + 𝑦|𝑡𝑠 > 𝑥} = 𝑃{𝑡𝑠 > 𝑦}. Therefore, the response 

time is the sum of the service times of 𝒏 + 𝟏 jobs, if there are 𝑛 jobs in the system at the time of 

arrival. This distribution of the sum of IID exponential is very common, and it is called Erlang dis-

tribution. The CDF of an 𝑛-stage Erlang is: 

𝐹𝑛(𝑡) = 1 −∑𝑒−𝜇𝑡
(𝜇𝑡)𝑘

𝑘!

𝑛−1

𝑘=0

 

The PDF is 𝑓𝑛(𝑡) = 𝑒
−𝜇𝑡 ⋅ 𝜇 ⋅

(𝜇𝑡)𝑛−1

(𝑛−1)!
 

Let us take a look at what an Erlang PDF looks like: 

When 𝑛 = 1 it is an exponential. This is clear both intu-

itively and from the formulas. When 𝑛 > 1  it starts 

peaking and then goes down. When 𝑛 gets large, due to 

the CLT, it looks like a Normal.  

 

We can compute 𝐸[𝑆𝑛] and 𝑉𝑎𝑟(𝑆𝑛) leveraging addi-

tivity of mean values and independence (recall that the Erlang is the sum of 𝑛 independent exponen-

tials). Therefore, we get 𝐸[𝑆𝑛] =
𝑛

𝜇
, 𝑉𝑎𝑟(𝑆𝑛) =

𝑛

𝜇2
. From these we obtain 𝐶𝑜𝑉(𝑆𝑛) =

√𝑉𝑎𝑟(𝑆𝑛)

𝐸[𝑆𝑛]
=

1

√𝑛
. 

In other words, the CoV of an 𝑛-stage Erlang is smaller than one (and, specifically, it is smaller than 

an exponential’s), and it gets smaller with 𝑛 (which is again a consequence of the CLT). 
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We now know that the sum of 𝑛 + 1 IID exponentials with a rate 𝜇 is an (𝑛 + 1)-stage Erlang distri-

bution, i.e., 𝑓𝑛+1(𝑥) = 𝜇 ⋅ 𝑒
−𝜇⋅𝑥 ⋅

(𝜇⋅𝑥)𝑛

𝑛!
. This is the PDF of RV 𝑅, given that there are 𝑛 jobs in the 

system. Therefore, we can compute 𝑓𝑅(𝑥) using Total Probability as follows: 

𝑓𝑅(𝑥) =∑ 𝑓𝑛+1(𝑥) ⋅ 𝑟𝑛

+∞

𝑛=0

=∑ 𝜇 ⋅ 𝑒−𝜇⋅𝑥 ⋅
(𝜇 ⋅ 𝑥)𝑛

𝑛!
⋅ (1 − 𝜌) ⋅ 𝜌𝑛

+∞

𝑛=0

= 𝜇 ⋅ (1 − 𝜌) ⋅ 𝑒−𝜇⋅𝑥 ⋅∑
(𝜇 ⋅ 𝑥 ⋅ 𝜌)𝑛

𝑛!

+∞

𝑛=0

= 𝜇 ⋅ (1 − 𝜌) ⋅ 𝑒−𝜇⋅𝑥 ⋅ 𝑒𝜇𝜌𝑥

= 𝜇 ⋅ (1 − 𝜌) ⋅ 𝑒−𝜇(1−𝜌)⋅𝑥

= (𝜇 − 𝜆) ⋅ 𝑒−(𝜇−𝜆)⋅𝑥

=
1

𝐸[𝑅]
⋅ 𝑒−𝑥 𝐸[𝑅]⁄

 

This is an exponential distribution, hence 𝐹𝑅(𝑥) = 1− 𝑒
−𝑥 𝐸[𝑅]⁄ = 1− 𝑒−(𝜇−𝜆)⋅𝑥. 

 

As far as the distribution of the waiting time 𝑾 is concerned, things are only slightly different. We 

can repeat the same reasoning as for the response time; however, we need a little care: in fact, there 

is a possibility that the system may be empty at the time of arrival, hence the waiting time will be 

zero in that case. There is a non-null probability that the waiting time be null, equal to the probability 

of finding the system empty, i.e., 𝑟0 = 1− 𝜌. Therefore, the PDF of the waiting time will be: 

- Zero, with a non-null probability 𝑟0 = 1 − 𝜌.  

- Equal to an 𝑛-stage Erlang distribution (mind the difference: it was 𝑛 + 1 for the response 

time) with a probability 𝑟𝑛, 𝑛 ≥ 1. 

Note that the fact that 𝐹𝑊(0) = 𝑃{𝑊 = 0} = 𝑟0 > 0 implies that there is a discontinuity at 𝐹𝑊(0). 

The PDF will have a Dirac’s delta in zero. This said, we can use Total Probability again and compute 

𝑓𝑊(𝑥): 
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𝑓
𝑊
(𝑥) = (1 − 𝜌) ⋅ 𝛿(𝑥)+∑ 𝑓

𝑛
(𝑥) ⋅ 𝑟𝑛

+∞

𝑛=1

= (1 − 𝜌) ⋅ 𝛿(𝑥)+∑ 𝜇 ⋅ 𝑒−𝜇⋅𝑥 ⋅
(𝜇 ⋅ 𝑥)𝑛−1

(𝑛 − 1)!
⋅ (1 − 𝜌) ⋅ 𝜌𝑛

+∞

𝑛=1

= (1 − 𝜌) ⋅ 𝛿(𝑥)+ 𝜇 ⋅ 𝑒−𝜇⋅𝑥 ⋅ (1 − 𝜌) ⋅ 𝜌 ⋅∑
(𝜇 ⋅ 𝑥)𝑛−1

(𝑛− 1)!
⋅ 𝜌𝑛−1

+∞

𝑛=1

= (1 − 𝜌) ⋅ 𝛿(𝑥)+ 𝜌 ⋅ 𝜇 ⋅ (1 − 𝜌) ⋅ 𝑒−𝜇(1−𝜌)⋅𝑥

= (1 − 𝜌) ⋅ 𝛿(𝑥)+ 𝜌 ⋅
1

𝐸[𝑅]
⋅ 𝑒−𝑥 𝐸[𝑅]⁄

 

Area=1−r

Area = r

fW(x)

x

1−r

FW(x)

x

 

From the above we can easily obtain the distribution 𝐹𝑊(𝑥), which is such that: 

𝐹𝑊(𝑥) = {
1 − 𝜌 𝑥 = 0

(1 − 𝜌)+ 𝜌 ⋅ (1 − 𝑒−𝑥 𝐸[𝑅]⁄ ) 𝑥 > 0
, 

Which boils down to: 𝐹𝑊(𝑥) = 1− 𝜌 ⋅ 𝑒
−𝑥 𝐸[𝑅]⁄     𝑥 ≥ 0 

 

Now that we have distributions, we can solve problems with percentile constraints: select the server 

speed so that the 95th percentile of the response (waiting) time is below 𝑥, etc. You just need to solve 

𝐹𝑅(𝑥) = 0.95 and obtain x as a solution. 

3.3.5 Exercise 

Your boss says that the rate of contacts to your company’s website is going to double next month. 

She wants you to add more capacity to your website, so that: 

a) The mean response time will remain the same;  

b) The 99th percentile of the response time will remain the same. 

Assuming your web server can be modeled via an M/M/1 system, this boils down to increasing its 

service rate to match the requirements. Call 𝜆, 𝜇 the current arrival rate and service rate of your web-

site, and let 𝜆′ = 2𝜆, 𝜇′ be the new arrival and service rates. The equations are: 
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For case a), i.e. how to keep the mean response time constant: 

𝐸[𝑅′] = 𝐸[𝑅]
1

𝜇′ − 2𝜆
=

1

𝜇 − 𝜆

𝜇′ = 𝜇 + 𝜆

 

For case b) we have to consider that 𝐹𝑅(𝑥) = 1− 𝑒
−𝑥 𝐸[𝑅]⁄ = 1− 𝑒−(𝜇−𝜆)⋅𝑥, and that the 99th percentile 

of the current response time is the solution 𝑥.01 to 𝐹𝑅(𝑥.01) = 1− 𝑒
−(𝜇−𝜆)⋅𝑥.01 = 0.99, i.e.  

1

100
= 𝑒−(𝜇−𝜆)⋅𝑥.01

𝑥.01 =
log100

𝜇 − 𝜆

 

In the new configuration, the 99th percentile of the response time will be 𝑥.01′ =
log100

𝜇′−2𝜆
, which again 

means that 𝜇′ = 𝜇 + 𝜆.  

Those who instinctively thought 𝜇′ = 2𝜇 can check for themselves that doubling both the arrival and 

the service rate leads to halving the (mean or 99th percentile) response time.  

As an aside, case b) shows that setting 𝜇′ = 𝜇 + 𝜆 allows you to obtain exactly the same distribution 

of the response times: in fact, you can match any percentile through the same trick – you will just get 

a different argument for the logarithm in the above expressions. 

3.4 M/M/C systems 

So far, we have discussed systems with only one server. A frequent case is that of a queue which is 

drained by more than one server: 

- Airport check-in, where the single queue is served by several desks; 

- One queue of transactions waiting to be processed by several redundant disks; 

- A server farm, with requests being routed to the first idle server; 

- Networks with 𝐶 parallel links bundled together to increase the capacity. 

If the 𝐶 servers are equivalent (meaning that they have the same rate 𝜇) and everything else stays the 

same (i.e., exponential arrivals, exponential service times, infinite memory), then the system is called 

an M/M/C one. In an M/M/C system, an arriving job is sent to an idle server at random, if one such 

server exists, otherwise it queues up.  

We want to derive the SS probabilities for an M/M/C system. We start with 𝐶 = 2, and then we 

generalize to an arbitrary value of 𝐶.  

It is quite easy to derive the transition rates in this system4. In fact: 

                                                 

4 A formal derivation of CK equations for an M/M/2 system can be found in the Appendix. 



Notes on queueing theory (student version) – Giovanni Stea – last saved: 04/08/22 

30 

 

- Arcs going to the right are the same (with a rate 𝜆𝑛 = 𝜆); 

- Arcs going to the left will have to consider that (at least when 𝑛 ≥ 2) both servers are busy.  

Assume you are at time 𝑡, in a trajectory whose value is 𝑁(𝑡) = 𝑛, and 𝑛 ≥ 2. Both servers are busy, 

and a job may depart in the future from either of them (but not from both: as for the previous cases, 

we neglect the occurrence of simultaneous events, since it has a negligible probability).  

N(t)

t

residual service time 
@ server 1

residual service time 
@ server 2

 

When will the next downward step in the trajectory occur? When the smallest of the two residual 

service times (i.e., those of server 1 and of server 2) expires. However, we know that the service 

times at both servers are IID exponentials with the same rate 𝜇, therefore: 

- “residual” service times are themselves IID exponentials with a rate 𝜇, since exponentials 

are memoryless. The adjective “residual” is thus immaterial. 

- The minimum of two IID exponentials is an exponential with double their rate.  

Therefore, arcs going to the left, out of states 𝑛 ≥ 2, will have a transition rate equal to 2𝜇. 

What about the arc related to the service rate in state 1? In that case the transition rate to the left is 

still 𝜇, since only one server is busy. The CTMC will then look as follows: 

0

ll

1

ll

n….2

l

m 2m 2m 2m 2m

 

We stress again that the fact that the rate of departure is 2𝜇 does not mean that two jobs may leave 

simultaneously: transitions are still of the nearest-neighbor type, and non-nearest-neighbor transi-

tions have negligible probability.  

Hence, we get a CTMC with 𝜆𝑛 = 𝜆, and 𝜇𝑛 = {
𝜇 𝑛 = 1
2𝜇 𝑛 > 1

. 

 

In this case, service rates are load-dependent. 

Given the above diagram, we can easily write down both global and local equilibrium equations at 

the steady state, through visual inspection: 
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Global equilibrium equations 

𝜆 ⋅ 𝑝0 = 𝜇 ⋅ 𝑝1 

(𝜆 + 𝜇) ⋅ 𝑝1 = 𝜆 ⋅ 𝑝0 + 2𝜇 ⋅ 𝑝2 

(𝜆 + 2𝜇) ⋅ 𝑝𝑛 = 𝜆 ⋅ 𝑝𝑛−1 + 2𝜇 ⋅ 𝑝𝑛+1,   𝑛 ≥ 2 

Local equilibrium equations 

𝜆 ⋅ 𝑝0 = 𝜇 ⋅ 𝑝1 

𝜆 ⋅ 𝑝𝑛 = 2𝜇 ⋅ 𝑝𝑛+1,    𝑛 ≥ 2 

Before solving the above system, we generalize the above reasoning to an arbitrary number of 

servers 𝑪. We can write down the CTMC keeping in mind that: 

- Arrival rates are constant; 

- The service rates will be 𝜇𝑛 = {
𝑛 ⋅ 𝜇 𝑛 ≤ 𝐶
𝐶 ⋅ 𝜇 𝑛 ≥ 𝐶

= min(𝐶, 𝑛) ⋅ 𝜇 

0

ll

1

ll

C-1….2

l

m 2m 3m (C-1)m Cm

ll

n

Cm Cm

l

C

Cm

...

 

In order to compute the SS probabilities and the stability condition, we can specialize the general 

formulas that hold for any birth-death system with nearest-neighbor transitions, i.e.: 

{
 
 

 
 
𝑝𝑛 =∏

𝜆𝑖
𝜇𝑖+1

𝑝0

𝑛−1

𝑖=0

,    𝑛 ≥ 1

∑ 𝑝𝑛 = 1

+∞

𝑛=0

 

Define 𝑢 = 𝜆 𝜇⁄ . Note that, with this system, 𝝀 𝝁⁄  is not the utilization. Symbol 𝜌 denotes the utili-

zation, hence we need a different symbol to avoid confusion. To write the above formulas, we distin-

guish the two cases: 𝑛 ≤ 𝐶, 𝑛 ≥ 𝐶. 

- When 𝑛 ≤ 𝐶, we have  

𝑝𝑛 =
𝜆𝑛

𝜇 ⋅ 2𝜇 ⋅ 3𝜇 ⋅. . .⋅ 𝑛 ⋅ 𝜇
⋅ 𝑝0 = (

𝜆

𝜇
)
𝑛

⋅
1

𝑛!
⋅ 𝑝0 =

𝑢𝑛

𝑛!
⋅ 𝑝0 

- When 𝑛 ≥ 𝐶, we have  

𝑝𝑛 =
𝜆𝑛

(𝜇 ⋅ 2𝜇 ⋅ 3𝜇 ⋅. . .⋅ 𝐶 ⋅ 𝜇) ⋅ (𝐶 ⋅ 𝜇 ⋅. . .⋅ 𝐶 ⋅ 𝜇)
⋅ 𝑝0

= (
𝜆

𝜇
)
𝐶

⋅
1

𝐶!
⋅ (

𝜆

𝐶 ⋅ 𝜇
)
𝑛−𝐶

⋅ 𝑝0

= (
𝜆

𝜇
)
𝑛

⋅
1

𝐶!
⋅
1

𝐶𝑛−𝐶
⋅ 𝑝0

=
𝑢𝑛

𝐶𝑛−𝐶 ⋅ 𝐶!
⋅ 𝑝0

 

This said, the normalization condition becomes (recall that both expressions are correct when 𝑛 = 𝐶, 

but we should not count equality twice): 
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𝑝0 ⋅ [∑
𝑢𝑛

𝑛!

𝐶−1

𝑛=0

+∑
𝑢𝑛

𝐶𝑛−𝐶 ⋅ 𝐶!

+∞

𝑛=𝐶

] = 1 

The first summation includes a finite number of terms, hence it is always finite. Thus, the stability 

condition is the one under which the second summation is finite, i.e.: 

∑
𝑢𝑛

𝐶𝑛−𝐶 ⋅ 𝐶!

+∞

𝑛=𝐶

=
𝑢𝐶

𝐶!
⋅∑

𝑢𝑛−𝐶

𝐶𝑛−𝐶

+∞

𝑛=𝐶

=
𝑢𝐶

𝐶!
⋅∑(

𝑢

𝐶
)
𝑗

+∞

𝑗=0

 

The condition is clearly 𝑢 < 𝐶, i.e. 𝜆 < 𝐶 ⋅ 𝜇. This could be expected, since 𝜆 is the arrival rate, and 

𝐶 ⋅ 𝜇 is the service rate at high loads. If the services cannot keep up with the arrivals when the load is 

high, then the state is bound to diverge. In fact, in this case it is 𝜌 =
𝜆

𝐶⋅𝜇
 (we will see why later on), 

hence the stability condition is still 𝜌 < 1. This gives us an interesting insight on stability: what ac-

tually matters for stability is the balance of the CTMC rates “to the right”, i.e. the fact that 𝜆𝑛 < 𝜇𝑛 

∀𝑛 ≥ 𝑛0. What happens “close to state 0” does not affect stability, although it still influences perfor-

mance indexes. Under the above condition, the infinite sum converges to 1 (1 − 𝜌)⁄ , hence: 

𝑝0 =
1

∑
𝑢𝑘

𝑘!
𝐶−1
𝑘=0 +

𝑢𝐶

𝐶! ⋅
1

1 − 𝜌

 

and 

𝑝𝑛 =

{
 

 𝑝0 ⋅
𝑢𝑛

𝑛!
𝑛 ≤ 𝐶

𝑝0 ⋅
𝑢𝑛

𝐶𝑛−𝐶 ⋅ 𝐶!
𝑛 ≥ 𝐶

 

Now that we have the SS probabilities, we can compute all the performance indexes. We start with 

𝐸[𝑁𝑞], which is easier. 

𝐸[𝑁𝑞] = ∑ (𝑛 − 𝐶) ⋅ 𝑝𝑛

+∞

𝑛=𝐶+1

= ∑ (𝑛− 𝐶) ⋅
𝑢𝑛

𝐶!𝐶𝑛−𝐶

+∞

𝑛=𝐶+1

⋅ 𝑝0 =

=
𝑢𝐶

𝐶!
⋅ 𝑝0 ⋅ ∑ (𝑛 − 𝐶) ⋅

𝑢𝑛−𝐶

𝐶𝑛−𝐶

+∞

𝑛=𝐶+1

=
𝑢𝐶

𝐶!
⋅ 𝑝0 ⋅∑ 𝑛 ⋅ 𝜌𝑛

+∞

𝑛=1

=
𝑢𝐶

𝐶!
⋅ 𝑝0 ⋅

𝜌

(1 − 𝜌)2

 

From the above, using Little’s Law, we get: 

𝐸[𝑊] =
𝐸[𝑁𝑞]

𝜆
=
𝑢𝐶

𝐶!
⋅ 𝑝0 ⋅

1 (𝐶 ⋅ 𝜇)⁄

(1 − 𝜌)2
 

In order to compute 𝐸[𝑅], we only need to sum up a mean service time to 𝐸[𝑊], i.e.  
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𝐸[𝑅] = 𝐸[𝑊] + 𝐸[𝑡𝑠] =
𝑢𝐶

𝐶!
⋅ 𝑝0 ⋅

1 (𝐶 ⋅ 𝜇)⁄

(1 − 𝜌)2
+
1

𝜇
 

And from the latter, applying Little’s Law backwards, we can get 𝐸[𝑁]: 

𝐸[𝑁] =
𝑢𝐶

𝐶!
⋅ 𝑝0 ⋅

𝜌

(1 − 𝜌)2
+
𝜆

𝜇
= 𝐸[𝑁𝑞] + 𝐶 ⋅ 𝜌 

Again, it is 𝐸[𝑁] = 𝐸[𝑁𝑞] + 𝐸[𝑁𝑠], i.e. the mean number in the queue plus the mean number being 

served, which is 𝐶 ⋅ 𝜌. 

The M/M/C system has the PASTA property, so it is 𝑟𝑛 = 𝑝𝑛. As far as the throughput is concerned, 

we get: 

𝛾 = ∑𝜇𝑛 ⋅ 𝑝𝑛

+∞

𝑛=1

= ∑𝑛 ⋅ 𝜇 ⋅ 𝑝𝑛

𝐶

𝑛=1

+ ∑ 𝐶 ⋅ 𝜇 ⋅ 𝑝𝑛

+∞

𝑛=𝐶+1

 

The computations are not straightforward. However, for pretty obvious physical considerations, the 

only possibility is that 𝛾 = 𝜆, since the system is in a steady state, and what gets in must get out. 

Finally, it is interesting to compute the mean number of busy servers. Call 𝑐 the RV “number of 

busy servers”. The expression is the following: 

𝐸[𝑐] = ∑min(𝑛, 𝐶) ⋅ 𝑝𝑛

+∞

𝑛=1

= ∑𝑛 ⋅ 𝑝𝑛

𝐶

𝑛=1

+ ∑ 𝐶 ⋅ 𝑝𝑛

+∞

𝑛=𝐶+1

 

Again, the computations are not straightforward, and – again – we can find a quicker workaround, 

which relies on Little’s Law.  

Apply Little’s Law to the sub-system consisting of the 𝑪 servers, and get the following: 

- The average response time of the system is 𝐸[𝑡𝑠] =
1

𝜇
; 

- The input-output rate at the steady state is 𝛾 = 𝜆. 

Thus, 𝐸[𝑐] = 𝜆 ⋅ 𝐸[𝑡𝑠] =
𝜆

𝜇
= 𝑢. 

This justifies the fact that 𝜌 =
𝜆

𝐶⋅𝜇
=

𝐸[𝑐]

𝐶
. 𝜌 represents the utilization, hence it is the average fraction 

of busy servers. As this fraction approaches one, the system becomes unstable. Note that the above 

definition also holds for an M/M/1 system. SS probabilities can be rewritten using 𝜌 instead of 𝑢 via 

a few algebraic computations: 

𝑝𝑛 =

{
 
 

 
 𝑝0 ⋅

(𝐶 ⋅ 𝜌)𝑛

𝑛!
𝑛 ≤ 𝐶

𝑝0 ⋅
𝐶𝐶 ⋅ 𝜌𝑛

𝐶!
𝑛 ≥ 𝐶
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3.4.1 Exercise: comparison of the response time for queueing systems 

Suppose that you have to build up a computer system that processes transactions. Transactions arrive 

at a rate 𝜆. You can buy a total computing power equal to 𝐶 ⋅ 𝜇. You are requested to choose among 

three alternative designs: 

1) A system where the incoming traffic is split into 𝐶 Poisson processes5, each of which is sent 

to an M/M/1 system whose service rate is 𝜇 (load balancing). 

2) An M/M/C system, i.e., where a single queue exists and each of the identical 𝐶 servers have 

a service rate equal to 𝜇. 

3) An M/M/1 system with a more powerful server, whose service rate is 𝐶 ⋅ 𝜇. 

Which of the three will yield the smallest 𝐸[𝑅]? What is the rationale behind the answer? 

3.4.2 Delay centers: M/M/∞ systems 

If we take the limit 𝐶 → +∞, we observe a peculiar behavior: since the number of severs is infinite, 

every job that arrives will find an available server, hence there will be no queueing. The CTMC is 

the following: 

0

ll

1

ll

n-1….2

l

m 2m 3m (n-1)m nm

l

n

(n+1)m

...

 

The local equilibrium equations are: 𝑝𝑛+1 =
𝜆

(𝑛+1)𝜇
⋅ 𝑝𝑛. 

The SS probabilities can be written quite easily by specializing the general formula: 

{
𝑝𝑛 = ∏

𝜆𝑖
𝜇𝑖+1

𝑝0
𝑛−1
𝑖=0 ,    𝑛 ≥ 1

∑ 𝑝𝑛 = 1
+∞
𝑛=0

, with 𝜆𝑛 = 𝜆, 𝜇𝑛 = 𝑛 ⋅ 𝜇.  

We readily obtain 𝑝𝑛 = (
𝜆

𝜇
)
𝑛
⋅
1

𝑛!
⋅ 𝑝0, 𝑛 ≥ 0. The stability condition is 𝑝0 ⋅ ∑ (

𝜆

𝜇
)
𝑛
⋅
1

𝑛!
+∞
𝑛=0 = 1. How-

ever, since ∑ (
𝜆

𝜇
)
𝑛
⋅
1

𝑛!
+∞
𝑛=0 = 𝑒𝜆 𝜇⁄ , then this system is always stable, regardless of the values of 𝜆, 𝜇. 

This means that 𝑝𝑛 = 𝑒
−𝜆 𝜇⁄ ⋅

(𝜆 𝜇⁄ )𝑛

𝑛!
, 𝑛 ≥ 0. The SS probabilities have a Poisson distribution.  

M/M/ systems are called delay centers. They model cases when arriving jobs are delayed by a 

random exponential time before being forwarded (e.g., a user think time between two successive page 

requests). 

                                                 

5 If a Poisson process with a rate 𝜆 is split probabilistically, i.e. jobs are routed to server 𝑗 with probability 𝜋𝑗, the arrivals 

at each server will themselves be independent Poisson processes, with rates 𝜆𝑗 = 𝜆 ⋅ 𝜋𝑗.  
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For an M/M/ system we can easily compute the only relevant performance metric, i.e. 𝐸[𝑁] = 𝐸[𝐶]. 

By recalling the properties of Poisson distributions, we easily get 𝐸[𝑁] = 𝐸[𝐶] =
𝜆

𝜇
. 

3.4.3 Models, CTMCs and performance indexes 

It is now time to observe that very different models may admit the same SS probabilities. It is im-

portant to understand that these similarities may not extend to all the performance indexes, hence 

some care must be taken when doing the computations. Here is an example. 

Example 

Consider the following two systems: 

a) An M/M/C system; 

b) An M/M/1 system with load-dependent service-rate. It is 𝜇𝑛 = min(𝑛, 𝐶) ⋅ 𝜇, i.e. the ser-

vice rate increases with the load, but caps to a maximum of 𝐶 ⋅ 𝜇. 

It is quite clear that both systems have the same CTMC, hence they will have the same SS proba-

bilities. Since they do, it will be 𝐸[𝑁(𝑎)] = 𝐸[𝑁(𝑏)]. By Little, since 𝛾(𝑎) = γ(𝑏) , it will also be 

𝐸[𝑅(𝑎)] = 𝐸[𝑅(𝑏)]. Does this imply that all the performance indexes are equal? 

0

ll

1

ll

C-1….2

l

m 2m 3m (C-1)m Cm

ll

n

Cm Cm

l

C

Cm

...

 

No, it does not. In fact, we have: 

𝐸[𝑁𝑞
(𝑎)
] = ∑ (𝑛 − 𝐶) ⋅ 𝑝𝑛

+∞

𝑛=𝐶+1

 

whereas it is: 

𝐸[𝑁𝑞
(𝑏)
] = ∑(𝑛 − 1) ⋅ 𝑝𝑛

+∞

𝑛=2

 

Hence, in general 𝐸[𝑁𝑞
(𝑎)
] ≠ 𝐸[𝑁𝑞

(𝑏)
]. The mean waiting time will thus be different as well. 

◼ 

This is to remind to ourselves that one is never too careful around these systems, and that not every-

thing that you need to know can be found in the CTMC.  
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3.5 Discouraged arrivals 

Consider the (likely) case of a system where the more jobs are in the queue, the fewer will join. 

This happens, for instance, in museums or supermarket tills, where the fact that the queue is long 

discourages other users from joining it.  

A common model is one where 𝜆𝑛 = 𝜆 (𝑛 + 1)⁄ , and the service rate is constant, 𝜇𝑛 = 𝜇. 

The CTMC is the following: 

0

l/2l

1

l/nl/(n−1)

n-1….2

l/3

m m m m m

l/(n+1)

n

m

...

 

And the local equilibrium equations are 𝑝𝑛+1 =
𝜆

(𝑛+1)𝜇
⋅ 𝑝𝑛, which are the same as a delay center’s. 

Therefore, we quickly get the following: 

a) The system is always stable, whatever the values of 𝜆, 𝜇; 

b) It is 𝑝𝑛 = 𝑒
−𝜆 𝜇⁄ ⋅

(𝜆 𝜇⁄ )𝑛

𝑛!
, 𝑛 ≥ 0. The SS probabilities have a Poisson distribution; 

c) 𝐸[𝑁] =
𝜆

𝜇
. 

However, the similarities between a discouraged-arrivals system and a delay center end here. In fact: 

- Queueing occurs in this system, but not in a delay center. In fact, we have 𝐸[𝑁𝑞] = 𝐸[𝑁] −

(1 − 𝑝0) =
𝜆

𝜇
− (1 − 𝑒−𝜆 𝜇⁄ ). 

- The average arrival rate is different in the two systems, hence everything that is computed 

through Little (notably, 𝐸[𝑅]) will be different.  

- This system is non-PASTA, since the arrival rates are not constant, whereas the other is. 

Therefore, here we have 𝑟𝑛 ≠ 𝑝𝑛. 

This means that we have to compute the average arrival rate, which is defined as 𝜆̅ = ∑ 𝜆𝑛 ⋅ 𝑝𝑛
+∞
𝑛=0 . 

However, we know that it must also be 𝜆̅ = 𝛾 ≜ ∑ 𝜇𝑛 ⋅ 𝑝𝑛
+∞
𝑛=1 . Since 𝜇𝑛 = 𝜇, we obtain that 𝜆̅ = 𝜇 ⋅

(1 − 𝑝0) = 𝜇 ⋅ (1 − 𝑒
−𝜆 𝜇⁄ ) with considerably fewer computations. Therefore, we get: 

𝐸[𝑅] =
𝐸[𝑁]

𝜆̅
=

𝜆

𝜇2 ⋅ (1 − 𝑒−𝜆 𝜇⁄ )
 

𝐸[𝑊] =
𝐸[𝑁𝑞]

𝜆̅
= [

𝜆

𝜇
− (1 − 𝑒−𝜆 𝜇⁄ )] ⋅

1

𝜇(1 − 𝑒−𝜆 𝜇⁄ )
=

𝜆

𝜇2(1 − 𝑒−𝜆 𝜇⁄ )
−
1

𝜇
= 𝐸[𝑅] − 𝐸[𝑡𝑠] 

𝑟𝑛 =
𝜆𝑛
𝜆̅
⋅ 𝑝𝑛 =

𝜆

(𝑛+ 1) ⋅ 𝜇 ⋅ (1 − 𝑒−𝜆 𝜇⁄ )
⋅ 𝑒−𝜆 𝜇⁄ ⋅

(𝜆 𝜇⁄ )𝑛

𝑛!
=

𝑝𝑛+1
1 − 𝑒−𝜆 𝜇⁄

=
𝑝𝑛+1
1 − 𝑝0
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3.6 Systems with finite memory: M/M/1/K 

Infinite queues are often a useful abstraction. Real systems, 

however, have finite queues, hence they have losses due to 

overflow. This means that, in general, the case that 𝛾 < 𝜆 may 

be given, since some of the jobs will not enter the system.  

Call 𝐾 the system memory, i.e., the maximum number of jobs that are allowed in the system at any 

time. When the system is in state 𝐾, the queue is full. Any arrival occurring when the system is in 

that state will be dropped.  If the arrival and service rates are constant, the CTMC will be this: 

0

ll

1

ll

K-1….2

l

m m m m m

K

 

From the latter, we can easily infer the local equilibrium equations 𝜆 ⋅ 𝑝𝑛 = 𝜇 ⋅ 𝑝𝑛+1, 0 ≤ 𝑛 < 𝐾, 

hence we will have 𝑝𝑛 = (
𝜆

𝜇
)
𝑛
⋅ 𝑝0, 0 ≤ 𝑛 ≤ 𝐾.  

The normalization condition now involves a finite sum, hence the system is always positive recur-

rent (all systems with finite states are), whether 𝜆 < 𝜇 or not. Call 𝑢 = 𝜆 𝜇⁄ . We obtain: 

{
𝑝𝑛 = 𝑢

𝑛 ⋅ 𝑝0,    𝑛 ≥ 0

𝑝0 ⋅ ∑ 𝑢𝑛𝐾
𝑛=0 = 1

.  However, ∑ 𝑢𝑛𝐾
𝑛=0 = {

1−𝑢𝐾+1

1−𝑢
𝑢 ≠ 1

𝐾+ 1 𝑢 = 1
, thus: 

𝑝0 =
1

∑ 𝑢𝑛𝐾
𝑛=0

= {

1−𝑢

1−𝑢𝐾+1
𝑢 ≠ 1

1

𝐾+1
𝑢 = 1

, 𝑝𝑛 = {

1−𝑢

1−𝑢𝐾+1
⋅ 𝑢𝑛 𝑢 ≠ 1

1

𝐾+1
𝑢 = 1

. 

The case 𝑢 = 1, i.e. 𝜆 = 𝜇, is quite peculiar: in this case, in fact, the rates of left- and right-bound 

transitions are the same, hence all the states are equally likely.  

If 𝑢 < 1 we would expect “low” states to be observed with a larger probability than “high” ones: this 

is the case, in fact, since 𝑝𝑛 is a decreasing sequence. If 𝑢 > 1, instead, 𝑝𝑛 is an increasing sequence, 

which is again expectable for the same reason.  

We can compute performance indexes (assuming 𝑢 ≠ 1 from now on, otherwise they are trivial): 

Please do not forget to consider this 

case when solving classworks 

Full?
l

m

K
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𝐸[𝑁] =∑ 𝑛 ⋅ 𝑝𝑛

𝐾

𝑛=0

=
1− 𝑢

1 − 𝑢𝐾+1
⋅∑ 𝑛 ⋅ 𝑢𝑛
𝐾

𝑛=0

=
1− 𝑢

1 − 𝑢𝐾+1
⋅ 𝑢 ⋅

𝑑

𝑑𝑢
∑ 𝑢𝑛
𝐾

𝑛=0

=
1− 𝑢

1 − 𝑢𝐾+1
⋅ 𝑢 ⋅

𝑑

𝑑𝑢
(
1 − 𝑢𝐾+1

1 − 𝑢
)

=
1− 𝑢

1 − 𝑢𝐾+1
⋅ 𝑢 ⋅

−(𝐾+ 1)𝑢𝐾 ⋅ (1 − 𝑢)+ 1− 𝑢𝐾+1

(1 − 𝑢)2

=
𝑢

1 − 𝑢
⋅
−(𝐾+ 1)𝑢𝐾 ⋅ (1 − 𝑢)+ 1− 𝑢𝐾+1

1 − 𝑢𝐾+1

=
𝑢

1 − 𝑢
⋅ (1 −

(𝐾+ 1)𝑢𝐾 ⋅ (1 − 𝑢)

1 − 𝑢𝐾+1
)

=
𝑢

1 − 𝑢
−
(𝐾+ 1)𝑢𝐾+1

1 − 𝑢𝐾+1

 

Assume 𝑢 < 1: the above formula is similar to the M/M/1 system’s, but it has a negative offset to 

compensate for the missing states. In this case lim
𝐾→+∞

𝐸[𝑁] =
𝑢

1−𝑢
, which is in fact what should happen 

in a stable M/M/1 system. On the other hand, if 𝑢 > 1, as 𝐾 increases, we get the following: 

𝐸[𝑁] =
𝑢

1 − 𝑢
−
(𝐾 + 1)𝑢𝐾+1

1 − 𝑢𝐾+1
=
(𝐾 + 1)

1 −
1

𝑢𝐾+1

−
𝑢

𝑢 − 1
≃ 𝐾 −

1

𝑢 − 1
 

Hence, the number of jobs will be close to 𝑲 in any case, since the transitions to the right occur more 

often than those to the left.  

The mean number of jobs in the queue is:  

𝐸[𝑁𝑞] = 𝐸[𝑁]− (1 − 𝑝0) =
𝑢

1− 𝑢
−
(𝐾+ 1)𝑢𝐾+1

1 − 𝑢𝐾+1
− (1 −

1− 𝑢

1− 𝑢𝐾+1
)

=
𝑢

1 − 𝑢
−
𝐾 ⋅ 𝑢𝐾+1 + 𝑢

1 − 𝑢𝐾+1

 

An important performance metric of a finite-queue system is the blocking probability or loss prob-

ability, i.e. the probability that an arriving job is dropped because the system is full. This is the prob-

ability that an arriving job finds the system in state 𝐾. However, to the left of the divide this system 

is a PASTA system, since the arrival rates are independent 

of the state of the system (they are constant and equal to 𝜆). 

Therefore, we have 𝒑𝑳 = 𝒑𝑲 =
𝟏−𝒖

𝟏−𝒖𝑲+𝟏
⋅ 𝒖𝑲 . Knowing the 

relationship between 𝑝𝐿 and 𝐾, 𝑢, allows one to dimension 

the queue size 𝑲  based on the expected loss probability 

given the arrival and service rates. This should be done by 

solving the above equation numerically, possibly with the help of a spreadsheet.  

M/M/1/KFull?
l ln

PASTA Non PASTA
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Some care must instead be taken when computing response/waiting times through Little’s Law, since 

response times are computed only for those jobs that pass the above vertical divide. For these 𝜆𝑛 is 

not constant. In fact, it is:  

𝜆𝑛 = {𝜆 0 ≤ 𝑛 < 𝐾
0 𝑛 = 𝐾

 

Hence, right of the divide, this is a non-PASTA system, with 𝜆̅ = ∑ 𝜆𝑛 ⋅ 𝑝𝑛
𝐾
𝑛=0 = 𝜆 ⋅ (1 − 𝑝𝐾) < 𝜆.  

This said, we can compute 𝐸[𝑅], 𝐸[𝑊] using 𝜆̅ as a mean arrival rate: 𝐸[𝑅] =
𝐸[𝑁]

𝜆̅
, 𝐸[𝑊] =

𝐸[𝑁𝑞]

𝜆̅
. 

Moreover, it is:  

𝑟𝑛 =
𝜆𝑛
𝜆̅
⋅ 𝑝𝑛 = {

𝑝𝑛
1 − 𝑝𝐿

𝑛 < 𝐾

0 𝑛 = 𝐾

 

This has an intuitive explanation, since 𝑟𝐾 must be equal to zero (no job can enter the system when 

the queue is full). Therefore, all the other probabilities 𝑟0, . . . 𝑟𝐾−1 must sum to one and be propor-

tional to the related random-observer ones (the arrival rates are constant up to state 𝐾 − 1), hence 

they can only be 𝑝𝑛 (1 − 𝑝𝐿)⁄ . 

Last, but not least, we should compute the throughput. Due to physical reasons, the only possibility 

is 𝛾 = 𝜆̅ = 𝜆(1 − 𝑝𝐿).  

3.6.1 Adding queueing space does increase the utilization 

We have discussed at the beginning that queues are there to increase the utilization of a system. We 

can now corroborate the above observation with numbers. Let us compute the utilization of an 

M/M/1/K as a function of 𝐾. We have: 

𝜌(𝐾) = 1 − 𝑝0(𝐾) = 1 −
1 − 𝑢

1 − 𝑢𝐾+1
= 𝑢 ⋅

1 − 𝑢𝐾

1 − 𝑢𝐾+1
 

When 𝑢 < 1  (i.e., 𝜆 < 𝜇 ), the above expression increases with 𝐾  and 𝜌(∞) = lim
𝐾→+∞

𝜌(𝐾) =
𝜆

𝜇
. 

Hence, adding queueing increases the system utilization, up to a maximum achieved when the queue 

is infinite. For instance, an M/M/1/1 system having 
𝜆

𝜇
= 0.8 can only achieve a utilization of 𝜌(1) ≈

0.44 just because jobs are not allowed to queue up when the system is busy. Moreover, increasing 

the queue also increases the throughput, since it is: 

𝛾(𝐾) = 𝜇 ⋅ (1 − 𝑝0(𝐾)) = 𝜇 ∙ 𝜌(𝐾) 

Again, 𝛾(𝐾) is an increasing sequence and 𝛾(∞) = lim
𝐾→+∞

𝛾(𝐾) = 𝜆. It is also 𝛾(1) ≈ 0.56 ⋅ 𝜆.  

However, queueing increases the response time. Let us compute 𝐸[𝑅] as a function of 𝐾. 
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𝐸[𝑅] =
𝐸[𝑁]

𝛾
=

𝑢
1− 𝑢 −

(𝐾+ 1)𝑢𝐾+1

1 − 𝑢𝐾+1

𝜆 ⋅
1 − 𝑢𝐾

1 − 𝑢𝐾+1

=
𝑢+𝐾 ⋅ 𝑢𝐾+2 − (𝐾+ 1)𝑢𝐾+1

𝜆 ⋅ (1 − 𝑢𝐾) ⋅ (1 − 𝑢)
=

𝑢

𝜆 ⋅ (1 − 𝑢)
−

𝐾 ∙ 𝑢𝐾+1

𝜆 ⋅ (1 − 𝑢𝐾) 

One can clearly see that: 

lim
𝐾→+∞

𝐸[𝑅] =
𝑢

𝜆 ⋅ (1 − 𝑢)
=

1

𝜇 − 𝜆
 

If you plot both 𝐸[𝑅] and 𝛾(𝐾), you get the following (in the example, it is 𝜆 = 1, 𝜇 = 1.2): 

1

1.5

2

2.5

3

3.5

4

4.5

5

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50

E[R] gamma

E
[R

]
g

a
m

m
a

K
 

This is typical of queueing systems: when you add buffer space, the achieved utilization (or the 

throughput) increases faster than the response time. Both eventually reach their maximum value 

(i.e., the corresponding M/M/1’s), but the utilization increases sooner. This means that adding buffer 

space has a diminishing performance return: the more you add buffer space, the smaller the return 

in utilization, and the higher the cost in response time. Of course, this discussion assumes that occa-

sionally losing some input is not a problem. If this is not the case, one should add buffer space until 

the probability of losing a job is small enough, as shown before.  

3.7 Systems with finite populations: M/M/1/*/U 

It is often the case that a queueing system models a service center providing service to a finite pop-

ulation of users. Typical examples are: 

- A repair center for broken machines. Once fixed, machines 

are put back in operation, and broken ones are queued for re-

pair. The overall population of machines is a constant 𝑈. 

- An I/O device being accessed by a finite number of pro-

cesses. 

m

U users

 



Notes on queueing theory (student version) – Giovanni Stea – last saved: 04/08/22 

41 

 

- A network switch having 𝑈 input lines that block when they are being served.  

Now, assume that users are independent, and that the time a user spends outside the system is expo-

nentially distributed with a rate 𝜆. Then, it follows that, if 𝑈 users are the population and 𝑛 users are 

inside the system at time 𝑡, then 𝑈 − 𝑛 are outside the system and may be entering the system in the 

future. Therefore, the next arrival will occur when the smallest (residual) “outside” time will have 

elapsed. However, given that outside times are IID exponentials,  

a) Residual outside times are distributed as outside times (memoryless property). 

b) The minimum of 𝑈 − 𝑛 IID exponentials is an exponential with a rate (𝑈 − 𝑛) ⋅ 𝜆. 

Therefore, the arrival rates are 𝝀𝒏 = (𝑼−𝒏) ⋅ 𝝀. On the other hand, the service rates are constant, 

𝜇𝑛 = 𝜇 (this is the case if we have only a constant-rate server), and the system will have 𝑈 + 1 states 

- hence, as long as its memory is at least equal to 𝑈, it does not really matter how large it is.  

Having said this, it is quite straightforward to draw the CTMC: 

0

(U-1)lUl

1

l2l

U-1….2

(U-2)l

m m m m m

U

The system is always stable (it has a finite number of states), and the equilibrium equations are: 

 

Global 

𝑈 ⋅ 𝜆 ⋅ 𝑝0 = 𝜇 ⋅ 𝑝1
[(𝑈− 𝑛) ⋅ 𝜆 + 𝜇] ⋅ 𝑝𝑛 = 𝜇 ⋅ 𝑝𝑛+1 + (𝑈− (𝑛− 1)) ⋅ 𝜆 ⋅ 𝑝𝑛−1,    1 ≤ 𝑛 < 𝑈

𝜇 ⋅ 𝑝𝑈 = 𝜆 ⋅ 𝑝𝑈−1

 

Local 

(𝑈− 𝑛) ⋅ 𝜆 ⋅ 𝑝𝑛 = 𝜇 ⋅ 𝑝𝑛+1 

From the local equilibrium equations, it is quite easy to obtain 𝑝𝑛 = (
𝜆

𝜇
)
𝑛
⋅

𝑈!

(𝑈−𝑛)!
⋅ 𝑝0, 0 ≤ 𝑛 ≤ 𝑈. 

The system is always stable, and we get 𝑝0 from the normalization condition: 

𝑝0 ⋅∑(
𝜆

𝜇
)

𝑛

⋅
𝑈!

(𝑈− 𝑛)!

𝑈

𝑛=0

= 1,hence 𝑝0 =
1

∑ (
𝜆
𝜇)

𝑛

⋅
𝑈!

(𝑈− 𝑛)!
𝑈
𝑛=0

 

We can compute the performance indexes as an exercise: 
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𝐸[𝑁] =∑ 𝑛 ⋅ 𝑝𝑛

𝑈

𝑛=0

=∑(𝑈− (𝑈− 𝑛)) ⋅ 𝑝𝑛

𝑈

𝑛=0

= 𝑈−∑(𝑈− 𝑛) ⋅ (
𝜆

𝜇
)

𝑛

⋅
𝑈!

(𝑈− 𝑛)!
⋅ 𝑝0

𝑈−1

𝑛=0

= 𝑈−∑(
𝜆

𝜇
)

𝑛

⋅
𝑈!

(𝑈− (𝑛 + 1))!
⋅ 𝑝0

𝑈−1

𝑛=0

= 𝑈−
𝜇

𝜆
⋅∑(

𝜆

𝜇
)

𝑛

⋅
𝑈!

(𝑈− 𝑛)!
⋅ 𝑝0

𝑈

𝑛=1

= 𝑈−
𝜇

𝜆
⋅ (1 − 𝑝0)

 

From this we get 𝐸[𝑁𝑞] = 𝐸[𝑁] − (1 − 𝑝0) = 𝑈 −
𝜇+𝜆

𝜆
(1 − 𝑝0). 

In order to apply Little’s Law we need to compute: 

𝜆̅ =∑ 𝜆𝑛 ⋅ 𝑝𝑛

𝑈

𝑛=0

=∑(𝑈− 𝑛) ⋅ 𝜆 ⋅ 𝑝𝑛

𝑈

𝑛=0

= 𝜆 ⋅ [𝑈− 𝐸[𝑁]] = 𝜇 ⋅ (1 − 𝑝0) 

Hence, we get:  

𝐸[𝑅] =
𝐸[𝑁]

𝜆̅
=

𝑈

𝜇 ⋅ (1 − 𝑝0)
−
1

𝜆
,𝐸[𝑊] =

𝐸[𝑁𝑞]

𝜆̅
=

𝑈

𝜇 ⋅ (1 − 𝑝0)
−
1

𝜆
−
1

𝜇
 

The last expression confirms that 𝐸[𝑅] = 𝐸[𝑊] + 𝐸[𝑡𝑠]. 

Finally, we have: 

𝑟𝑛 =
𝜆𝑛
𝜆̅
⋅ 𝑝𝑛 =

(𝑈− 𝑛) ⋅ 𝜆

𝜇 ⋅ (1 − 𝑝0)
⋅ (
𝜆

𝜇
)

𝑛

⋅
𝑈!

(𝑈− 𝑛)!
⋅ 𝑝0 =

𝑝𝑛+1
1 − 𝑝0

,   𝑛 < 𝑈 

As usual, we can devise more complex systems with finite populations and 𝐶 servers, etc. These only 

bring algebraic complications, and there is nothing interesting from a conceptual standpoint.  

One might wonder how finite-population systems relate to infinite-population systems (i.e., all the 

others that we had discussed thus far), and why we normally assume a constant arrival rate in the 

latter. It is because, when 𝑈 grows to infinity, all numbers 𝑈 − 𝑘 are not dissimilar to 𝑈, hence the 

arrival rate is approximately constant. This is the same approximation through which we obtained a 

Poisson distribution from a binomial, when the number of trials (i.e., individuals in the population) is 

very large and the probability of success (i.e., that each single individual arrives in the system) is very 

small.  
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3.8 Systems with bulk arrivals  

So far, we have only analyzed systems with nearest-neighbor transitions. However, there are prac-

tical cases when non-nearest-neighbor transitions may occur. Consider in fact the following exam-

ples: 

- A processing plant where trucks arrive with exponential interarrival times, carrying a random 

number of items that must be processed individually. Thus, if we describe the system state 

using the number of items in the processing plant, one arrival implies a state jump of as many 

items as the truck contains. 

- A network protocol sending messages to the underlying protocol. Messages may be arbitrarily 

long, and they may be fragmented and transmitted separately. 

In all these cases, if we assume that arrivals are exponential, we retain the property that the only 

relevant parameter to describe the system state is the number of jobs in the system. However, one 

arrival will increase the number of queued jobs by more than one unit, so we will have non-nearest-

neighbor transitions to the right in the CTMC. 

 

How do we write the CTMC in this case? Call 𝑔 the RV of the number of jobs per arrival, and let  

𝑔𝑘 be its PMF, i.e. 𝑔𝑘 = 𝑃{𝑔 = 𝑘}. It is 𝑔0 = 0, and (obviously) ∑ 𝑔𝑘
+∞
𝑘=1 = 1. This does not neces-

sarily mean that the support of 𝑔 must be infinite: if it is finite, we will have 𝑔𝑘 starting from some 

index 𝑘∗. Assume that 𝑔𝑘 is independent of the interarrival time and service time distribution. Then 

the rate of the arc going from state 𝒊 to state 𝒌 is 𝝀 ⋅ 𝒈𝒌−𝒊. This said, the CTMC can be drawn, 

though not too easily: 

0

lg1lg1

1

lg1

….2

lg1

m m m m

n

lg1

m

lg3

lg2 lg2

lgk
...

lg2

lg3
...

lgn

lg2

lg3...

lgk

 

The above diagram is quite hard to follow, since: 

- All states will have as many outgoing arcs to the right as the support of RV 𝒈 allows, each 

one with a label 𝜆 ⋅ 𝑔𝑗, 𝑗 ≥ 1. If the maximum number of jobs in a bulk arrival is infinite, 

there will be infinitely many outgoing arcs to the right from each state. 
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- Each state 𝑛 will have exactly 𝒏 incoming arcs from the left, labelled 𝜆 ⋅ 𝑔𝑛−𝑗, 0 ≤ 𝑗 < 𝑛 

and coming from state 𝑗. 

- Finally, we still have the service transition going from 𝑛 to 𝑛 − 1 at a rate 𝜇. 

This may be quite difficult to do with pen and paper (you may want to write some code, lest you 

forget something).  

In any case, you can still write global equilibrium equations (if you try local ones, you will surely 

end up forgetting some arc). These are simpler than one may think: 

- With 𝑛 = 0, ∑ 𝜆 ⋅ 𝑔𝑖
+∞
𝑖=1 ⋅ 𝑝0 = 𝜇 ⋅ 𝑝1, hence 𝜆 ⋅ 𝑝0 = 𝜇 ⋅ 𝑝1 as usual. 

- With 𝑛 ≥ 1, 

[∑𝜆 ⋅ 𝑔𝑖

+∞

𝑖=1

+ 𝜇] ⋅ 𝑝𝑛 = 𝜇 ⋅ 𝑝𝑛+1 +∑𝜆 ⋅ 𝑔𝑛−𝑖

𝑛−1

𝑖=0

⋅ 𝑝𝑖 

i.e.  

(𝜆 + 𝜇) ⋅ 𝑝𝑛 = 𝜇 ⋅ 𝑝𝑛+1 + 𝜆 ⋅∑𝑔𝑛−𝑖

𝑛−1

𝑖=0

⋅ 𝑝𝑖 

Computing the SS probabilities using the direct method (i.e., writing 𝑝𝑛 = 𝑓𝑛(𝑝0) and enforcing 

normalization) is probably too difficult in this case. When this is the case, the usual technique to get 

at least some performance metrics is to switch to the PGFs. We multiply each equation by 𝑧𝑛 and 

sum everything up. 

{
 

 
𝜆 ⋅ 𝑧0 ⋅ 𝑝0 = 𝜇 ⋅ 𝑧

0 ⋅ 𝑝1

(𝜆 + 𝜇) ⋅ 𝑧𝑛 ⋅ 𝑝𝑛 = 𝜇 ⋅ 𝑧
𝑛 ⋅ 𝑝𝑛+1 + 𝜆 ⋅ 𝑧

𝑛 ⋅∑ 𝑔𝑛−𝑖

𝑛−1

𝑖=0

⋅ 𝑝𝑖        𝑛 ≥ 1
 

(𝜆 + 𝜇) ⋅ 𝐏(𝑧)− 𝜇 ⋅ 𝑝0 = 𝜇 ⋅ 𝑝1 + 𝜇 ⋅∑ 𝑧𝑛 ⋅ 𝑝𝑛+1

+∞

𝑛=1

+ 𝜆 ⋅∑∑ 𝑧𝑛 ⋅ 𝑔
𝑛−𝑖

𝑛−1

𝑖=0

⋅ 𝑝𝑖

+∞

𝑛=1

(𝜆 + 𝜇) ⋅ 𝐏(𝑧)− 𝜇 ⋅ 𝑝0 = 𝜇 ⋅ 𝑝1 +
𝜇

𝑧
⋅ [𝐏(𝑧)− 𝑝0 − 𝑧 ⋅ 𝑝1]+ 𝜆 ⋅∑ ∑ 𝑧𝑛 ⋅ 𝑔𝑛−𝑖

+∞

𝑛=𝑖+1

⋅ 𝑝𝑖

+∞

𝑖=0

(𝜆 + 𝜇) ⋅ 𝐏(𝑧)− 𝜇 ⋅ 𝑝0 =
𝜇

𝑧
⋅ [𝐏(𝑧)− 𝑝0]+ 𝜆 ⋅∑ 𝑧𝑖 ⋅ 𝑝𝑖 ⋅ ∑ 𝑧𝑛−𝑖 ⋅ 𝑔𝑛−𝑖

+∞

𝑛=𝑖+1

+∞

𝑖=0

(𝜆 + 𝜇) ⋅ 𝐏(𝑧)− 𝜇 ⋅ 𝑝0 =
𝜇

𝑧
⋅ [𝐏(𝑧)− 𝑝0]+ 𝜆 ⋅ 𝐏(𝑧) ⋅ 𝐆(𝑧)

 

 

where 𝐆(𝑧) is the PGF of 𝒈.  

Thus, we end up with: 

𝐏(𝑧) =
𝜇 ⋅ 𝑝0 ⋅ (1 − 𝑧)

𝜇 ⋅ (1 − 𝑧) − 𝜆 ⋅ 𝑧 ⋅ [1 − 𝐆(𝑧)]
 

n

i

 

outgoing   incoming 
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The normalization condition is 𝐏(1) = 1. Unfortunately, this leads to an undetermined expression, 

hence we must use De L’Hopital’s rule to get to the bottom of it. We get: 

lim
𝑧→1−

𝐏(𝑧) =
−𝜇 ⋅ 𝑝0

−𝜇− 𝜆 ⋅ [1 − 𝐆(𝑧)]+ 𝜆 ⋅ 𝑧 ⋅ 𝐆′(𝑧)
|
𝑧=1

=
−𝜇 ⋅ 𝑝0

−𝜇+ 𝜆 ⋅ 𝐆′(1)
=

𝑝0

1 −
𝜆
𝜇 ⋅ 𝐸[𝑔]

 

This is because a property of the PGF is that 𝐆′(1) = 𝐸[𝑔]. From the latter we get: 

𝑝0 = 1−
𝜆

𝜇
⋅ 𝐸[𝑔] 

𝑝0 is a probability, so it must be non-negative. This means that 
𝜆

𝜇
⋅ 𝐸[𝑔] < 1, which is our stability 

condition. In fact, it is quite clear that 𝜌 = (1 − 𝑝0) =
𝜆

𝜇
⋅ 𝐸[𝑔], since 𝜆 ⋅ 𝐸[𝑔] is the actual average 

rate of job arrivals. This yields the following expression for 𝐏(𝑧): 

𝐏(𝑧) =
𝜇 ⋅ (1 − 𝜌) ⋅ (1 − 𝑧)

𝜇 ⋅ (1 − 𝑧) − 𝜆 ⋅ 𝑧 ⋅ [1 − 𝐆(𝑧)]
 

As an exercise, let us instantiate the above in some simple cases: 

Single arrivals: 𝑔𝑖 = {
1 𝑖 = 1
0 𝑖 ≠ 1

 

Thus, we get 𝐆(𝑧) = 1 ⋅ 𝑧1 = 𝑧.  

Under the condition that 𝑝0 = 1−
𝜆

𝜇
⋅ 𝐸[𝑔] > 0, i.e. 𝜌 =

𝜆

𝜇
⋅ 𝐸[𝑔] =

𝜆

𝜇
< 1, we get: 

𝐏(𝑧) =
𝜇 ⋅ (1 − 𝜌) ⋅ (1 − 𝑧)

𝜇 ⋅ (1 − 𝑧) − 𝜆 ⋅ 𝑧 ⋅ [1 − 𝑧]
=

1 − 𝜌

1 − 𝜌 ⋅ 𝑧
 

We know that the latter is the PGF of the M/M/1 SS probabilities 𝑝𝑛 = (1 − 𝜌) ⋅ 𝜌𝑛. 

Constant-batch multiple arrivals: 𝑔𝑖 = {
1 𝑖 = 𝑏
0 𝑖 ≠ 𝑏

 

In this case 𝐸[𝑔] = 𝑏 , 𝐆(𝑧) = 1 ⋅ 𝑧𝑏 = 𝑧𝑏 , hence the stability condition is 𝜌 =
𝜆

𝜇
⋅ 𝑏 < 1, which 

makes sense intuitively. Hence, we get (recall that 1 − 𝑧𝑏 = (1 − 𝑧) ⋅ ∑ 𝑧𝑗𝑏−1
𝑗=0 ): 

𝐏(𝑧) =
𝜇 ⋅ (1 − 𝜌) ⋅ (1 − 𝑧)

𝜇 ⋅ (1 − 𝑧) − 𝜆 ⋅ 𝑧 ⋅ [1 − 𝑧𝑏]
=

1 − 𝜌

1 −
𝜌
𝑏
⋅ ∑ 𝑧𝑖𝑏

𝑖=1

 

Thus, we get:  

𝐸[𝑁] =
𝑑

𝑑𝑧
𝐏(𝑧)|𝑧=1 =

𝑑

𝑑𝑧
[

1 − 𝜌

1 −
𝜌
𝑏
⋅ ∑ 𝑧𝑖𝑏

𝑖=1

]

𝑧=1

= (1 − 𝜌) ⋅

𝜌
𝑏
⋅ ∑ 𝑖 ⋅ 𝑧𝑖−1𝑏

𝑖=1

[1 −
𝜌
𝑏
⋅ ∑ 𝑧𝑖𝑏

𝑖=1 ]
2|

𝑧=1

=
𝜌 ⋅ (𝑏 + 1)

2 ⋅ (1 − 𝜌)
 

Note that, when 𝑏 = 1, we obtain the familiar formula of of M/M/1 systems: 𝐸[𝑁] =
𝜌

1−𝜌
. 

Geometric arrivals: 𝑔𝑖 = (1 − 𝛼) ⋅ 𝛼𝑖−1,    𝑖 ≥ 1 
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Thus, we get 𝐆(𝑧) = ∑ 𝑧𝑘 ⋅ 𝑔𝑘
+∞
𝑘=1 = ∑ 𝑧𝑘 ⋅ (1 − 𝛼) ⋅ 𝛼𝑘−1+∞

𝑘=1 =
(1−𝛼)⋅𝑧

1−𝛼⋅𝑧
 

Under the condition that 

𝑝0 = 1−
𝜆

𝜇
⋅ 𝐸[𝑔] > 0, i. e. , 𝜌 =

𝜆

𝜇
⋅

1

1 − 𝛼
< 1 

In this case, we get: 

𝐏(𝑧) =
𝜇 ⋅ (1 − 𝜌) ⋅ (1 − 𝑧)

𝜇 ⋅ (1 − 𝑧) − 𝜆 ⋅ 𝑧 ⋅ [1 −
(1 − 𝛼) ⋅ 𝑧
1 − 𝛼 ⋅ 𝑧 ]

 

=
𝜇 ⋅ (1 − 𝜌) ⋅ (1 − 𝑧) ⋅ (1 − 𝛼 ⋅ 𝑧)

𝜇 ⋅ (1 − 𝑧) ⋅ (1 − 𝛼 ⋅ 𝑧)− 𝜆 ⋅ 𝑧 ⋅ (1 − 𝑧)

= (1 − 𝜌) ⋅
1 − 𝛼 ⋅ 𝑧

(1 − 𝛼 ⋅ 𝑧)− (1 − 𝛼) ⋅ 𝜌 ⋅ 𝑧

= (1 − 𝜌) ⋅
1 − 𝛼 ⋅ 𝑧

1 − (𝛼+ 𝜌 − 𝛼 ⋅ 𝜌) ⋅ 𝑧

 

This is hard to anti-transform. However, we can still find some interesting data: 

𝑝0 = lim𝑧→0
𝐏(𝑧) = 1− 𝜌 

𝑝1 =
𝑑

𝑑𝑧
𝐏(𝑧)|

𝑧=0

= (1 − 𝜌) ⋅ [
−𝛼 ⋅ [1 − (𝛼+ 𝜌 − 𝛼 ⋅ 𝜌) ⋅ 𝑧]+ (1 − 𝛼 ⋅ 𝑧) ⋅ (𝛼 + 𝜌 − 𝛼 ⋅ 𝜌)

[1 − (𝛼+ 𝜌 − 𝛼 ⋅ 𝜌) ⋅ 𝑧]2
]
𝑧=0

=
(1 − 𝜌) ⋅ 𝜌 ⋅ (1 − 𝛼)

[1 − (𝛼 + 𝜌 − 𝛼 ⋅ 𝜌) ⋅ 𝑧]2
|
𝑧=0

= (1 − 𝜌) ⋅ 𝜌 ⋅ (1 − 𝛼)

 

𝐸[𝑁] =
𝑑

𝑑𝑧
𝐏(𝑧)|𝑧=1 =

(1 − 𝜌) ⋅ 𝜌 ⋅ (1 − 𝛼)

[1 − (𝛼 + 𝜌 − 𝛼 ⋅ 𝜌) ⋅ 𝑧]2
|
𝑧=1

=
(1 − 𝜌) ⋅ 𝜌 ⋅ (1 − 𝛼)

[(1 − 𝜌) ⋅ (1 − 𝛼)]2
=

𝜌

(1 − 𝜌) ⋅ (1 − 𝛼)
 

The same procedure can be used with systems having bulk services, i.e. where arcs going to the right 

may imply more than a single state jump. Computations tend to be nastier for these systems. 

3.9 Systems with non-exponential service time distributions 

So far, we have assumed that: 

- Interarrivals are exponential; 

- Service times are exponential. 

And we have described a theory that allows one to find not only mean values of the steady-state 

performance indexes, but also – in most cases – their distribu-

tions. There are cases when interarrival and (more frequently) ser-

vice times cannot be fitted to an exponential distribution. In these 

l m

exponential general
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cases, the analysis is made complex by the fact that the number of jobs in the system is not a suffi-

cient characterization of its state anymore.  

Despite this, some results can be found, for instance for the M/G/1 system, i.e. the one with expo-

nential interarrivals, general service times and one server. By “general” we mean that any distribu-

tion can be used (including the exponential, which would make this system an M/M/1, for which we 

have a direct method).  

Let 𝑡𝑆 be the RV that models the service times, and let us assume that 𝐸[𝑡𝑆] = 1 𝜇⁄  and 𝑉𝑎𝑟(𝑡𝑆) are 

known. If 𝜌 =
𝜆

𝜇
< 1, then the system is stable and Pollaczek and Khinchin’s formula states that: 

𝐸[𝑁] = 𝜌 +
𝜌2 + 𝜆2 ∙ 𝑉𝑎𝑟(𝑡𝑆)

2 ∙ (1 − 𝜌)
= 𝜌 +

𝜌2 ∙ [1 + 𝐶𝑜𝑉(𝑡𝑆)
2]

2 ∙ (1 − 𝜌)
 

Note the following: 

- given 𝐸[𝑁], one can always compute the other three mean performance indexes (waiting time, 

response time and number of jobs in the queue), using Little’s law and few other obvious 

tricks; 

- when 𝑡𝑆 is exponential, PK’s formula yields Kleinrock’s formula for M/M/1 systems. 

The version of PK’s formula that mentions explicitly the CoV is quite insightful, since we know that 

the exponential’s CoV is equal to 1. This means that the mean number of jobs in the system will 

also depend on “how variable” service times are. If the service is deterministic (which we call an 

M/D/1 system), then it will be 𝑉𝑎𝑟(𝑡𝑆) = 𝐶𝑜𝑉(𝑡𝑆) = 0, and we will have the smallest possible aver-

age number of jobs in a system. 

PK’s formula shows that the variability of the service time increases the queue occupancy. If that 

variability is very high (e.g., the service time distribution is fat- or heavy-tailed), then a system may 

become congested even when 𝜌 ≪ 1. This confirms that it is very important to pick the right model 

for the service times, otherwise you will end up thinking that your system has negligible queueing 

when in fact it does not.  
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PK’s formula tells us something which has a strong physical significance: queueing arises from 

variability (or randomness). In a system where both interarrival times and service times are constant 

(i.e., a D/D/1 system), there is no queueing as long as 𝝆 ≤ 𝟏 (yes, we can also afford equality here). 

If either or both the interarrival times and the service times are variable, then there will be queueing. 

Queueing arises from jobs “bunching up”. If interarrival times are stochastic, there will be jobs that 

arrive close to each other, and this generates queueing. If service times are stochastic, there will 

occasionally be a long service time, during which many jobs will queue up. The higher the variabil-

ity, the longer the queue will be on average. Because of Little’s law, the same can be said of the 

response and waiting times.  

PK formula computes 𝐸[𝑁] exactly, but it does not allow you to compute steady-state probabilities 

in a closed form. For instance, you cannot compute 𝑃{𝑁 ≥ 3}. If results like this are required, you 

have two choices: the first one is to analyze your M/G/1 system using the method of the imbedded 

Markov chain. This method yields exact results (for the PGF), but it requires an entirely different 

mathematics, related to discrete-time processes (ours are continuous-time). If you are interested, just 

check any QT book. 

An alternative method is that of Phase-Type distributions to obtain approximate numerical results, 

with a tunable trade-off between accuracy and complexity. With that method, you model the general 

service-time distribution using compositions of exponential distributions. This way, you can still 

write down a (more complex) CTMC, and you can solve it using numerical techniques (the so-called 

Neuts’ matrix-analytic method). This method is well described in QT books too. In a few moments, 

we will present an interesting case of the application of this method, for which the maths we intro-

duced so far is enough. First, we give another result. 
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3.9.1 M/G/∞ systems and insensitivity 

Another interesting result is the one for the M/G/∞ system. This is one where there are infinitely 

many identical servers, but the distribution of the service time is general. For this system, the steady-

state probabilities are exactly the same as the M/M/∞’s. In other words, the SS probabilities for an 

M/G/∞ system depend only on the mean value of the service time, and not on its particular distri-

bution. Any distribution with the same mean will yield the same results. This is called insensitivity 

property, and such a property is a rare gem in queueing theory. Systems with insensitivity properties 

are usually found when there is no queueing. This is in fact one such case. In fact, if there are infinite 

servers, the variability of the service time does not really matter, since a long service time will not 

create queueing.  

3.9.2 Exercise: M/En/1 system 

Consider now a system where the service time distribu-

tion is an 𝑛-stage Erlang distribution, for which the service time is the sum of 𝑛 IID exponentials, 

each with a rate 𝑛 ⋅ 𝜇. The Erlang distribution is a subclass of Phase-Type distributions. The mean 

service time will of course be 𝑛 ⋅ 1 (𝑛 ⋅ 𝜇)⁄ = 1 𝜇⁄ . This system can be modeled by a server that is 

constituted of 𝒏 serving stages, such that only one job may be in service at any time. The next job 

will enter the first service stage after the current job leaves the last service stage, so that no two jobs 

are being served concurrently. 

Assume that we count the number of residual stages to be traversed in order to clear the backlog, 

as a state characterization. In a possible trajectory, a job leaving a service stage would count as a 

unitary downward step. On the other hand, an arrival will count as an upward step of 𝒏 stages, 

increasing by 𝑛 the total number of service stages that need to be traversed. Therefore, we would 

obtain a CTMC which is, by all accounts, the same as the one of a constant-batch bulk-arrival 

system, 𝑛 being in fact the batch length, where left-bound arcs have a rate 𝑛 ∙ 𝜇. Once more, the 

number in the circles is not the number of jobs in the system, it is the total number of stages that 

must be traversed in order to clear the backlog. 

0 1 ….2

nm

n

nm nm nm nm

n+1

nm

l l

n+2

l

 

For the latter, we already have formulas: 

l nm nm nm...

n
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𝐏(𝑧) =
𝑛 ∙ 𝜇 ⋅ (1 − 𝜌) ⋅ (1 − 𝑧)

𝑛 ∙ 𝜇 ⋅ (1 − 𝑧) − 𝜆 ⋅ 𝑧 ⋅ [1 − 𝑧𝑛]
=

1 − 𝜌

1 −
𝜌
𝑛 ⋅
∑ 𝑧𝑖𝑛
𝑖=1

, 

where 𝜌 =
𝜆

𝑛⋅𝜇
∙ 𝑛 =

𝜆

𝜇
< 1. Calling 𝑆 the number of stages, we get 𝐸[𝑆] =

𝜌⋅(𝑛+1)

2⋅(1−𝜌)
.  

If one need to compute SS probabilities for the number of stages in the system (call it 𝜋𝑗), she can try 

either to antitransform the PGF, or to compute the first 𝑘 probabilities by differentiating the PGF. For 

each number of stages 𝑗, the corresponding number of jobs is  𝑁 = ⌈𝑗 𝑛⁄ ⌉, so one can obtain SS prob-

abilities for the number of jobs as well. From the latter, it would not be too difficult to compute the 

distribution of the response times (the procedure would be similar to the one we used for the 

M/M/1). Also note that the mean number of jobs in the system can always be computed via PK’s 

formula.  
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4 Queueing Networks 

So far, we have examined queueing systems in isolation. Queueing Theory allows you to deal with 

systems composed by several queue+server subsystems, which are called queueing networks. 

Queueing networks can be either: 

- Open: these do interact with the external environment, which injects jobs (external arrivals) 

and absorbs jobs leaving the QN. In these, the number of jobs in the system is a variable. 

Discovering that number (or, more correctly, its steady-state distribution) is in fact the main 

purpose of the analysis. 

- Closed: there is no interaction with the external world. The number of jobs in the system is 

constant and it is an input datum. In these, we normally want to measure the throughput. 

A typical example of a queueing network is the following (transactional server): 

CPU

g

p0

p1

m1

I/O device 1

m2

I/O device 2

m3

p2

 

The server has one CPU and two I/O devices (e.g., disks). Jobs arrive from the outside, hence the QN 

is an open one. When they arrive, they first spend some random time on the CPU. That service time 

is exponentially distributed with a mean 1 𝜇⁄ 1. After that, they can: 

- Leave, with a probability 𝜋0 

- Queue at device 1, with probability 𝜋1 

- Queue at device 2, with probability 𝜋2 

And it is obviously 𝜋0 + 𝜋1 + 𝜋2 = 1. After being processed at an I/O device, a job comes back to 

the CPU, and starts over again. Therefore, a job may pay several visits to the same service center 

before leaving the network. 

In the above model, all SCs have been assumed to be M/M/1, but it does not have to be so. If you 

have – for instance – a multicore CPU, modeling it as an M/M/C would be more appropriate. We may 

want to add a delay center on the link coming back from the I/O devices to the CPU, to model some 

interaction with users (e.g., the need to press a key), etc.  
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Closed QNs are a bit more difficult to envisage. One way to picture a closed QN is to figure out an 

open QN, and then connect its output to its input, so that a job “leaving” the network is immediately 

fed back to the input. This models a situation when a system admits a finite number of jobs simul-

taneously, and as soon as one job is completed and leaves the network, another one replaces it. A 

typical case of a system modeled using a closed QN is a multiprogrammed system, where the num-

ber of processes is constant.  

Another case is modeling network paths, e.g. to solve flow-control problems. For instance, a net-

work path can be modeled by a chain of servers. The fact that flow control is in place is modeled by 

fixing the number of packets to the flow-control window size. In a closed QN like this, we want to 

know the throughput, i.e. how fast packets circulate. 

m1 m2

SC 1 SC 2

SRC

m3

SC 3

m4m5m6

DST

SC 6 SC 5 SC 4
 

How do we describe a QN? We need to know: 

- The network topology, which can be represented by a directed graph. Let 𝑀 be the number 

of SCs in the network. 

- The rates of the external arrivals at each SC, at least those that do admit external arrivals, 

call them 𝛾𝑖. 

- The service rates at each SC 𝜇𝑖, and the number of servers 𝐶𝑖. 

- The routing matrix 𝚷, whose entries 𝜋𝑖,𝑗 are the probabilities that a job leaving SC 𝑖 

reaches SC j. If ∑ 𝜋𝑖,𝑗
𝑀
𝑗=1 < 1, then 𝜋𝑖,0 = 1 − ∑ 𝜋𝑖,𝑗

𝑀
𝑗=1  is the probability that a job will 

leave the QN after visiting SC 𝑖. 

The state of the network at a given time 𝑡 will be a vector6 𝑛(𝑡) = [𝑛1(𝑡), 𝑛2(𝑡), . . . 𝑛𝑀(𝑡)]
𝑇, where 

each 𝑛𝑖(𝑡) represents the number of jobs at SC 𝑖 at time 𝑡. If the network admits a steady state, then 

we will have SS probabilities associated to each vector 𝑛 = [𝑛1, 𝑛2, . . . 𝑛𝑀]
𝑇. In other words, we will 

define 𝑝𝑛 = 𝑝(𝑛1, 𝑛2, . . . , 𝑛𝑀) = 𝑃{𝑁1 = 𝑛1, 𝑁2 = 𝑛2, … , 𝑁𝑀 = 𝑛𝑀} , the JPMF of RVs 

𝑁1, 𝑁2, . . . , 𝑁𝑀, each one representing the number of jobs on SC 𝑖. 

                                                 

6 It should be a column vector. However, writing column vectors takes up too much space, therefore we will often write 

them as row vectors instead and add a “transpose” symbol. This is not very elegant, but it makes for concise reading. 
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4.1 Characterizing the output of a service center 

In a QN, the output of a SC constitutes part of the input for another SC. We have not discussed yet 

how to characterize the output of a SC.  

Consider an M/M/1 SC at the steady state (but the result is more general, and holds for an M/M/C, 

even with 𝐶 → ∞), whose interarrival times are distributed as 𝐹𝐴(𝑡) = 1− 𝑒
−𝜆⋅𝑡, and whose service 

times are distributed as 𝐹𝐵(𝑡) = 1− 𝑒
−𝜇⋅𝑡. We want to compute the distribution of the inter-depar-

ture times 𝐹𝐷(𝑡) = 𝑃{𝐷 ≤ 𝑡}. We leverage the Total Probability law, and get: 

𝐹𝐷(𝑡) = 𝑃{𝐷 ≤ 𝑡} = 𝑃{𝐷 ≤ 𝑡|𝑛 > 0} ⋅ 𝑃{𝑛 > 0}+𝑃{𝐷 ≤ 𝑡|𝑛 = 0} ⋅ 𝑃{𝑛 = 0}. 

Let us discuss the two terms separately: 

- 𝑃{𝐷 ≤ 𝑡|𝑛 > 0} : when 𝑛 > 0 , the 

next job starts service as soon as the 

previous one leaves. Therefore, the 

inter-departure times are distributed 

as the service times: 𝑃{𝐷 ≤ 𝑡|𝑛 > 0} = 𝐹𝐵(𝑡). 

- 𝑃{𝐷 ≤ 𝑡|𝑛 = 0}: when 𝑛 = 0, a job departing at time 𝑡0 leaves the system empty. Therefore, 

the inter-departure time, i.e. the time until the next job departs, consists of two contributions: 

one (residual) interarrival time, and one service time. However, residual interarrival times 

are distributed the same as interarrival times, because the exponential is memoryless. Thus, 

𝑃{𝐷 ≤ 𝑡|𝑛 = 0} = 𝑃{𝐴 + 𝐵 ≤ 𝑡}. 

Furthermore, note that 𝑃{𝑛 > 0} = 𝜌 and 𝑃{𝑛 = 0} = 1 − 𝜌. Therefore, we have: 

𝐹𝐷(𝑡) = 𝑃{𝐷 ≤ 𝑡} = 𝐹𝐵(𝑡) ⋅ 𝜌 + 𝑃{𝐴+ 𝐵 ≤ 𝑡} ⋅ (1 − 𝜌). 

In order to write 𝑃{𝐴 + 𝐵 ≤ 𝑡} simply, we can switch to the LST domain. In fact, 𝐋𝐴+𝐵 = 𝐋𝐴 ⋅ 𝐋𝐵,  

because of the convolution property and since 𝐴 and 𝐵 are independent.  

Now, 𝐋𝐴 =
𝜆

𝜆+𝑠
, and 𝐋𝐵 =

𝜇

𝜇+𝑠
, hence: 

𝐋𝐷 =
𝜇

𝜇 + 𝑠
⋅ 𝜌 +

𝜇

𝜇 + 𝑠
⋅
𝜆

𝜆 + 𝑠
⋅ (1 − 𝜌)

=
𝜆

𝜇 + 𝑠
+

𝜇

𝜇 + 𝑠
⋅
𝜆

𝜆 + 𝑠
⋅
𝜇 − 𝜆

𝜇

=
𝜆

𝜇 + 𝑠
⋅ (1 +

𝜇 − 𝜆

𝜆 + 𝑠
)

=
𝜆

𝜇 + 𝑠
⋅
𝜇 + 𝑠

𝜆 + 𝑠
= 𝐋𝐴

 

Since LSTs are univocal, this can only mean that 𝐹𝐷(𝑡) = 𝐹𝐴(𝑡) = 1− 𝑒
−𝜆⋅𝑡. In other words, the in-

ter-departure times have the same distribution as the interarrival ones. This is somewhat 

t0 t1 t2

Interarr. time Serv. time
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surprising, and should not be misconstrued. The above result does not mean that interarrival times 

between two jobs are preserved at their departure, which would be false. Only, that the inter-

departure time of those two jobs will be drawn from the same distribution as the interarrival one. This 

result is general, and holds for M/M/C systems, for any value of 𝐶. Let us enounce it more formally: 

Burke’s Theorem (a.k.a. “𝑀 → 𝑀” property) 

Given an M/M/C system in a steady state, whose average arrival rate is 𝜆, then: 

a) The departure process is a Poisson one, with a rate 𝜆 

b) ∀𝑡, the number of jobs in the system 𝑛(𝑡) is independent of the inter-departure times in [0, 𝑡). 

■ 

Burke’s theorem has a straightforward consequence. Take a tandem (or “linear”) QN like the one in 

the figure, consisting of two M/M/1 SCs. In the latter, the arrivals at SC 2 are a Poisson process 

with a rate 𝜆, and 𝑛1(𝑡) is independent of what 

happens downstream – and, in particular, it is in-

dependent of  𝑛2(𝑡). 

This means that 𝑝𝑛 = 𝑝(𝑛1, 𝑛2) = 𝑝1(𝑛1) ⋅ 𝑝2(𝑛2) = [(1 − 𝜌1) ⋅ 𝜌1
𝑛1] ⋅ [(1 − 𝜌2) ⋅ 𝜌2

𝑛2], where from 

now on 𝑝𝑖(𝑛𝑖) will denote “the probability that 𝑛𝑖 jobs are at SC 𝑖”, i.e. the PMF for node 𝑖, with a 

slight but necessary deviation from the usual notation. Of course, we still need to check a posteriori 

that 𝜌𝑖 < 1 ∀𝑖, otherwise no SS probabilities exist.  

We say that such a network has a product form, i.e.:  

we can write joint, network-wide SS probabilities as the product of per-SC SS probabilities.   

4.2 From Burke’s theorem to queueing networks 

Burke’s theorem has many important consequences. Take any acyclic network with probabilistic 

routing, where each SC is an M/M/C. Acyclic means that there is no feedback loop (for instance, 

part of the output of SC 5 being fed back to SC 2 would constitute a feedback loop). 

l
m1

m2

SC 1 SC 2

m3

SC 3

m4

SC 4

m5

SC 5

p1

1−p1

p2

1−p2

m2

 

We know that the output of SC 1 is a Poisson process with a rate 𝜆 (by Burke’s Theorem). Can we 

characterize the input to SC 2 and SC 3? 

l
m1 m2

SC 1 SC 2  
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This is relevant, since in a QN it may happen that two or more Poisson processes are merged into 

one to generate the input to a node. It may also happen that the output of a node is split probabilis-

tically into two or more flows (through routing), which then form the input of two different SCs.  

l1

m

l2
 

SC 1

SC 2

p

1-p

l m1

m2

 

We can observe straightforwardly that the superimposition of independent Poisson processes is a 

Poisson process, with a rate equal to the sum of the rates. In fact, a Poisson process has exponential 

interarrival times. The next arrival will occur when the shortest (residual) interarrival time expires, 

but we know that, with independent exponentials: 

a) the adjective “residual” is immaterial (exponentials are memoryless); 

b) the minimum is still an exponential with a rate equal to the sum of the rates. 

Therefore, the superimposition of two independent Poisson processes is itself a Poisson process, 

with a rate equal to the sum of the rates. 

If, instead, a Poisson process is split probabilistically: arrivals are Poissonian with a rate 𝜆, and they 

are routed to SC 1, with a probability 𝜋, or to SC 2, with a probability 1 − 𝜋. Then the arrivals at 

either SC are themselves independent Poisson processes, with rates 𝜆1 = 𝜆 ⋅ 𝜋, 𝜆2 = 𝜆(1 − 𝜋). This 

can be obviously generalized to a probabilistic splitting of a process into 𝑛 processes, with probabil-

ities  𝜋𝑖 𝑠. 𝑡. ∑ 𝜋𝑖 = 1
𝑁
𝑖=1 . 

Thus, coming back to the above example, we now know the following: 

- by Burke’s theorem, the output process at SC 1 is Poisson with a rate 𝜆; 

- the probabilistic splitting of a Poisson process is still a Poisson process, hence arrivals at SC 

2 are Poisson with a rate 𝜋1 ⋅ 𝜆 and those to SC 3 are Poisson with a rate (1 − 𝜋1) ⋅ 𝜆; 

- still by Burke’s theorem, the number of jobs at each SC is independent; 

- the superimposition of independent Poisson processes is still a Poisson process, hence arrivals 

at SC 4 are Poisson with a rate 𝜋1 ⋅ 𝜋2 ⋅ 𝜆  and those at SC 5 are Poisson with a rate 

[𝜋1 ⋅ (1 − 𝜋2) + (1 − 𝜋1)] ⋅ 𝜆 = (1 − 𝜋1 ⋅ 𝜋2) ⋅ 𝜆; 

All the above SCs are M/M/C where the arrival and service rates are known, hence: 

we can compute stability conditions for each of them, in isolation; 
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- we can compute SS probabilities for each of them in isolation, call them 𝑝𝑖(𝑛𝑖), under the 

respective stability conditions7. 

Burke’s theorem guarantees that, if all the stability conditions are verified simultaneously, then:  

𝑝𝑛 = 𝑝(𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5) =∏𝑝𝑖(𝑛𝑖)

5

𝑖=1

. 

Therefore, all acyclic networks with probabilistic routing have a product form, and their inputs and 

outputs are Poisson processes.  

Furthermore, we can easily compute 𝐸[𝑁𝑖], 𝐸[𝑅𝑖] (by applying Little’s Law to each SC), 𝐸[𝑁] =

∑ 𝐸[𝑁𝑖]
5
𝑖=1 , and 𝐸[𝑅] = 𝐸[𝑁] 𝜆⁄ . If required, we can also compute distributions of response times 

at the single service centers, etc.  

Note that this holds if queues are infinite. Infinite queues are a requirement of Burke’s Theorem. 

4.2.1 Queueing networks with feedback loops 

l
m

SC 1

p

1−p

g

   

Ext. arrivals, avg.=1/l

Feedback arrivals Feedback arrivals  

Let us consider instead an open queueing network with a feedback loop such as the one in the figure: 

jobs leave the network with a probability 1 − 𝜋 and are sent back to SC 1 with a probability 𝜋. This 

is, of course, not a tandem network. We know that the superimposition of independent Poisson pro-

cesses is a Poisson process. However, the external arrivals and the arrivals on the feedback loop are 

by no means independent. This can be shown through a simple example: if 𝝀 ≪ 𝝁 and 𝜋 is close to 

1, then one external arrival will trigger a burst of arrivals at the feedback loop (on average 1 (1 − 𝜋)⁄ ), 

whose average spacing is a service time 1 𝜇⁄ . The burst eventually dies out, and another one occurs 

after the next external arrival. Thus, arrivals on the feedback loop are triggered by an external arrival, 

hence the two processes are not independent. Moreover, the arrival process at SC 1 is not a Poisson 

one. What is surprising is that, despite the above, the departure process is still a Poisson one, with 

a rate 𝛾 ∙ (1 − 𝜋). In fact, as long as the external arrivals are Poisson, then even QNs with feedback 

arcs, like the one above, still admit a product form. 

                                                 

7 Thus far, we have denoted with 𝑝𝑛(𝑡) the probability of finding 𝑛 jobs in a queueing system at time 𝑡. Since we now 

discuss queueing networks at the steady state, we need to alter the notation a bit: from now on we will write 𝑝𝑖(𝑛) to 

denote the SS probability of finding 𝑛 jobs at SC 𝑖. 
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4.3 General results for open queueing networks  

It is now time to lay down the hypotheses under which an open network admits a product form. 

We define an open Jackson’s network as a directed graph whose nodes are M/M/C SCs, and whose 

arcs represent routing among SCs. Each arc has a weight equal to the routing probability: 𝜋𝑖,𝑗 is the 

probability that a job leaving SC 𝑖 will reach SC 𝑗. We call 𝜋𝑖,0 the probability that a job leaves after 

visiting SC 𝑖. It is, of course, ∑ 𝜋𝑖,𝑗
𝑀
𝑗=0 = 1, ∀𝑖. Moreover, 𝜋𝑖,𝑗 must be independent of the network’s 

state. In other words, the routing probability must not 

change based on how jobs are distributed in the network 

(which, for instance, excludes dynamic load balancing 

from this kind of modeling8). Finally, at each SC external 

arrivals are Poissonian with a rate 𝛾𝑖 . Vector 𝛄 =

[𝛾1, . . . , 𝛾𝑀]
𝑇
 must not be identically null (otherwise the 

QN is not an open one).  Summing up: 

1) 𝑀 M/M/𝐶𝑖 SCs. At each SC 𝑖, the 𝐶𝑖 severs have a service rate 𝜇𝑖; 

2) Poisson external arrivals 𝛄 = [𝛾1, . . . , 𝛾𝑀]
𝑇; 

3) Markovian routing, i.e., the routing probabilities are state-independent;  

4) arcs are traversed in zero time (the only delay is at the nodes). 

The above four hypotheses define an open Jackson’s network. OJNs do admit a product form, as 

per the following theorem. 

 

Jackson’s Theorem 

In an OJN, under hypotheses 1-4 above, if 𝜌𝑖 =
𝜆𝑖
𝐶𝑖⋅𝜇𝑖

< 1  ∀𝑖 , then it is 𝑝𝑛 = 𝑝(𝑛1, . . . , 𝑛𝑀) =

∏ 𝑝𝑖(𝑛𝑖)
𝑀
𝑖=1 , where:  

𝑝𝑖(𝑛𝑖) =

{
 
 

 
 𝑝𝑖(0) ⋅

(𝐶𝑖 ⋅ 𝜌𝑖)
𝑛𝑖

𝑛𝑖!
𝑛𝑖 ≤ 𝐶𝑖

𝑝𝑖(0) ⋅
𝐶𝑖
𝐶𝑖 ⋅ 𝜌𝑖

𝑛𝑖

𝐶𝑖!
𝑛𝑖 ≥ 𝐶𝑖

 

are the SS probabilities of an M/M/𝐶𝑖 system whose severs have a rate 𝜇𝑖. If 𝐶𝑖 = 1 (i.e., an M/M/1 

system), the SS probabilities collapse to (1 − 𝜌𝑖) ⋅ 𝜌𝑖
𝑛𝑖. 

■ 

                                                 

8 By dynamic load balancing, we mean, for instance, the policy of routing a job to the downstream SC with the smallest 

queue. This would make routing probabilities dependent on the state of the downstream SCs. 

SC1 SC2

SC3

p1,2 p2,0g1

g3

 



Notes on queueing theory (student version) – Giovanni Stea – last saved: 04/08/22 

58 

 

The only missing tile in the above picture are the arrival rates 𝜆𝑖, which are assumed to be known 

quantities in the above theorem. Obtaining the arrival rates is rather straightforward. A job arrives 

at SC 𝑖 because: 

a) it arrives from the outside, at a rate 𝛾𝑖, or  

b) it leaves SC 𝑗 and is routed to SC 𝑖, according to routing probability 𝜋𝑗,𝑖. 

This yields the following relationship: 𝜆𝑖 = 𝛾𝑖 + ∑ 𝜋𝑗,𝑖 ⋅ 𝜆𝑗
𝑀
𝑗=1 , which holds for every SC 𝑖. 

The above equality can be written in a matrix form, i.e.: 𝛌 = 𝛄+𝚷𝐓 ⋅ 𝛌, where 𝚷 = {𝜋𝑖,𝑗} is the rout-

ing matrix. This means that the arrival rates at each SC can be computed by solving the above matrix 

equation, i.e. 𝛌 = (𝐈 − 𝚷𝐓)
−1
⋅ 𝛄. The latter can be solved at least numerically using a spreadsheet 

software. In most cases, 𝛌 can be obtained in a closed form. Note that, if you sum up all the 𝜆𝑖 = 𝛾𝑖 +

∑ 𝜋𝑗,𝑖 ⋅ 𝜆𝑗
𝑀
𝑗=1  on index 𝑖, you get the following:  

∑𝜆𝑖

𝑀

𝑖=1

=∑𝛾𝑖

𝑀

𝑖=1

+∑∑𝜋𝑗,𝑖 ⋅ 𝜆𝑗

𝑀

𝑗=1

𝑀

𝑖=1

∑𝜆𝑖

𝑀

𝑖=1

=∑𝛾𝑖

𝑀

𝑖=1

+∑𝜆𝑗 ⋅∑𝜋𝑗,𝑖

𝑀

𝑖=1

𝑀

𝑗=1

∑𝜆𝑗

𝑀

𝑗=1

(1 −∑𝜋𝑗,𝑖

𝑀

𝑖=1

) =∑𝛾𝑖

𝑀

𝑖=1

∑𝜆𝑗

𝑀

𝑗=1

⋅ 𝜋𝑗,0 =∑𝛾𝑖

𝑀

𝑖=1

 

Which confirms that, at the steady state, the aggregate input and output rates for the QN must be the 

same. We instantiate the above procedure in a simple example. Writing I/O balance equations at each 

SC is in fact the quickest way to compute the arrival rate vector 𝛌 . 

 

Example 

Consider the following system, which consists of 𝑚 + 1 M/M/1 SCs.  

SC m+1

g

p0

p1

mm+1

SC1

m1

SC m-1

mm-1

pm-1

SC m

mm

….

pm

 

Changing the symbol 

for this index to avoid 

confusion 
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The routing matrix and the external arrivals are the following: 

𝚷 =

[
 
 
 
 
0 0 . . . 0 1
0 0 . . . 0 1
. . . . . . . . . . . . . . .
0 0 . . . 0 1
𝜋1 𝜋2 . . . 𝜋𝑚 0 ]

 
 
 
 

, 𝛄 =

[
 
 
 
 
0
0
. . .
0
𝛾 ]
 
 
 
 

. 

Rather than by inverting matrix (𝐈 − 𝚷𝐓), the above system can be solved faster by considering I/O 

balance: 𝛾 = 𝜆𝑚+1 ⋅ 𝜋0, hence  𝜆𝑚+1 =
𝛾

𝜋0
. Moreover, from the graph it is clear that: 

𝜆𝑖 = 𝜆𝑚+1 ⋅ 𝜋𝑖 =
𝛾

𝜋0
⋅ 𝜋𝑖,    1 ≤ 𝑖 ≤ 𝑚 

Thus, the stability conditions are:  

{
 

 𝜌𝑖 =
𝛾

𝜇𝑖
⋅
𝜋𝑖
𝜋0
< 1 1 ≤ 𝑖 ≤ 𝑚

𝜌𝑚+1 =
𝛾

𝜇𝑚+1 ⋅ 𝜋0
< 1

 

And, if the above conditions hold, then it is: 

𝑝𝑛 = 𝑝(𝑛1, 𝑛2, . . . , n𝑚+1) =∏ 𝑝𝑖(𝑛𝑖)

𝑚+1

𝑖=1

=∏(1 − 𝜌𝑖) ⋅ 𝜌𝑖
𝑛𝑖

𝑚+1

𝑖=1

 

Given the above, we can easily compute some performance metrics: 

𝐸[𝑁] = ∑ 𝐸[𝑁𝑖]

𝑚+1

𝑖=1

= ∑
𝜌𝑖

1 − 𝜌𝑖

𝑚+1

𝑖=1

 

𝐸[𝑁𝑞] = ∑ 𝐸 [𝑁𝑞𝑖]

𝑚+1

𝑖=1

= ∑
𝜌𝑖
2

1 − 𝜌𝑖

𝑚+1

𝑖=1

 

■ 

If one wants to know which SC contributes to the overall response time how, some care must be 

observed. It stands to reason that the overall response time 𝐸[𝑅] depends on the SC’s response times 

𝐸[𝑅𝑖]. By Little’s law, we can also write 𝐸[𝑅] = 𝐸[𝑁] 𝛾𝑡𝑜𝑡⁄ , where 𝛾𝑡𝑜𝑡 = ∑ 𝛾𝑖
𝑀
𝑖=1 , i.e.   

𝐸[𝑅] =
𝐸[𝑁]

𝛾𝑡𝑜𝑡
=∑

𝐸[𝑁𝑖]

𝛾𝑡𝑜𝑡

𝑀

𝑖=1

=∑
𝐸[𝑁𝑖]

𝜆𝑖

𝑀

𝑖=1

∙
𝜆𝑖
𝛾𝑡𝑜𝑡

=∑𝐸[𝑅𝑖]

𝑀

𝑖=1

∙
𝜆𝑖
𝛾𝑡𝑜𝑡

 

Why is there a multiplying coefficient 𝜆𝑖 𝛾𝑡𝑜𝑡⁄  in the last sum? Because a SC can be visited never, 

once or more than once while a job traverses the QN. Each SC’s response time 𝑹𝒊 must therefore be 

multiplied by the mean number of visits to that SC. Define 𝑉𝑖 as the RV that counts the number of 

visits to SC 𝑖. Then, we define the mean residence time at SC 𝒊 as 𝐸[𝑇𝑖] = 𝐸[𝑅𝑖]  ⋅ 𝐸[𝑉𝑖]. The 

OJN’s response time is the sum of the residence times, 𝐸[𝑅] = ∑ 𝐸[𝑇𝑖]
𝑀
𝑖=1 , which implies that: 
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𝐸[𝑉𝑖] =
𝜆𝑖
𝛾𝑡𝑜𝑡

 

The mean number of visits to a SC is equal to its arrival rate divided by the total external arrival 

rate. We can now continue the above example and compute the response times and the mean number 

of visits: 

 

Example (continued) 

We compute the OJN’s response time and the individual residence times. We already know that  

𝜆𝑖 = {
𝛾 ⋅

𝜋𝑖
𝜋0

1 ≤ 𝑖 ≤ 𝑚
𝛾

𝜋0
𝑖 = 𝑚+ 1

,  𝜌𝑖 = {

𝛾

𝜇𝑖
⋅
𝜋𝑖
𝜋0
< 1 1 ≤ 𝑖 ≤ 𝑚

𝛾

𝜇𝑖⋅𝜋0
< 1 𝑖 = 𝑚+ 1

. 

Thus, we can compute straightforwardly: 

𝐸[𝑁𝑖] =
𝜌𝑖

1−𝜌𝑖
= {

𝛾⋅𝜋𝑖

𝜇𝑖⋅𝜋0−𝛾⋅𝜋𝑖
1 ≤ 𝑖 ≤ 𝑚

𝛾

𝜇𝑖⋅𝜋0−𝛾
𝑖 = 𝑚 + 1

,  𝐸[𝑁] = ∑ 𝐸[𝑁𝑖]
𝑚+1
𝑖=1 = (∑

𝛾⋅𝜋𝑖

𝜇𝑖⋅𝜋0−𝛾⋅𝜋𝑖

𝑚
𝑖=1 ) +

𝛾

𝜇𝑚+1⋅𝜋0−𝛾
. 

Through Little’s Law, we can compute the OJN’s response time: 

𝐸[𝑅] =
𝐸[𝑁]

𝛾𝑡𝑜𝑡
= (∑

𝜋𝑖
𝜇𝑖 ⋅ 𝜋0 − 𝛾 ⋅ 𝜋𝑖

𝑚

𝑖=1

) +
1

𝜇𝑚+1 ⋅ 𝜋0 − 𝛾
 

We can obtain the same result by computing the mean number of visits to each SC and their mean 

residence time: 

𝐸[𝑉𝑖] =
𝜆𝑖

𝛾𝑡𝑜𝑡
= {

𝜋𝑖

𝜋0
1 ≤ 𝑖 ≤ 𝑚

1

𝜋0
𝑖 = 𝑚 + 1

,  𝐸[𝑅𝑖] =
1

𝜆𝑖
⋅
𝜌𝑖

1−𝜌𝑖
= {

𝜋0

𝜇𝑖⋅𝜋0−𝛾⋅𝜋𝑖
1 ≤ 𝑖 ≤ 𝑚

𝜋0

𝜇𝑖⋅𝜋0−𝛾
𝑖 = 𝑚 + 1

, 

hence 𝐸[𝑇𝑖] = 𝐸[𝑉𝑖] ⋅ 𝐸[𝑅𝑖] = {

𝜋𝑖

𝜇𝑖⋅𝜋0−𝛾⋅𝜋𝑖
1 ≤ 𝑖 ≤ 𝑚

1

𝜇𝑖⋅𝜋0−𝛾
𝑖 = 𝑚 + 1

. 

One can readily check that 𝐸[𝑅] = ∑ 𝐸[𝑇𝑖]
𝑚+1
𝑖=1 . 

■ 

4.4 Closed Queueing Networks 

We now move to analyzing closed Jackson’s networks. The hypotheses we posit are the same as for 

OJNs, with a major difference: we assume that no external arrivals/departures occur, and that the 

number of jobs is a constant 𝑲, which is given as an input datum. Everything else stays the same 

(M/M/C SCs, Markovian routing, etc.).  
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Note that, if the number of jobs is fixed, the state space 𝓔 has a finite cardinality, since there will 

be a finite number of ways to distribute 𝐾 jobs among 𝑀 SCs. The fact that it is finite does not imply 

that it is small. In fact, one could check that the following property holds: 

|ℰ| = (
𝐾+𝑀− 1
𝑀− 1

) 

In fact, the above expression is the number of ways to insert 𝑀 − 1 “division marks” in a line of  𝐾 +

𝑀 − 1 elements, i.e. all the possible ways to separate 𝐾 items into 𝑀 (possibly empty) subsets. The 

above property implies that |ℰ| = 𝑂(𝐾𝑀−1). In practical cases (few tens SCs and jobs) the state space 

is really huge. 

Since CJNs are a variation of OJNs, we may attempt to use the same solution procedure as for 

OJNs, keeping in mind that we will have 𝛾𝑖 = 0 and 𝜋𝑖,0 = 0 ∀𝑖. However, we soon face a major 

problem. If we attempt to compute the arrival rates at each SC, we get the following equation: 

𝛌 = 0 +𝚷𝐓 ⋅ 𝛌. This is a homogeneous system; hence it admits: 

- no solution (except the null one, which is however unhelpful), if the routing matrix 𝐈 − 𝚷𝑇 

has full rank; 

- infinite solutions otherwise. 

Luckily, our routing matrix does not have full rank, since ∑ 𝜋𝑖,𝑗
𝑀
𝑗=1 = 1 ∀𝑖 (recall that 𝜋𝑖,0 = 0), 

which leaves us with infinite solutions. In particular, if 𝐞 = [𝑒1, 𝑒2, . . . , 𝑒𝑀]
𝑇 is one solution to 𝛌 =

0 +𝚷𝐓 ⋅ 𝛌, then 𝑘 ⋅ 𝐞, 𝑘 ∈ ℝ, will be a solution as well. This means that we can only obtain solutions 

which depend on a multiplying constant, and we must find some way to get rid of that constant. Our 

problem is solved by the following theorem: 

 

Gordon and Newell’s Theorem 

In a CJN, take any solution to system 𝝀 = 0+𝜫𝑻 ⋅ 𝝀, and call it 𝐞 = [𝑒1, 𝑒2, . . . , 𝑒𝑀]
𝑇. Call 𝜌𝑖 =

𝑒𝑖 𝜇𝑖⁄ . Then, 𝑝𝑛 = 𝑝(𝑛1, . . . , 𝑛𝑀) =
1

𝐺(𝑀,𝐾)
⋅∏ 𝑓𝑖(𝑛𝑖)

𝑀
𝑖=1 , where:  

𝑓𝑖(𝑛𝑖) =

{
 
 

 
 (𝐶𝑖 ⋅ 𝜌𝑖)

𝑛𝑖

𝑛𝑖!
𝑛𝑖 ≤ 𝐶𝑖

𝐶𝑖
𝐶𝑖 ⋅ 𝜌𝑖

𝑛𝑖

𝐶𝑖!
𝑛𝑖 ≥ 𝐶𝑖

 

And 𝐺(𝑀,𝐾) is a normalizing constant such that ∑ 𝑝𝑛𝑛∈𝐸 = 1, i.e., 𝐺(𝑀,𝐾) = ∑ (∏ 𝑓𝑖(𝑛𝑖)
𝑀
𝑖=1 )𝑛∈ℰ . 

■ 

Note that expressions 𝑓𝑖(𝑛𝑖) are almost the SS probabilities of an M/M/𝐶𝑖 SC, the only thing missing 

being a multiplying factor 𝑝𝑖(0). Of course, if a SC is an M/M/1, then 𝑓𝑖(𝑛𝑖) = 𝜌𝑖
𝑛𝑖 (this is a special 
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case that we will develop further later on). Moreover, note that we have a normalizing constant 

𝐺(𝑀, 𝐾), which is only fair given that we have chosen our initial solution to the routing equation 

arbitrarily. The fact that we can write  𝐺(𝑀, 𝐾) = ∑ ∏ 𝑓𝑖(𝑛𝑖)
𝑀
𝑖=1𝑛∈ℰ  does not imply that this is the 

most efficient way to compute it. In fact, the above computation is prohibitive in most cases. Even if 

we give up computing 𝐺(𝑀,𝐾) in a closed form and settle for a numerical solution, we incur the risk 

of numerical instability, since large powers and sums are involved. Luckily for us, there is an effi-

cient algorithm to compute 𝐺(𝑀,𝐾). This will be discussed in a minute, after giving an example of 

application of GN’s theorem. 

 

Example 

Consider a CJN with two M/M/1 SCs. Its routing matrix is trivially 𝚷 =

[
0 1
1 0

]. Hence the solution to the routing equation is 𝑒1 = 𝑒2.  

Thus, the arrival rates are the same, and they can be defined but for a 

multiplying constant. This implies that we can set 𝒆𝟏 to any value, and the solution will not be af-

fected by it (the normalizing constant 𝐺(𝑀,𝐾) will, but the SS probabilities will not). This means 

that the smart thing to do is to choose 𝒆𝟏 so as to simplify computations. In this case, a good 

choice would be 𝑒1 = 𝜇1 (𝑒1 = 𝜇2 would do just as well). By doing so, we get 𝜌1 = 1, 𝜌2 = 𝜇1 𝜇2⁄ .  

By GN’s theorem, we get 𝑝(𝑛1, 𝑛2) =
1

𝐺(2,𝐾)
⋅ 1𝑛1 ⋅ (

𝜇1

𝜇2
)
𝑛2

. Having in mind that 𝑛1 + 𝑛2 = 𝐾, this 

can be rewritten as 𝑝(𝐾 − 𝑛, 𝑛) =
1

𝐺(2,𝐾)
⋅ (

𝜇1

𝜇2
)
𝑛

, 𝑛 being the number of jobs at SC 2. 

In this case it is quite easy to compute 𝐺(𝑀,𝐾) directly from the normalization formula. In fact, it is: 

𝐺(2, 𝐾) = ∑ (∏ 𝑓𝑖(𝑛𝑖)
2
𝑖=1 )𝑛∈ℰ = ∑ (

𝜇1

𝜇2
)
𝑛

𝐾
𝑛=0 . Assuming 𝜇1 ≠ 𝜇2, it is 𝐺(2, 𝐾) =

1−(𝜇1 𝜇2⁄ )𝐾+1

1−𝜇1 𝜇2⁄
, thus: 

𝑝(𝐾 − 𝑛, 𝑛) =
1 − 𝜇1 𝜇2⁄

1 − (𝜇1 𝜇2⁄ )𝐾+1
⋅ (
𝜇1
𝜇2
)
𝑛

 

This is intuitively clear: if 𝜇1 > 𝜇2, then SC 1 is faster than SC 2, which means that one is more likely 

to find many jobs at SC 2 (i.e., 𝑝(𝐾 − 𝑛, 𝑛) should increase with 𝑛). Otherwise, if 𝜇1 < 𝜇2 then SC 

1 is slower than SC 2, which means that 𝑝(𝐾 − 𝑛, 𝑛) should decrease with 𝑛. Finally, if 𝜇1 = 𝜇2, it 

is 𝐺(2, 𝐾) = 𝐾 + 1, and each state is equally likely. 

◼ 

 

We are now left with two problems: first, we need a computationally efficient (and, possibly, nu-

merically stable) way to compute 𝐺(𝑀,𝐾). Second, we need to compute the performance indexes.  

SC1

m2

SC2

m1
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4.4.1 Buzen’s convolution algorithm 

This algorithm allows one to compute 𝐺(𝑀,𝐾) efficiently. If all SCs are M/M/1, the algorithm com-

pletes in 𝑂(𝑀 ⋅ 𝐾) steps and only requires filling up a table. More involved computations are required 

if some SCs are load-dependent (i.e., they have more than one server). The general version of the 

algorithm can be found on QT textbooks – hereafter we will stick to the simplified one.  

For a CJN of M/M/1 SCs, Buzen’s algorithm is strikingly simple. Consider the definition 𝐺(𝑀,𝐾) =

∑ ∏ 𝑓𝑖(𝑛𝑖)
𝑀
𝑖=1𝑛∈ℰ , and set apart all the vectors in 𝓔 where 𝑛𝑀 = 0. We can write the above equality 

as: 

𝐺(𝑀,𝐾) = ∑ ∏𝑓𝑖(𝑛𝑖)

𝑀

𝑖=1𝑛∈ℰ

𝑛𝑀=0

+ ∑ ∏𝑓𝑖(𝑛𝑖)

𝑀

𝑖=1𝑛∈ℰ

𝑛𝑀>0

= ∑ ∏𝜌𝑖
𝑛𝑖

𝑀

𝑖=1𝑛∈ℰ

𝑛𝑀=0

+ ∑ ∏𝜌𝑖
𝑛𝑖

𝑀

𝑖=1𝑛∈ℰ

𝑛𝑀>0

 

Now, in the first addendum, we can stop the product at 𝑀 − 1 (since the last factor will be 𝜌𝑀
𝑛𝑀 =

𝜌𝑀
0 = 1). On the other hand, in the second addendum the last term in the product can be written as 

𝜌𝑀
𝑛𝑀 = 𝜌𝑀 ∙ 𝜌𝑀

𝑛𝑀̂, with 𝑛𝑀̂ ≥ 0, since 𝑛𝑀 > 0. This leads to: 

𝐺(𝑀,𝐾) = ∑ ∏𝜌𝑖
𝑛𝑖

𝑀−1

𝑖=1𝑛∈ℰ

𝑛𝑀=0

+ 𝜌𝑀 ⋅ ∑ (∏𝜌𝑖
𝑛𝑖

𝑀

𝑖=1

)
𝑛∈ℰ

𝑛𝑀̂≥0

 

One may observe that: 

- the first addendum is the normalizing constant of a CJN with 𝑲 jobs circulating among 𝑴−

𝟏  SCs (the 𝑀𝑡ℎ  one is in fact empty). In fact, the state space for that CJN is ℰ ≡

{(𝑛1, 𝑛2, . . . , 𝑛𝑀−1, 0): 𝑛𝑖 ≥ 0,∑ 𝑛𝑖
𝑀−1
𝑖=1 = 𝐾}. Thus, the first addendum is 𝐺(𝑀 − 1,𝐾). 

- In the second addendum, we have “set apart” one factor 𝝆𝑴, i.e. one of the circulating jobs, 

“pinning” it at SC 𝑀. The sum is therefore the normalizing constant of a CJN with 𝑲− 𝟏 

jobs circulating among 𝑴 SCs (the 𝐾𝑡ℎ job is in fact the one “pinned” on SC 𝑀). The state 

space for this CJN is ℰ ≡ {(𝑛1, 𝑛2, . . . , 𝑛𝑀−1, 𝑛𝑀̂): 𝑛𝑖 ≥ 0, 𝑛𝑀̂ ≥ 0, (∑ 𝑛𝑖
𝑀−1
𝑖=1 ) + 𝑛𝑀̂ = 𝐾 −

1}. Thus, we can replace that sum with 𝐺(𝑀,𝐾 − 1). 

This yields the following recursive formula:  

𝐺(𝑀,𝐾) = 𝐺(𝑀 − 1,𝐾) + 𝜌𝑀 ⋅ 𝐺(𝑀,𝐾 − 1) 

If we know the initial conditions for the above formula, we can compute 𝐺(𝑀,𝐾) for arbitrary values 

of 𝑀 and 𝐾. However, these initial conditions are quite straightforward. We need to compute: 
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- 𝐺(1, 𝑘), i.e., the normalizing constant of a CJN with one SC and 𝒌 jobs. But the state space 

ℰ of that CJN includes only one state, i.e. 𝑘 jobs at the one and only SC. Thus, it is 𝐺(1, 𝑘) =

∑ ∏ 𝜌𝑖
𝑛𝑖𝑀

𝑖=1𝑛∈ℰ = 𝜌1
𝑘, ∀𝑘 ≥ 0. 

- 𝐺(𝑗, 0), i.e., the normalizing constant of a CJN with 𝒋 SCs and 0 circulating jobs. Again, for 

a CJN like this, the state space ℰ includes only one state, i.e. the one where all the 𝑗 SCs are 

empty. Thus, 𝐺(𝑗, 0) = ∑ ∏ 𝜌𝑖
𝑛𝑖𝑗

𝑖=1𝑛∈ℰ = ∏ 𝜌𝑖
0𝑗

𝑖=1 = 1, ∀𝑗 ≥ 0. 

Given the above initializations, we can run the algorithm with the help of a simple table (this is even 

quicker if you use a spreadsheet software). The table has 𝑲+ 𝟏 rows (from 0 to 𝐾 included) and 𝑴 

columns, and it is written as follows:  

 

SC 𝟏 𝟐 … 𝑴− 𝟏 𝑴 

 𝝆 

Jobs 

𝝆𝟏 

 

𝝆𝟐 

  

… 

 

𝝆𝑴−𝟏 

 

𝝆𝑴 

  

𝟎 1 1 … 1 1 

𝟏 𝝆𝟏 
{𝑙𝑒𝑓𝑡 𝑣𝑎𝑙𝑢𝑒} + 

{𝑎𝑏𝑜𝑣𝑒 𝑣𝑎𝑙𝑢𝑒} × {𝑐𝑜𝑙. ℎ𝑒𝑎𝑑 𝑣𝑎𝑙𝑢𝑒} 
…   

𝟐 (𝝆𝟏)
𝟐   …   

      

𝟑 (𝝆𝟏)
𝟑  …   

… … … … … … 

𝑲 − 𝟏 (𝝆𝟏)
𝑲−𝟏  …  𝐺(𝑀,𝐾 − 1) 

𝑲 (𝝆𝟏)
𝑲  … 𝐺(𝑀 − 1, 𝐾) 𝑮(𝑴,𝑲) 

 

Once the first row and column have been initialized, we start filling the table from the 

top left corner, going down first, and then right. In each cell, the only operation required is to mul-

tiply the value above by the one at the heading of the column, and add to this result the value in 

the cell to the left. At the end the required constant 𝐺(𝑀,𝐾) will appear at the bottom-right corner. 

We will see later on that other values in the table will be useful as well. If the values in the above 

table get numerically unstable, then you may want to scale up/down the solution that you chose 

when you first solved the routing equation. A good choice is to select an initial solution such that the 

𝜌𝑖 are around one as much as possible. If the algorithm is run on a spreadsheet, that initial value can 

be written in a cell and modified at will to improve numerical stability, without having to redo all the 

computations. 

4.4.2 Performance indexes in Closed Queueing Networks 

Given 𝐺(𝑀,𝐾), you can compute 𝑝𝑛 for every vector 𝑛 ∈ ℰ. Thus, you can compute all the perfor-

mance indexes. These are amazingly simple, and they involve ratios of 𝐺(𝑖, 𝑗) for some indexes 𝑖, 𝑗.  
 

𝐺(𝑗,0) 

𝐺(1, 𝑘) 

𝑗 

𝑘 
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CDF, PMF and mean number of jobs at a single SC 

We want to compute 𝐹𝑖(𝑗) = 𝑃{𝑁𝑖 ≤ 𝑗} and 𝑝𝑖(𝑗) = 𝑃{𝑁𝑖 = 𝑗}. 

Let us first compute 𝑃{𝑁𝑖 ≥ 𝑗}. In fact, this can be computed by “setting apart” 𝑗 jobs at SC 𝑖, and 

repeating the same reasoning of Buzen’s algorithm. It is: 

𝑃{𝑁𝑖 ≥ 𝑗} = ∑ 𝑝𝑛
𝑛∈ℰ

𝑛𝑖≥𝑗

=
1

𝐺(𝑀, 𝐾)
⋅ ∑∏𝜌ℎ

𝑛ℎ

𝑀

ℎ=1𝑛∈ℰ

𝑛𝑖≥𝑗

= 

=
1

𝐺(𝑀,𝐾)
⋅ ∑

(

 ∏𝜌ℎ
𝑛ℎ

𝑀

ℎ=1
ℎ≠𝑖

⋅ 𝜌𝑖
𝑛𝑖̂+𝑗

)

 =
𝑛∈ℰ

𝑛𝑖̂≥0

𝐺(𝑀,𝐾 − 𝑗)

𝐺(𝑀,𝐾)
⋅ 𝜌𝑖

𝑗 

Both 𝐺(𝑀,𝐾 − 𝑗) and 𝐺(𝑀,𝐾) can be read in the last column of the table. From the above we get:  

𝐹𝑖(𝑗) = 𝑃{𝑁𝑖 ≤ 𝑗} = 1− 𝑃{𝑁𝑖 ≥ 𝑗 + 1} = 1−
𝐺(𝑀,𝐾− (𝑗 + 1))

𝐺(𝑀,𝐾)
⋅ 𝜌𝑖

𝑗+1 

𝑝𝑖(𝑗) = 𝑃{𝑁𝑖 ≥ 𝑗}− 𝑃{𝑁𝑖 ≥ 𝑗 + 1} =
𝜌𝑖
𝑗

𝐺(𝑀,𝐾)
⋅ [𝐺(𝑀,𝐾− 𝑗)− 𝜌𝑖 ⋅ 𝐺(𝑀,𝐾 − (𝑗 + 1))] 

Note that, if we define 𝐺(𝑀, 𝑥) = 0 when 𝑥 < 0, we can also compute both the CDF and the PMF 

with 𝑗 = 𝐾. From 𝑝𝑖(𝑗) we can compute 𝐸[𝑁𝑖]: 

𝐸[𝑁𝑖] =∑ 𝑗 ⋅
𝜌𝑖
𝑗

𝐺(𝑀,𝐾)
⋅ [𝐺(𝑀,𝐾− 𝑗)− 𝜌𝑖 ⋅ 𝐺(𝑀,𝐾 − (𝑗 + 1))]

𝐾

𝑗=1

=
1

𝐺(𝑀,𝐾)
⋅ [∑ 𝑗 ⋅ 𝜌𝑖

𝑗 ⋅ 𝐺(𝑀,𝐾 − 𝑗)

𝐾

𝑗=1

−∑ 𝑗 ⋅ 𝜌𝑖
𝑗+1 ⋅ 𝐺(𝑀,𝐾 − (𝑗 + 1))

𝐾−1

𝑗=1

]

=
1

𝐺(𝑀,𝐾)
⋅ [∑ 𝑗 ⋅ 𝜌𝑖

𝑗 ⋅ 𝐺(𝑀,𝐾 − 𝑗)

𝐾

𝑗=1

−∑(𝑗 + 1) ⋅ 𝜌𝑖
𝑗+1 ⋅ 𝐺(𝑀,𝐾− (𝑗 + 1))

𝐾−1

𝑗=1

+∑ 1 ⋅ 𝜌𝑖
𝑗+1 ⋅ 𝐺(𝑀,𝐾− (𝑗 + 1))

𝐾−1

𝑗=1

]

=
1

𝐺(𝑀,𝐾)
⋅ [∑ 𝑗 ⋅ 𝜌𝑖

𝑗 ⋅ 𝐺(𝑀,𝐾 − 𝑗)

𝐾

𝑗=1

−∑ ℎ ⋅ 𝜌𝑖
ℎ ⋅ 𝐺(𝑀,𝐾− ℎ)

𝐾

ℎ=2

+∑ 𝜌𝑖
ℎ ⋅ 𝐺(𝑀,𝐾− ℎ)

𝐾

ℎ=2

]

=
1

𝐺(𝑀,𝐾)
⋅ [𝜌𝑖 ⋅ 𝐺(𝑀,𝐾 − 1)+∑ 𝜌𝑖

ℎ ⋅ 𝐺(𝑀,𝐾 − ℎ)

𝐾

ℎ=2

]

=
1

𝐺(𝑀,𝐾)
⋅ [∑ 𝜌𝑖

ℎ ⋅ 𝐺(𝑀,𝐾 − ℎ)

𝐾

ℎ=1

]

=∑𝑃{𝑁𝑖 ≥ 𝑗}

𝐾

𝑗=1

 

 

Joint probabilities at two or more SCs 

Similarly, we can compute joint probabilities for two or more SCs, e.g. 𝑃{𝑁𝑖 ≥ 𝑗,𝑁𝑙 ≥ 𝑚}. The 

trick is always the same, i.e. to set apart 𝒋 jobs at SC 𝒊 and 𝒎 jobs at SC 𝒍. The result is: 
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𝑃{𝑁𝑖 ≥ 𝑗,𝑁𝑙 ≥ 𝑚} =
𝐺(𝑀,𝐾 − (𝑗 +𝑚))

𝐺(𝑀,𝐾)
⋅ 𝜌𝑖

𝑗 ⋅ 𝜌𝑙
𝑚 

 

Utilization 

For a single SC, this can easily be computed as 𝑈𝑖 = 𝑃{𝑁𝑖 ≥ 1} = 𝜌𝑖 ⋅
𝐺(𝑀,𝐾−1)

𝐺(𝑀,𝐾)
. 

If we need the probability that two or more SCs are simultaneously busy, we easily get: 

𝑈𝑖,𝑙 = 𝑃{𝑁𝑖 ≥ 1,𝑁𝑙 ≥ 1} =
𝐺(𝑀,𝐾− 2)

𝐺(𝑀,𝐾)
∙ 𝜌𝑖 ⋅ 𝜌𝑙, 

and so on. 

 

Throughput of a SC 

The throughput of a SC 𝑖 is equal to 𝜇𝑖 when the latter is busy, hence: 

𝛾𝑖 = 𝜇𝑖 ⋅ 𝑈𝑖 =
𝐺(𝑀,𝐾− 1)

𝐺(𝑀,𝐾)
⋅ 𝜇𝑖 ⋅ 𝜌𝑖. 

 

Response time of a SC 

The response time can be computed through Little’s law, as: 

𝐸[𝑅𝑖] = 𝐸[𝑁𝑖] 𝛾𝑖⁄ =
∑ 𝜌𝑖

ℎ ⋅ 𝐺(𝑀,𝐾 − ℎ)𝐾
ℎ=1

𝑒𝑖 ⋅ 𝐺(𝑀,𝐾 − 1)
. 

 

Example 

Consider a CJN of 𝑀 = 5 identical SCs in a tandem, having 𝐾 = 8 circulating jobs. Compute: 

1) the mean number of jobs at a SC; 

2) the mean response time of a SC, and the mean circuit time. Explain the result; 

3) the probability that all SCs are simultaneously busy. 

 

51 2 ...

 

The routing matrix is: 

𝚷 =

[
 
 
 
 
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0]
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Trying to solve 𝛌 = 𝚷𝑇 ⋅ 𝛌 obviously yields 𝑒𝑖 = 𝑘. Thus, one may conveniently set 𝑒𝑖 = 𝜇, which 

leads to 𝜌𝑖 = 1. This means that the SS probabilities will be uniform (which is intuitively clear, given 

the symmetry of the CJN). In fact, it is: 

𝑝𝑛 =
1

𝐺(𝑀,𝐾)
⋅∏1𝑛𝑖
𝑀

𝑖=1

=
1

𝐺(𝑀,𝐾)
 

Moreover, it is: 

𝐺(𝑀, 𝐾) =∑∏1𝑛𝑖

𝑀

𝑖=1

=

𝑛∈ℰ

|ℰ| = (
𝐾 +𝑀 − 1
𝑀 − 1

) = (
12
4
) = 495 

since all states are equally likely. However, we will still run Buzen’s convolution algorithm, both as a 

cross check and because we need intermediate values in the table to compute performance indexes: 

SC 1 2 3 4 5 

𝝆 

jobs 

1 

  

1 

  

1 

  

1 

  

1 

  

0 1 1 1 1 1 
1 1 2 3 4 5 

2 1 3 6 10 15 
3 1 4 10 20 35 

4 1 5 15 35 70 
5 1 6 21 56 126 

6 1 7 28 84 210 
7 1 8 36 120 330 

8 1 9 45 165 495 

1) The mean number of jobs per SC is:  

𝐸[𝑁𝑖] =
1

𝐺(𝑀,𝐾)
⋅ [∑ 𝜌𝑖

ℎ ⋅ 𝐺(𝑀,𝐾− ℎ)

𝐾

ℎ=1

]

=
1

𝐺(𝑀,𝐾)
⋅ [∑ 𝐺(𝑀,𝐾− ℎ)

𝐾

ℎ=1

]

= [. . . ] =
8

5

 

The latter could have been obtained reasoning by symmetry.  

2) The utilization of each of the SC is: 

𝑈𝑖 = 𝑃{𝑁𝑖 ≥ 1} = 𝜌𝑖 ⋅
𝐺(𝑀,𝐾− 1)

𝐺(𝑀,𝐾)
=
330

495
=
2

3
 

Thus, the throughput is 𝛾𝑖 =
2

3
⋅ 𝜇, and the mean response time at a SC is: 

𝐸[𝑅𝑖] =
𝐸[𝑁𝑖]

𝛾𝑖
=
8

5
⋅
3

2 ⋅ 𝜇
=
12

5
⋅ 𝐸[𝑡𝑠] 

Thus, the mean circuit time is 𝑀 ⋅ 𝐸[𝑅𝑖] = 5 ⋅
12

5
⋅ 𝐸[𝑡𝑠] = 12 ⋅ 𝐸[𝑡𝑠]. This result has an intu-

itive explanation: each job has to be served 𝑴 times in a full circuit. While traveling along 
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the circuit, it will find ahead of itself other 𝑲− 𝟏 jobs. Therefore, the average cycle time 

should be 𝑀+𝐾 − 1 times the average service time, which is in fact the above result. 

3) The probability that all SCs are busy at the same time is:  

𝐺(𝑀, 𝐾 −𝑀)

𝐺(𝑀,𝐾)
∙ 1 ∙ 1… ∙ 1 =

35

495
=
7

99
 

◼ 

4.5 Classed queueing networks 

The fact that OJNs and CJNs have probabilistic routing is somewhat unpleasant. Quite often, sys-

tems that we would like to model as QNs offer service to several classes of jobs, and routes are 

different depending on the class. For instance, you may have a computer network where several 

flows (each having its source and destination) traverse a number of routers. In that case, the routes 

for the flows will be different, but they will be fixed, and not probabilistic.  

The same model can be used to represent a manufacturing plant, where each product line has a 

different line of assembly, which involves visiting several assembly points in a fixed order. One 

assembly point may provide service for different products simultaneously. We would model product 

lines as classes of jobs, assembly points as service centers, and the sequence of assembly points to 

be visited as a fixed per-class route.  

f1 1 2 3

4 5

f2

 

For instance, we might have a QN where: 

- Flow 1 traverses SCs 1, 2, 3 (call it route R1). 

- Flow 2 traverses SCs 3, 2, 4, 5 (call it route R2). 

In this case, there is no probabilistic routing, meaning that all jobs belonging to flow 1 will follow 

route R1, and all packets from flow 2 will traverse route R2. Jackson’s hypothesis of Markovian 

routing does not hold anymore.  

If, instead, we assume that routing probabilities depend on the class of a job, we can just assign 

different classes to flow 1 and flow 2, and write down two routing matrices (one per flow/class) that 

describe the routing: 
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𝚷𝟏 =

[
 
 
 
 
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0]

 
 
 
 

         𝚷𝟐 =

[
 
 
 
 
0 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
0 0 0 0 0]

 
 
 
 

 

Nothing prevents adding to this model (static) load balancing per class, e.g., f1’s packets that leave 

node 2 going to either node 4 or node 3, with given probabilities.  

4.5.1 Classed queueing systems in isolation 

Let us take a look at classed systems in isolation first. Defining the state of a SC in a classed network 

is not so easy. In fact, the behavior of the SC is not determined anymore by the number of jobs in 

the system, but also by the class of each and every job. In fact, the state of a SC having 𝑛 jobs is an 

𝑛-tuple of class indicators: 

𝑆 = (𝑐(1), 𝑐(2), … 𝑐(𝑛) ), 

meaning that job 1 (the one at the head of the queue) is of class 𝑐(1), job 2 is of class 𝑐(2), etc. This 

implies that analyzing classed QNs is somewhat notationally heavy, although conceptually simple.  

We give the following results (without proof – please refer to any QT book if you need one). 

 

Theorem 1 (classed M/M/1) 

Take an M/M/1 SC with 𝑐 classes 1… 𝑐. Assume that the arrival processes 

of each class 𝑗 are independent. Call 𝜆(𝑗) their arrival rate, and let 𝜆 =

∑ 𝜆(𝑗)𝑐
𝑗=1 . Call 𝜌 = 𝜆/𝜇. If 𝜌 < 1, then we have: 

𝑝𝑆 =
𝜆(𝑐

(1)) ∙ 𝜆(𝑐
(2)) ∙ … 𝜆(𝑐

(𝑛))

𝜇𝑛
(1 − 𝜌) 

■ 

In other words, to obtain the SS probability of a state 𝑆, you multiply the arrival rates of the class 

that each job belongs to, and everything else is unchanged with respect to the formula for an un-

classed M/M/1. Note that: 

- if you have only one class, the above formula collapses to the classical M/M/1’s, and it only 

depends on the overall number of jobs; 

- in a classed system, the probability is the same for any two states with the same number 

of jobs per class, arranged in a different order (the product at the numerator is in fact 

commutative). Therefore, it depends only on the number of jobs of each class, not on their 

position in the queue.  

This last property allows us to find something useful: 

m...

l(1)

l
(2)

l(c)
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Corollary 1 (classed M/M/1) 

The probability that a classed M/M/1 SC has 𝑛 jobs overall (whichever their class) is: 

𝑃{𝑛 𝑗𝑜𝑏𝑠 𝑎𝑡 𝑆𝐶} = 𝜌𝑛 ∙ (1 − 𝜌) 

■ 

Proving the above is easy. In fact, it is:  

𝑃{𝑛 𝑗𝑜𝑏𝑠 𝑎𝑡 𝑆𝐶} =∑∑…∑𝑝𝑆
𝑐(𝑛)𝑐(2)𝑐(1)

=
(1 − 𝜌)

𝜇𝑛
∑𝜆(𝑐

(1))∑𝜆(𝑐
(2))…∑𝜆(𝑐

(𝑛))

𝑐(𝑛)𝑐(2)𝑐(1)

=
(1 − 𝜌)

𝜇𝑛
∙ 𝜆𝑛

= 𝜌𝑛 ∙ (1 − 𝜌) 

But then, we do not even need a proof. If the arrival processes for each class are independent, all we 

need is to acknowledge that – for the sole purpose of counting the jobs inside the system – the result 

must be indistinguishable from an unclassed M/M/1 whose arrival rate is 𝜆 = ∑ 𝜆(𝑗)𝑐
𝑗=1 . 

4.5.2 Open classed queueing networks 

It turns out that classed Open QNs still admit a product form, i.e. the probability of a certain network 

state is the product of the probabilities of the states at the single SCs.  

 

Theorem 2 (product form for classed OJNs) 

In a classed OJN of 𝑀 M/M/1 SCs, as long as 𝜌𝑖 < 1, 1 ≤ 𝑖 ≤ 𝑀, steady-state probabilities admit a 

product form: 

𝑝{𝑆1,𝑆2,…𝑆𝑀} =∏ 𝑝𝑆𝑖

𝑀

𝑖=1
 

Where 𝑝𝑆𝑖 are those of Theorem 1. In order to compute 𝜆𝑖 = ∑ 𝜆𝑖
(𝑗)𝑐

𝑗=1 , the arrival rate 𝜆𝑖
(𝑗)

 of class-

𝑗 jobs at SC 𝑖 must be determined by solving 𝑐 times the per-class versions of arrival-rate equations, 

i.e.,  

𝛌
(𝐣) = 𝛄(𝐣) +𝚷(𝐣)

𝐓
⋅ 𝛌

(𝐣)
 

Moreover, the probability of finding 𝑛 = (𝑛1, 𝑛2, … 𝑛𝑀) jobs at the M SCs (again, whichever their 

class) has a product form too: 

𝑝𝑛 =∏𝑃{𝑛𝑖 𝑗𝑜𝑏𝑠 𝑎𝑡 𝑆𝐶 𝑖}

𝑀

𝑖=1

=∏𝜌𝑖
𝑛𝑖 ∙ (1 − 𝜌𝑖)

𝑀

𝑖=1

 

■ 

This means that the only added complication when dealing with classed OJNs is that you have to 

compute the arrival rates for each class individually, and then aggregate them into per-SC arrival 
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rates. All things considered, the analysis of classed QNs is not conceptually more difficult – it just 

requires a few more computations.  

4.5.3 Exercise – response times in a routed network 

f1 1 2 3

4 5

f2

 

- Flow 1 traverses SCs 1, 2, 3 (call it route R1). 

- Flow 2 traverses SCs 3, 2, 4, 5 (call it route R2). 

Compute the average end-to-end delay for packets of flow 1 and flow 2. 

Call 𝛾(1) the arrival rate of flow/class 1, and 𝛾(2) that of flow/class 2. We straightforwardly obtain 

the arrival rates for each class at each SC through visual inspection: 

- Flow 1: 𝜆1
(1) = 𝜆2

(1) = 𝜆3
(1) = 𝛾(1), 𝜆4

(1) = 𝜆5
(1) = 0 

- Flow 2: 𝜆3
(2)
= 𝜆2

(2)
= 𝜆4

(2)
= 𝜆5

(2)
= 𝛾(2), 𝜆1

(2)
= 0 

Thus, we can compute per-SC arrival rate values: 

𝜆1 = 𝜆1
(1) + 𝜆1

(2) = 𝛾(1) 

𝜆2 = 𝜆2
(1) + 𝜆2

(2) = 𝛾(1) + 𝛾(2) 

𝜆3 = 𝜆3
(1) + 𝜆3

(2) = 𝛾(1) + 𝛾(2) 

𝜆4 = 𝜆4
(1) + 𝜆4

(2) = 𝛾(2) 

𝜆5 = 𝜆5
(1) + 𝜆5

(2) = 𝛾(2) 

Assuming that 𝜇𝑖 > 𝜆𝑖 ∀𝑖, the mean number of jobs at each SC is finite, hence the mean response 

time at each SC is (by Little’s law): 

𝐸[𝑅𝑖] =
𝜌𝑖

1 − 𝜌𝑖
∙
1

𝜆𝑖
=

1

𝜇𝑖 − 𝜆𝑖
 

Therefore: 

- For flow 1, we get: 
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𝐸[𝑅] =
1

𝜇1 − 𝛾
(1)
+

1

𝜇2 − (𝛾
(1) + 𝛾(2))

+
1

𝜇3 − (𝛾
(1) + 𝛾(2))

; 

- for flow 2, we get:  

𝐸[𝑅] =
1

𝜇3 − (𝛾
(1) + 𝛾(2))

+
1

𝜇2 − (𝛾
(1) + 𝛾(2))

+
1

𝜇4 − 𝛾
(2)
+

1

𝜇5 − 𝛾
(2)

 

 

The above result makes perfect sense intuitively. Note that you cannot obtain the same result mod-

eling the above network as an unclassed OJN, since you would need to choose routing probabilities 

(namely, 𝜋2,4 and 𝜋2,3) arbitrarily. The probability that a packet leaving SC 2 is routed to SC 3 de-

pends on its belonging to flow 1, hence on flow 1’s sending rate compared to flow 2’s. Therefore, 

routing would not be state-independent, and you would not be able to use Jackson’s theorem. 

4.6 Closing remarks on FCFS queueing networks 

All the QNs we have discussed so far have service centers with FCFS queueing. In order to analyze 

FCFS QNs, we require that service times are exponential, otherwise we simply cannot perform the 

analysis (without exponential service times there is no product form).  

FCFS queueing is typical of: 

- Computer networks, where jobs are packets and they are transmitted atomically; 

- Human systems, where jobs are in fact human beings, and they are served atomically too.  

FCFS QNs (especially classed ones) are good models for the above systems. In a computer network, 

servers model the links between routers. If packets have constant size, the exponential service time 

hypothesis does not hold, yet the results we obtain through Markovian analysis (e.g., 𝐸[𝑅]) can be 

proved to be upper bounds of those you would compute in the real systems. Therefore, QT may give 

you interesting results even when its hypotheses are not met.  

Class-dependent routing is a nice modeling tool, since it allows to model per-flow network routing. 

The assumption that the service time depends on the server, and not on the class, is somewhat limit-

ing. We would like to have class-dependent service times, but these models do not allow it.  

Note that we have dealt with open classed QNs only. The product form extends to closed classed 

QNs, and to mixed classed QNs (i.e., those that are open w.r.t. one class and closed w.r.t. another). 

These generalizations can be found on most QT books.  
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5 Processor-sharing queueing systems  

When modeling computer systems as queueing systems, we would like to model the tasks that run on 

a processor as jobs, and the CPU as a server. In this case, however, tasks share the processor time, 

often equally through (e.g.) round-robin scheduling. In this case, modeling things in terms of FCFS 

queueing is not a good idea. For 𝐾 tasks sharing a processor with a service rate 𝜇, it would be more 

reasonable to assume that all jobs are served simultaneously at a rate 𝜇 𝐾⁄ , where “simultaneous” 

service is an abstraction for a fast-paced time-sharing service, where the granularity of the time slices 

can be neglected.  

We call a system like this a processor-sharing queueing sys-

tem. In Kendall’s notation, we denote it as M/M/1/PS (if both 

arrivals and services are memoryless), as opposed to the 

M/M/1/FCFS, which we had only called M/M/1 thus far, omitting to specify the queueing discipline. 

Luckily, there are interesting results covering PS systems, including networks of PS systems (which 

do admit product forms). PS systems are in fact easier to analyze than FCFS systems – because they 

do not have queueing. 

Let us model an M/M/1/PS through a CTMC. We can do this since interarrivals and service times 

are memoryless, hence the number of jobs in the system should be the only necessary state charac-

terization. 

- When there are zero jobs, the only thing that can happen is a new job arrival, with a rate 𝜆. 

Clearly, arrivals occur at a rate 𝜆, whatever the state. The only thing that requires some dis-

cussion is thus the service rate. 

- When there is one job, it has the whole server to itself. There is no difference between this 

case and the one of a M/M/1/FCFS system holding just one job, hence the arc going to the left 

has a rate 𝜇. 

- When there are two jobs, it is as if each was served by a dedicated server of rate 𝜇 2⁄ . Note 

that when the second job joins the system, the first one has already been served for a while. 

However, its residual service time is still exponential, due to the memoryless property. There-

fore, the arc going to the left is the one of an M/M/2/FCFS system when two jobs are in, i.e. 

it has a rate 2 ⋅ 𝜇 2⁄ = 𝜇. 

- When the system is in state 𝑛, the transition to 𝑛 − 1 will occur when the minimum among 𝑛 

(residual) service times expires. However, all service times are exponential with a rate 𝜇 𝑛⁄ , 

hence the arc going to the left has a rate 𝑛 ⋅ 𝜇 𝑛⁄ = 𝜇. 

l m
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The conclusion is that the CTMC is the same as an M/M/1/FCFS’. Hence, the SS probabilities are 

the same. 

0

ll

1

ll

n….2

l

m m m m m

 

If 𝜌 < 1, then 𝑝𝑛 = (1 − 𝜌) ⋅ 𝜌𝑛, hence 𝐸[𝑁] =
𝜌

1−𝜌
, 𝐸[𝑅] =

𝐸[𝑁]

𝜆
=

1 𝜇⁄

1−𝜌
=

1

𝜇−𝜆
, exactly the same as 

an FCFS’s. Note that 𝐸[𝑁𝑞], 𝐸[𝑊] do not make sense here.   

Recall that in a PS system there is no queueing. In fact, PS systems are (almost) insensitive to the 

distribution of service times. As long as service times are Coxian (see below), then the results are 

the same, and the only relevant parameter is the mean service time 𝟏 𝝁⁄ . Therefore, all M/Cox/1/PS 

systems (which in practice means almost all M/G/1/PS systems) behave like the one above. Recall 

that when there is no queueing, the distribution of service times does not really matter (only its mean 

value does). 

Coxian distributions are particular cases of Phase-Type distributions, which can accommodate 

pretty much everything, at least in an approximate way. They can be described as follows: 

Imagine that the service includes at most 𝑛 stages. Each of them takes an exponential time (possibly 

with different means), and all stages are independent of each other. After each stage 𝑗, you can either 

go to the next stage, with probability 𝜋𝑗, or leave the server, with probability 1 − 𝜋𝑗 . A Coxian col-

lapses to an Erlang if 𝜋𝑗 = 1 ∀𝑗, and all stages are identical.  

m1 m2 mn...

n

p1 p2

1−p1 1−p2

 

Coxian distributions can approximate distributions with: 

- 𝐶𝑜𝑉 < 1: e.g., an Erlang one, or even a deterministic one (which is the limit of an Erlang for 𝑛 →

∞, recall the CLT); 

- 𝐶𝑜𝑉 > 1, e.g., those with a large variability, even approximating heavy-tailed ones.  

For instance, a (possibly crude) Coxian approximation of a distribution with 𝐸[𝑋] = 𝑚  and 

𝐶𝑜𝑉[𝑋] = 𝑐, with 𝑐 ≥ 0.25 can be obtained by matching it to a 2-stage Coxian as follows: 

𝜇1 = 2𝑚,      𝜋1 =
1

2𝑐2
, 𝜇2 = 𝜇1 ∙ 𝜋1 
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More involved computations are required to obtained better matches (e.g., matching the first three 

moments). If you want to know more about how to fit a generic distribution to a Coxian, check the 

literature. For our purpose, it is enough to say that most distributions can be approximated with a 

Coxian, and the approximation can be made arbitrarily close by increasing the number of stages (and, 

consequently, the complexity of the computations). 

What are the SS probabilities in an M/Cox/1/PS system? They are surprisingly easy to compute. The 

first question to address is what is the mean service time for a job in such a system? This is an easy 

question: 

𝐸[𝑡𝑠] =
1

𝜇1
+ 𝜋1 ∙

1

𝜇2
+ 𝜋1 ∙ 𝜋2 ∙

1

𝜇3
+⋯ =∑

1

𝜇𝑖

𝑛

𝑖=1

∙∏𝜋𝑗

𝑖−1

𝑗=1

 

Then call 𝜌 = 𝜆 ∙ 𝐸[𝑡𝑠], and the SS probabilities are simply:  

𝑝𝑛 = 𝜌
𝑛 ∙ (1 − 𝜌), 

which is almost too good to be true. They have the same shape as an M/M/1’s, and the only difference 

is that you need to compute the mean service time considering the traversal of up to 𝑛 stages. Note 

that this result does only hold because there is no queueing in a PS system. Queueing creates var-

iability. An M/Cox/1/FCFS system would behave very differently (you can analyze it using matrix 

analytic methods and check for yourselves). 

The last, very important thing about QNs of PS servers is the following: 

 

Theorem9  

Open/closed networks of M/Cox/1/PS systems, with or without classes, admit a product form, as long 

as external arrivals (if any) are Poissonian and routing (possibly per class) is Markovian. 

■ 

 

The above thesis implies that we can study networks of PS systems, with generic service times (with 

a pinch of salt) as if they were OJNs or CJNs, as long as we use the mean value of whatever service 

time distribution we have at the nodes in place of 1/𝜇.  

 

Over the last decades, more and more QNs have been found to admit product forms, including: 

- other service disciplines (e.g., LCFS with preemption and resume); 

                                                 

9 This thesis is part of the famous “BCMP theorem” (named after the initials of its inventors), published in 1975, which 

sets very general conditions under which QNs admits product forms. Its thesis is indeed more general than this one, but 

such generality often baffles first-time readers. Interested students may want to check the above paper for more details. 
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- QNs where jobs may change class from one SC to the other, with known probabilities; 

- load-dependent and class-dependent service times at the nodes; 

- special forms of state-dependent routing; 

- special cases of blocking and finite queues. 

Therefore, there is a good chance that any model you come up with can be accommodated in the 

above framework.   
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6 Exercises 

6.1 Single-queue systems 

6.1.1 Problem 

A packet switching node is modeled via an M/M/1 queueing system. The link speed 𝐶 is 1400 bits/s, 

and the mean packet length 𝐸[𝑀] is 10 bits. Under some load conditions, the mean number of packets 

in the system is 𝐸[𝑁] = 50 at the steady state. Compute: 

a) the packet arrival rate 𝜆; 

b) the mean response time 𝐸[𝑅]; 

c) the mean number of packets in the queue 𝐸[𝑁𝑞]; 

d) the mean queue waiting time 𝐸[𝑊]; 

e) the 95th percentile of the response time 𝜋95; 

f) the link speed such that the above is equal to 1ms. 

 

Solution 

a) We know that 𝐸[𝑀] = 10 and that 𝐶 = 1400. This allows us to compute 𝜇 = 𝐶 𝐸[𝑀]⁄ = 140. 

Furthermore, since we have 𝐸[𝑁] = 50, this means that the system is positive recurrent, hence it is 

𝐸[𝑁] = 𝜌 (1 − 𝜌)⁄ . Therefore, we obtain 𝜌 = 𝐸[𝑁] (1 + 𝐸[𝑁])⁄ = 50 51⁄ .  

Note that it stands to reason that 𝜌~1, since the mean number of packets is high.  

Now, since 𝜌 = 𝜆 𝜇⁄ , we obtain 𝜆 = 𝜇 ⋅ 𝜌 =
𝐶

𝐸[𝑀]
⋅
𝐸[𝑁]

1+𝐸[𝑁]
= 137.26. 

 

b) The average response time can be obtained by applying Little’s Theorem to the system 

queue+server in the steady state. Therefore, it is 𝐸[𝑅] = 𝐸[𝑁] 𝜆⁄ = 0.364𝑠. 

 

c) The mean number of packets in the queue can be computed directly as: 𝐸[𝑁𝑞] = 𝐸[𝑁] −

(1 − 𝑝0) = 𝐸[𝑁] − 𝜌 = 49.02, since the system has one server.   

 

d) There are two ways to compute 𝐸[𝑊]. The first one is by applying Little’s theorem to the system 

“queue” in the steady state. This gets us: 𝐸[𝑊] = 𝐸[𝑁𝑞] 𝜆⁄ = 0.357𝑠. Equivalently, one may lever-

age linearity of expectations and write 𝐸[𝑊] = 𝐸[𝑅] − 𝐸[𝑡𝑆], where 𝑡𝑆  is the service time. It is 

𝐸[𝑡𝑆] = 𝑏 = 1 𝜇⁄ , i.e. 𝑏 = 1 𝜇⁄ = 1 140 = 0.00714⁄ . Then,  𝐸[𝑊] = 𝐸[𝑅] − 𝑏 yields the same re-

sult. 



Notes on queueing theory (student version) – Giovanni Stea – last saved: 04/08/22 

78 

 

e) The distribution of the response time is exponential 𝐹(𝑦) = 𝑃{𝑅 ≤ 𝑦} = 1 − 𝑒−𝑦 𝐸[𝑅]⁄ . In order to 

compute the 95th percentile, we need to solve 𝐹(𝜋95) = 1 − 𝑒−𝜋95 𝐸[𝑅]⁄ = 0.95, hence: 

𝑒−𝜋95 𝐸[𝑅]⁄ = 0.05
−𝜋95 𝐸[𝑅]⁄ = ln(0.05)
𝜋95 = −𝐸[𝑅]ln(0.05)
𝜋95 ≈ 3𝐸[𝑅] = 1.092𝑠

 

Note that the 95th percentile of the exponential is actually 2.996 times its mean value. Therefore, 

𝜋95 ≈ 3𝐸[𝑅] is an accurate estimate.  

 

f) The required equation is 𝜋95 ≈ 3𝐸[𝑅] = 10
−3

. Now,  

𝐸[𝑅] =
𝐸[𝑁]

𝜆
=

𝜌

𝜆(1 − 𝜌)
=

𝜆 𝜇⁄

𝜆(1 − 𝜆 𝜇⁄ )
=

1

𝜇 − 𝜆
=

1

𝐶 𝐸[𝑀]⁄ − 𝜆
 

Therefore, we have: 

3

𝐶 𝐸[𝑀]⁄ − 𝜆
= 10−3

𝐶 = 𝐸[𝑀] ⋅ (3 ⋅ 103 + 𝜆)

𝐶 ≈ 10 ⋅ (3000 + 137.26) = 31372𝑏/𝑠

 

6.1.2 Problem  

Assume that a packet switching node is modeled via an M/M/1 queueing system whose transition 

diagram is reported below. The state of the system is represented by the number of packets in the 

system, although value 𝜆𝑖 specifies the arrival rate of messages carrying 𝑖 packets each.  

0 1 2 3

m m m

l1

l2
l3

...

 

a) Use the CTMC to provide a physical interpretation of the behavior of this system; 

b) write down the global equilibrium equations and determine the stability condition. 

 

Assuming that 𝜆𝑛 = 𝜆 𝑛3⁄ , compute: 

c) the steady-state probabilities; 

d) the throughput; 

e) the utilization and the mean service time. 

Note: it may be useful to know that ∑
1

𝑛2
=

𝜋2

6
≈ 1.645+∞

𝑛=1 . 
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Solution 

a) The physical interpretation is the following: the system has bulk arrivals. It accepts messages 

with possibly many packets in a burst. On receipt of a message (containing an arbitrary number 

of packets) the system stops accepting messages (line blocking) and starts serving the available 

packets, until it is empty again.  

 

b) We can write down the global equilibrium equations at the steady state by circling each state and 

taking into account outgoing and incoming arcs. 

𝑝0 ⋅ (∑ 𝜆𝑛

+∞

𝑛=1

) = 𝜇 ⋅ 𝑝1

𝜇 ⋅ 𝑝𝑘 = 𝜇 ⋅ 𝑝𝑘+1 + 𝜆𝑘 ⋅ 𝑝0        (𝑘 > 1)

 

From the first equation, we get 𝑝1 =
1

𝜇
⋅ (∑ 𝜆𝑛

+∞
𝑛=1 ) ⋅ 𝑝0. 

From the second equation, we get: 

𝜇 ⋅ 𝑝2 = 𝜇 ⋅ 𝑝1 − 𝜆1 ⋅ 𝑝0

𝑝2 = 𝑝1 −
𝜆1
𝜇
⋅ 𝑝0 = [

1

𝜇
⋅ (∑ 𝜆𝑛

+∞

𝑛=1

)−
𝜆1
𝜇
] ⋅ 𝑝0 =

1

𝜇
⋅ (∑ 𝜆𝑛

+∞

𝑛=2

) ⋅ 𝑝0
 

And again: 

𝜇 ⋅ 𝑝3 = 𝜇 ⋅ 𝑝2 − 𝜆2 ⋅ 𝑝0

𝑝3 = 𝑝2 −
𝜆2
𝜇
⋅ 𝑝0 = [

1

𝜇
⋅ (∑ 𝜆𝑛

+∞

𝑛=2

)−
𝜆2
𝜇
] ⋅ 𝑝0 =

1

𝜇
⋅ (∑ 𝜆𝑛

+∞

𝑛=3

) ⋅ 𝑝0
 

Thus it is easy to see that 𝑝𝑘 =
1

𝜇
⋅ (∑ 𝜆𝑛

+∞
𝑛=𝑘 ) ⋅ 𝑝0. 

In order to compute the stability condition, we need to enforce that ∑ 𝑝𝑘
+∞
𝑘=0 = 1, which means that: 

[1 +
1

𝜇
⋅ ∑ ∑ 𝜆𝑛

+∞
𝑛=𝑘

+∞
𝑘=1 ] ⋅ 𝑝0 = 1. This, in turn, holds if and only if ∑ ∑ 𝜆𝑛

+∞
𝑛=𝑘

+∞
𝑘=1  is limited. Let us see 

what the double summation yields.  

You easily see that 𝜆1 appears once, 𝜆2  appears twice, … 𝜆𝑗 appears 𝑗 times. Thus, the double sum-

mation can be rewritten as:  

∑∑ 𝜆𝑛

+∞

𝑛=𝑘

+∞

𝑘=1

=∑ 𝑛 ⋅ 𝜆𝑛

+∞

𝑛=1

 

 

Therefore, the stability condition is that the arrival rates are such that 

∑ 𝑛 ⋅ 𝜆𝑛
+∞
𝑛=1 < +∞. The physical interpretation is that the mean arrival rate of packets should be finite. 

k

n
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The condition does not depend on the server speed, since the switch only accepts packets when it is 

empty. 

 

c) In this case, we have 𝜆𝑛 = 𝜆 𝑛3⁄ , which means that the stability condition is verified, since: 

∑ 𝑛 ⋅ 𝜆𝑛

+∞

𝑛=1

=∑
𝜆

𝑛2

+∞

𝑛=1

=
𝜆 ⋅ 𝜋2

6
 

Therefore, the steady-state probabilities are: 

[1 +
𝜆

𝜇
⋅
𝜋2

6
] ⋅ 𝑝0 = 1

𝑝0 =
1

1 + 𝑢 ⋅ 𝜋2 6⁄

 

Where 𝑢 = 𝜆 𝜇⁄ . Furthermore, it is: 

𝑝𝑘 =
𝜆

𝜇
⋅ (∑

1

𝑛3

+∞

𝑛=𝑘

) ⋅ 𝑝0 =
𝑢

1 + 𝑢 ⋅ 𝜋2 6⁄
⋅ (∑

1

𝑛3

+∞

𝑛=𝑘

) 

 

d) The definition of throughput is the following: 𝛾 = ∑ 𝜇𝑛 ⋅ 𝑝𝑛
+∞
𝑛=1 , i.e. the mean value of the service 

rate. In our case, it is 𝜇𝑛 = 𝜇, hence:  

𝛾 = 𝜇 ⋅∑𝑝𝑛

+∞

𝑛=1

= 𝜇 ⋅ (1 − 𝑝0) = 𝜇 ⋅
𝑢 ⋅ 𝜋2 6⁄

1 + 𝑢 ⋅ 𝜋2 6⁄
=

𝜆 ⋅ 𝜋2 6⁄

1 + 𝑢 ⋅ 𝜋2 6⁄
 

e) By definition, the utilization is the probability that the server is not idle. Therefore, we have 

𝜌 = ∑𝑝𝑛

+∞

𝑛=1

= 1 − 𝑝0 =
𝑢 ⋅ 𝜋2 6⁄

1 + 𝑢 ⋅ 𝜋2 6⁄
 

The mean service time could be obtained without any computations, since the service rate does 

not depend on the state. Therefore, it is surely 𝐸[𝑡𝑆] = 1 𝜇⁄ . In any case, the definition yields: 

𝐸[𝑡𝑆] =
𝜌

𝛾
=

𝑢 ⋅ 𝜋2 6⁄

1 + 𝑢 ⋅ 𝜋2 6⁄
⋅
1 + 𝑢 ⋅ 𝜋2 6⁄

𝜆 ⋅ 𝜋2 6⁄
=
𝑢

𝜆
=
1

𝜇
 

6.1.3 Problem  

Consider a switch of a packet network having 𝑁 output links and 𝑀 input links, with 𝑀 ≥ 𝑁. Assume 

that the output links can be modeled as exponential servers with identical rate 𝜇, and the arrival pro-

cesses on each input line are IID Poisson processes with a rate 𝜆. When a packet arrives on the switch 

from an input line, the switch does the following: 

- if there is at least one idle server, the packet goes immediately under service, blocking the 

input line it arrived on while it is being served; 
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- otherwise (there are no idle servers), the packet is discarded.  

 

a) Model the switch as a birth-death process, compute the arrival rate and draw the CTMC; 

b) compute the steady-state probabilities and the stability condition of the system; 

c) compute the steady-state probability 𝑝𝐵 that all the servers are busy (blocking probability); 

d) compute the probability that an arriving packet finds all the servers busy (𝑝𝐿, packet loss 

probability), and prove that 𝑝𝐿(𝑀) = 𝑝𝐵(𝑀 − 1); 

e) When 𝑁 = 𝑀, prove that 𝑝𝑛 = (
𝑁
𝑛
) 𝑎𝑛 ⋅ (1 − 𝑎)𝑁−𝑛, where 𝑎 =

𝜆

𝜆+𝜇
. Provide a physical in-

terpretation for the result.  

Note: it may be helpful to observe that (𝑀− 𝑘) (𝑀
𝑘
) = 𝑀 ⋅ (𝑀− 1

𝑘
) 

 

Solution 

The state of the switch can be characterized by the number of busy servers 𝒏.  

a) Let us start with the arrival rates.  

- Consider an empty system (i.e., state 0), where all the 𝑀 input links can send packets. The overall 

arrival rate can be computed by taking into account that the sum of 𝑀 IID Poisson processes is itself 

a Poisson process with a mean value equal to 𝑀 ⋅ 𝜆. Therefore, it is 𝜆0 = 𝑀 ⋅ 𝜆. 

- Let us now move to state 1. Now, one of the processes is blocked, since there is one packet in the 

system (hence one input link is blocked). Therefore, the aggregate arrival rate is (𝑀− 1) ⋅ 𝜆. There-

fore, 𝜆1 = (𝑀− 1) ⋅ 𝜆. 

- For a generic state 𝑛 < 𝑁, it is 𝜆𝑛 = (𝑀−𝑛) ⋅ 𝜆. 

- The system has 𝑁 + 1 states, since the switch drops packets when 𝑁 servers are busy. This means 

that a non null aggregate arrival rate can still be derived, but no state transition is possible. 

0

(M-1)lMl

1

(M-n)l(M-n+1)l

n….

(M-N+1)l

N….

(n+1)m Nm2m nmm

 

As far as service rates are concerned, they are proportional to the number of busy servers, thus it is 

𝜇𝑛 = 𝑛 ⋅ 𝜇    1 ≤ 𝑛 ≤ 𝑁. 

b) Since the CTMC has only nearest-neighbor transitions, we can use the well-known formula to 

compute 𝑝𝑛 as a function of 𝑝0: 

𝑝𝑛 =∏
𝜆𝑖
𝜇𝑖+1

𝑛−1

𝑖=0

𝑝0 
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By substituting 𝜆𝑛 = (𝑀−𝑛) ⋅ 𝜆 and 𝜇𝑛 = 𝑛 ⋅ 𝜇 into the above we obtain: 

𝑝𝑛 =
(𝑀−𝑛+ 1)𝜆 ⋅. . . (𝑀− 1)𝜆 ⋅ 𝑀𝜆

𝑛 ⋅ 𝜇 ⋅ (𝑛 − 1) ⋅ 𝜇 ⋅. . .⋅ 2𝜇 ⋅ 𝜇
𝑝0

=
𝑀! (𝑀−𝑛)!⁄

𝑛!
⋅
𝜆𝑛

𝜇𝑛
𝑝0

= (
𝑀
𝑛
) ⋅ (

𝜆

𝜇
)

𝑛

⋅ 𝑝0        0 ≤ 𝑛 ≤ 𝑁

 

Therefore, the normalization condition is the following: 𝑝0 ⋅ ∑ [(
𝑀
𝑛
) ⋅ (

𝜆

𝜇
)
𝑛
]𝑁

𝑛=0 = 1. 

Since the above is a finite sum, the system is positive recurrent. Therefore, we have: 

{
 
 

 
 𝑝0 =

1

∑ [(
𝑀
𝑛
) ⋅ (

𝜆
𝜇)

𝑛

]𝑁
𝑛=0

𝑝𝑘 = (
𝑀
𝑘
) ⋅ (

𝜆

𝜇
)

𝑘

⋅ 𝑝0    𝑘 ≥ 1

 

(note that the last expression also holds for 𝑘 = 0). 

c) The probability that 𝑁 servers are busy is: 

𝑝𝐵 = 𝑝𝑁 =
(𝑀
𝑁
) ⋅ (

𝜆
𝜇)

𝑁

∑ [(
𝑀
𝑛
) ⋅ (

𝜆
𝜇)

𝑛

]𝑁
𝑛=0

 

Note that this is the probability that a random observer finds the system in state 𝑁.  

d) The solution to this point is not the same as the previous point’s. The former requested the proba-

bility that 𝑁 servers are busy at any time. This one is the probability that 𝑁 servers are busy when a 

packet arrives. The two things are known to be different when the arrival rates depend on the 

state of the system, which is in fact the case in point.  

The arrival-time steady-state probabilities (for a generic state 𝑛) can be computed as follows: 

𝑟𝑛 =
𝜆𝑛 ⋅ 𝑝𝑛

∑ 𝜆𝑗 ⋅ 𝑝𝑗
𝑁
𝑗=0

=
(𝑀−𝑛) ⋅ 𝜆 ⋅ (𝑀

𝑛
) ⋅ (

𝜆
𝜇)

𝑛

⋅ 𝑝0

∑ {(𝑀− 𝑗)𝜆 ⋅ (
𝑀
𝑗 ) ⋅ (

𝜆
𝜇)

𝑗

⋅ 𝑝0}
𝑁
𝑗=0

=
(𝑀−𝑛) ⋅ 𝜆 ⋅ (𝑀

𝑛
) ⋅ (

𝜆
𝜇)

𝑛

∑ [(𝑀− 𝑗)𝜆 ⋅ (
𝑀
𝑗 ) ⋅ (

𝜆
𝜇)

𝑗

]𝑁
𝑗=0

 

Keeping into account that: (𝑀−𝑛) ⋅ (𝑀
𝑛
) = 𝑀 ⋅ (𝑀− 1

𝑛
), we obtain: 

𝑟𝑛 =
𝑀 ⋅ (𝑀− 1

𝑛
) ⋅ (

𝜆
𝜇)

𝑛

∑ [𝑀 ⋅ (
𝑀− 1
𝑗 ) ⋅ (

𝜆
𝜇)

𝑗

]𝑁
𝑗=0

 

This means that the packet loss probability 𝑝𝐿 is equal to 𝑟𝑁, i.e.:  
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𝑝𝐿 =
(
𝑀− 1
𝑁

) ⋅ (
𝜆
𝜇)

𝑁

∑ [(
𝑀− 1
𝑗 ) ⋅ (

𝜆
𝜇)

𝑗

]𝑁
𝑗=0

 

Note that it is 𝑝𝐿(𝑀) = 𝑝𝐵(𝑀− 1). The packet loss probability for a system with 𝑀 input links is the 

blocking probability for a system with 𝑀 − 1 input links.  

 

e) If 𝑁 = 𝑀, we get the following: 

𝑝𝑘 = (
𝑁
𝑘
) ⋅ (

𝜆

𝜇
)

𝑘

⋅ 𝑝0 =
(
𝑁
𝑘
) ⋅ (

𝜆
𝜇)

𝑘

∑ [(
𝑁
𝑛
) ⋅ (

𝜆
𝜇)

𝑛

]𝑁
𝑛=0

 

However, since ∑ [(
𝑁
𝑛
) ⋅ (

𝜆

𝜇
)
𝑛
]𝑁

𝑛=0 = (1 +
𝜆

𝜇
)
𝑁

, we obtain 𝑝𝑘 =
(
𝑁
𝑘
)⋅(

𝜆

𝜇
)
𝑘

(1+
𝜆

𝜇
)
𝑁 . 

If we define 𝑎 =
𝜆

𝜆+𝜇
< 1, we obtain: 

𝑎 =
𝜆 𝜇⁄

1 + 𝜆 𝜇⁄

𝜆

𝜇
=

𝑎

1− 𝑎

 

We substitute the latter in the former expression and obtain: 

(
𝜆

𝜇
)

𝑘

= (
𝑎

1 − 𝑎
)
𝑘

,     (1 +
𝜆

𝜇
)

𝑁

= (
1

1 − 𝑎
)

𝑁

 

𝑝𝑘 =
(𝑁
𝑘
) ⋅ (

𝜆
𝜇)

𝑘

(1 +
𝜆
𝜇)

𝑁
=
(
𝑁
𝑘
) ⋅

𝑎𝑘

(1 − 𝑎)𝑘

1
(1 − 𝑎)𝑁

= (
𝑁
𝑘
) ⋅ 𝑎𝑘 ⋅ (1 − 𝑎)𝑁−𝑘 

Therefore, if the number of input links and servers is equal, the steady-state probabilities are those of 

a binomial RV.  

This makes perfect sense. Consider a server in isolation. It oscillates between a busy and an idle state. 

The transition from idle to busy occurs at a rate 𝜆, and those from busy to idle occur at a rate 𝜇. This 

is a two-state birth-death process, whose steady-state 

probabilities are:  

{
 

 𝑝𝑏𝑢𝑠𝑦 =
𝜆

𝜆 + 𝜇
= 𝑎

𝑝𝑖𝑑𝑙𝑒 =
𝜇

𝜆 + 𝜇
= 1 − 𝑎

 

idle

l

busy

m
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Since there are 𝑁 such servers, and they are independent of each other, the number of busy servers is 

distributed as a binomial RV over 𝑁 trials having success probability 𝑝 = 𝑎. 

6.2 Queueing networks 

6.2.1 Problem (open queueing network) 

Consider the computer system in the figure, and let 𝑝 + 𝑞 = 1. Compute: 

1) the PMF of the number of jobs in the two service centers. Which of the two centers is the 

system bottleneck? 

2) The mean number of jobs in the two service centers and in the system; 

3) the mean response time of the system and the mean number of visits at the service centers. 

p

q

g
m1 m2

CPU I/O

SC1 SC2

 

Solution 

1) This is an open Jackson’s network, and its routing matrix is 𝚷 = [
0 𝑝
1 0

]. Arrivals are 𝛄 = [
𝛾
0
]. 

We could compute the arrival rate by solving equation 𝛌 = (𝐈 − 𝚷𝑇)
−1
⋅ 𝛄. It is easier if we observe 

that, since the input and output must balance, it must be 𝛾 = 𝜆1 ⋅ 𝑞. Moreover, from the routing we 

get that 𝜆2 = 𝑝 ⋅ 𝜆1. Hence, we obtain 𝜆1 = 𝛾 𝑞⁄ , 𝜆2 = 𝑝 ⋅ 𝛾 𝑞⁄ .  

Now that we have the arrival rates, we can compute the utilization of the SCs as 𝜌1 = 𝜆1 𝜇1⁄ =

𝛾 (𝜇1 ⋅ 𝑞)⁄ , and 𝜌2 = 𝜆2 𝜇2⁄ = 𝑝 ⋅ 𝛾 (𝜇2 ⋅ 𝑞)⁄ . 

By Jackson’s Theorem, this network admits a product form, which is: 

𝑝(𝑛1, 𝑛2) = [(1 − 𝜌1) ⋅ 𝜌1
𝑛1] ⋅ [(1 − 𝜌2) ⋅ 𝜌2

𝑛2], as long as 𝜌𝑖 < 1,    1 ≤ 𝑖 ≤ 2, i.e.: 

𝑝(𝑛1, 𝑛2) = [(1 −
𝛾

𝜇1 ⋅ 𝑞
) ⋅ (

𝛾

𝜇1 ⋅ 𝑞
)
𝑛1

] ⋅ [(1 −
𝑝 ⋅ 𝛾

𝜇2 ⋅ 𝑞
) ⋅ (

𝑝 ⋅ 𝛾

𝜇2 ⋅ 𝑞
)
𝑛2

] 

The SC with the highest utilization is the system bottleneck. The condition by which 𝜌1 > 𝜌2  is 

𝛾 (𝜇1 ⋅ 𝑞)⁄ > 𝑝 ⋅ 𝛾 (𝜇2 ⋅ 𝑞)⁄ , i.e. 𝑝 ⋅ 𝜇1 < 𝜇2. Under the above inequality, the CPU is the bottleneck. 

Otherwise, the I/O subsystem is the bottleneck. 

 

2) By Jackson’s theorem we know that each SC behaves like an independent M/M/1 system, hence: 

𝐸[𝑁𝑖] =
𝜌𝑖

1 − 𝜌𝑖
= {

𝛾

𝑞 ⋅ 𝜇1 − 𝛾
𝑖 = 1

𝑝 ⋅ 𝛾

𝑞 ⋅ 𝜇2 − 𝑝 ⋅ 𝛾
𝑖 = 2
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Obviously, it is 𝐸[𝑁] = 𝐸[𝑁1] + 𝐸[𝑁2], since mean values are additive. 

 

3) By Little’s law, we get: 𝐸[𝑅] = 𝐸[𝑁] 𝛾⁄ , i.e.: 

𝐸[𝑅] =
1

𝑞 ⋅ 𝜇1 − 𝛾
+

𝑝

𝑞 ⋅ 𝜇2 − 𝑝 ⋅ 𝛾
 

The average number of visits at each SC is 𝐸[𝑉𝑖] = 𝜆𝑖 𝛾⁄ , i.e. 𝐸[𝑉1] = 1 𝑞⁄ , 𝐸[𝑉2] = 𝑝 𝑞⁄ . We can 

easily verify that 𝐸[𝑅] = 𝐸[𝑇1] + 𝐸[𝑇2] = 𝐸[𝑉1] ⋅ 𝐸[𝑁1] 𝜆1⁄ + 𝐸[𝑉2] ⋅ 𝐸[𝑁2] 𝜆2⁄ . In fact, 

𝐸[𝑉𝑖] 𝜆𝑖⁄ = 1 𝛾⁄ , and the computation is straightforward. 

6.2.2 Problem (open queueing network) 

Consider a tandem queueing network like the one in the figure. Assume that all SCs have infinite 

queues. Let ℰ = {(𝑛1, 𝑛2)|𝑛𝑖 ≥ 0} be the state space for the system, where (𝑛1, 𝑛2) denotes a state in 

which 𝑛1 jobs are at SC 1 and 𝑛2 are at SC 2.  

l
m1 m2

SC 1 SC 2  

1) Draw the CTMC for the above system, including at least all the states such that 𝑛1 + 𝑛2 ≤ 3. 

2) Write down the global equilibrium equations. 

3) Verify Jackson’s theorem in this case study, i.e. prove that the equilibrium equations have the 

following solution: 𝑝𝑛 = 𝑝(𝑛1, 𝑛2) = [(1 − 𝜌1) ⋅ 𝜌1
𝑛1] ⋅ [(1 − 𝜌2) ⋅ 𝜌2

𝑛2], with 𝜌𝑖 = 𝜆 𝜇𝑖⁄ . 

Solution 

The CTMC can be computed as follows: 

- starting from state (0,0) (the system is empty), one arrival – which occurs at a rate 𝜆 – brings the 

system to state (1,0).  

- In state (1,0), two things may happen:  

o one arrival at SC 1 (still at a rate 𝜆), which brings the systems to state (2,0); 

o one departure from SC 1, which occurs at a rate 𝜇1 and brings the system to state (0,1). 

 The above behavior can be easily generalized to all the states (𝑗, 0):  

o one arrival at SC 1 (still at a rate 𝜆), which brings the systems in state (𝑗 + 1,0); 

o one departure from SC 1, which occurs at a rate 𝜇1 and brings the system to state (𝑗 − 1,1). 

- In state (0,1), again, two things may happen: 

o one arrival at SC 1 (at a rate 𝜆), which brings the systems to state (1,1); 

o one departure from SC 2, which occurs at a rate 𝜇2 and brings the system to state (0,0). 
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The above behavior can be easily generalized to all the states (0, 𝑗). 

- In state (1,1), the following may happen: 

o one arrival at SC 1 (still at a rate 𝜆), which brings the systems in state (2,1); 

o one departure from SC 1, which occurs at a rate 𝜇1 and brings the system to state (1,2); 

o one departure from SC 2, which occurs at a rate 𝜇2 and brings the system to state (1,0). 

This can be easily generalized to all states (𝑖, 𝑗), where both 𝑖 and 𝑗 are non null. Therefore, a portion 

of the diagram is the one in the following figure. On the right, the figure displays the portion of the 

state diagram related to generic state (𝑖, 𝑗), where both 𝑖 and 𝑗 are non null. 

0,0

1,0

2,0

3,0

0,1

1,1

2,1

1,2

0,3

0,2

l

l

l

l

l

m
1

l
m

1
m

1

m
1

m
1

m
1

m2

m2

m2

m2

m2

m2

   

i,

j-1

i+1

j-1

i-1,

j

i,j

i+1

,j

i,

j+1

i-1, 

j+1

l

l

m
1

m
1

m2

m2

 

2) The global equilibrium equations can be easily inferred from the diagram on the right, with refer-

ence to generic state (𝑖, 𝑗), assuming both 𝑖 and 𝑗 are non null. 

𝑝𝑖,𝑗 ⋅ [𝜆 + 𝜇1 + 𝜇2] = 𝑝𝑖−1,𝑗 ⋅ 𝜆 + 𝑝𝑖+1,𝑗−1 ⋅ 𝜇1 + 𝑝𝑖,𝑗+1 ⋅ 𝜇2 

If either or both 𝑖 and 𝑗 are null, then the above equation still holds, provided that we remove the 

missing states. To that aim, we can use the step function 𝛿(𝑖), which is 1 if 𝑖 > 0  and 0 if 𝑖 = 0, and 

write down a general expression, which holds for any state (𝑖, 𝑗): 

𝑝𝑖,𝑗 ⋅ [𝜆 + 𝜇1 ⋅ 𝛿(𝑖)+ 𝜇2 ⋅ 𝛿(𝑗)] = 𝑝𝑖−1,𝑗 ⋅ 𝛿(𝑖) ⋅ 𝜆 + 𝑝𝑖+1,𝑗−1 ⋅ 𝛿(𝑗) ⋅ 𝜇1 + 𝑝𝑖,𝑗+1 ⋅ 𝜇2. 

 

3) We just need to substitute the given expression for 𝑝𝑖,𝑗 in the above equation, and check that equal-

ity holds: 

[(1 − 𝜌1) ⋅ 𝜌1
𝑖] ⋅ [(1 − 𝜌2) ⋅ 𝜌2

𝑗] ⋅ [𝜆 + 𝜇1 ⋅ 𝛿(𝑖)+ 𝜇2 ⋅ 𝛿(𝑗)] =

[(1 − 𝜌1) ⋅ 𝜌1
𝑖−1] ⋅ [(1 − 𝜌2) ⋅ 𝜌2

𝑗] ⋅ 𝛿(𝑖) ⋅ 𝜆 +

[(1 − 𝜌1) ⋅ 𝜌1
𝑖+1] ⋅ [(1 − 𝜌2) ⋅ 𝜌2

𝑗−1] ⋅ 𝛿(𝑗) ⋅ 𝜇1 +

[(1 − 𝜌1) ⋅ 𝜌1
𝑖] ⋅ [(1 − 𝜌2) ⋅ 𝜌2

𝑗+1]𝜇2
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By multiplying and/or dividing each addendum by 𝜌𝑖 as required, the above expression can be quickly 

rewritten as: 

[(1 − 𝜌1) ⋅ 𝜌1
𝑖] ⋅ [(1 − 𝜌2) ⋅ 𝜌2

𝑗] ⋅ [𝜆 + 𝜇1 ⋅ 𝛿(𝑖)+ 𝜇2 ⋅ 𝛿(𝑗)] =

[(1 − 𝜌1) ⋅ 𝜌1
𝑖] ⋅ [(1 − 𝜌2) ⋅ 𝜌2

𝑗] ⋅ 𝛿(𝑖) ⋅ 𝜆 𝜌1⁄ +

[(1 − 𝜌1) ⋅ 𝜌1
𝑖] ⋅ [(1 − 𝜌2) ⋅ 𝜌2

𝑗] ⋅ 𝛿(𝑗) ⋅ 𝜇1 ⋅ 𝜌1 𝜌2⁄ +

[(1 − 𝜌1) ⋅ 𝜌1
𝑖] ⋅ [(1 − 𝜌2) ⋅ 𝜌2

𝑗]𝜇2 ⋅ 𝜌2

 

From the above, we obtain: 

𝜆 + 𝜇1 ⋅ 𝛿(𝑖) + 𝜇2 ⋅ 𝛿(𝑗) = 𝛿(𝑖) ⋅ 𝜆 𝜌1⁄ + 𝛿(𝑗) ⋅ 𝜇1 ⋅ 𝜌1 𝜌2⁄ + 𝜇2 ⋅ 𝜌2 

By substituting 𝜌𝑖 = 𝜆 𝜇𝑖⁄  into the above, we get: 

𝜆 + 𝜇1 ⋅ 𝛿(𝑖)+ 𝜇2 ⋅ 𝛿(𝑗) = 𝛿(𝑖) ⋅ 𝜆 ⋅
𝜇1
𝜆
+ 𝛿(𝑗) ⋅ 𝜇1 ⋅

𝜆

𝜇1
⋅
𝜇2
𝜆
+ 𝜇2 ⋅

𝜆

𝜇2
𝜆 + 𝜇1 ⋅ 𝛿(𝑖)+ 𝜇2 ⋅ 𝛿(𝑗) = 𝜇1 ⋅ 𝛿(𝑖)+ 𝜇2 ⋅ 𝛿(𝑗)+ 𝜆

 

Hence equality holds.  

6.2.3 Problem (closed queueing network) 

m1

m2

SC 1

SC 2

m3

SC3

mM

SC M

p1

p2

p3

pM

...

 

Consider the central-server closed queueing network in the figure. Let 𝐾 be the number of jobs in the 

system, and let 𝜇𝑖 be the service rate at each SC. Assume that all SCs are M/M/1. 

1) Compute the steady-state probabilities in their general form. 

2) Specialize the computation for 𝜋𝑗 = 1 𝑀⁄ , 𝜇𝑗 = 𝜇. Explain the result. 

3) Run Buzen’s algorithm with 𝑀 = 5,𝐾 = 10  and compute the normalizing constant and the 

steady-state probabilities.  

4) Compute the utilization and the throughput of each server in the above case.  

Solution 

The routing matrix is the following:  
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𝚷 =

[
 
 
 
 
𝜋1 𝜋2 . . . 𝜋𝑀−1 𝜋𝑀
1 0 . . . 0 0
1 0 . . . 0 0
. . . . . . . . . . . . . . .
1 0 . . . 0 0 ]

 
 
 
 

 

Hence the linear system to be solved is the following: 

{
 
 

 
 
𝜆1 = 𝜋1 ⋅ 𝜆1 + 𝜆2+. . .+𝜆𝑀
𝜆2 = 𝜋2 ⋅ 𝜆1
𝜆3 = 𝜋3 ⋅ 𝜆1
. . .
𝜆𝑀 = 𝜋𝑀 ⋅ 𝜆1

 

We can easily observe that the equations of this linear system are not independent, since the first one 

boils down to 𝜆1 = 𝜋1 ⋅ 𝜆1 + 𝜋2 ⋅ 𝜆1+. . . +𝜋𝑀 ⋅ 𝜆1 = 𝜆1 ⋅ ∑ 𝜋𝑖
𝑀
𝑖=1 = 𝜆1. 

One solution is thus 𝜆1 = 𝜇1, 𝜆𝑖 = 𝜋𝑖 ⋅ 𝜇1 for 2 ≤ 𝑖 ≤ 𝑀. Thus, 𝐞 = [𝜇1, 𝜋2 ⋅ 𝜇1, . . . , 𝜋𝑀 ⋅ 𝜇1]
𝑇. From 

this we can compute the values for 𝜌𝑖: 𝛒 = [1, 𝜋2 ⋅ 𝜇1 𝜇2⁄ , . . . , 𝜋𝑀 ⋅ 𝜇1 𝜇𝑀⁄ ]
𝑇
. 

Therefore, by Gordon and Newell’s Theorem, we have: 

𝑝𝑛 = 𝑝(𝑛1, 𝑛2, . . . , 𝑛𝑀) =
1

𝐺(𝑀,𝐾)
⋅∏(

𝜋𝑖 ⋅ 𝜇1
𝜇𝑖

)

𝑛𝑖𝑀

𝑖=2

 

2) With 𝜋𝑗 = 1 𝑀⁄ , 𝜇𝑗 = 𝜇, the above computation becomes:  

𝑝𝑛 = 𝑝(𝑛1, 𝑛2, . . . , 𝑛𝑀) =
1

𝐺(𝑀,𝐾)
⋅∏ (

1

𝑀𝑛𝑖
)𝑀

𝑖=2 =
1

𝐺(𝑀,𝐾)
⋅

1

𝑀𝐾−𝑛1
. 

The result should not surprise us. In fact, it tells us that every state having 𝑛1 jobs at SC 1 has the 

same probability. In fact, from the above data we infer that all the other SCs are equivalent, since 

they have the same service rate and the same routing probability. Therefore, 𝑝(𝑛1, 𝑛2, . . . , 𝑛𝑀)|𝑛1 

should be uniform, which it is.  

3) We run Buzen’s algorithm with the help of a spreadsheet, with the following initialization: 

- row 0: 𝐺(𝑗, 0) = 1,  1 ≤ 𝑗 ≤ 𝑀 

- column 1: 𝐺(1, 𝑗) = 𝜌1
𝑗 = 1,  1 ≤ 𝑗 ≤ 𝐾 

The final result is in the table, and it is equal to 2.44. Note that, had we chosen 𝜆1 = 10𝜇1, the required 

constant would have been around 𝐺(𝑀,𝐾) ≈ 2.44 ⋅ 1010. This is to remind us that, depending on the 

initial choice, numerical instability may arise. Since powers are involved, it is preferable that the 

value of the 𝜌s be kept as close as possible to 1.  

Thus, the steady-state probabilities are: 𝑝𝑛 = 𝑝(𝑛1, 𝑛2, . . . , 𝑛5) =
1

2.44
⋅

1

510−𝑛1
. 

One may wonder why the constant 𝐺(𝑀,𝐾) exhibits a negligible dependence on the number of jobs 

𝐾. This is again a consequence of our initial choice: since 𝜌𝑗 = 1 𝑀⁄ < 1, then it makes sense that 

numbers do not grow that much while moving down in a column. 
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SC 1  2 3 4 5 

𝝆  

jobs 

1 

  

1/5 

  

1/5 

  

1/5 

  

1/5 

  

0 1 1 1 1 1 

1 1 1.20 1.40 1.60 1.80 

2 1 1.24 1.52 1.84 2.20 

3 1 1.25 1.55 1.92 2.36 

4 1 1.25 1.56 1.94 2.42 

5 1 1.25 1.56 1.95 2.43 

6 1 1.25 1.56 1.95 2.44 

7 1 1.25 1.56 1.95 2.44 

8 1 1.25 1.56 1.95 2.44 

9 1 1.25 1.56 1.95 2.44 

10 1 1.25 1.56 1.95 2.44 

 

The mean number of jobs at each SC can be computed through a spreadsheet software again: 

𝐸[𝑁𝑖] =
1

𝐺(𝑀,𝐾)
⋅∑𝜌𝑖

𝑗 ⋅ 𝐺(𝑀,𝐾 − 𝑗)

𝐾

𝑗=1

 

For 𝑖 = 1  it is 𝐸[𝑁1] =
∑ 𝐺(𝑀,𝐾−𝑗)𝐾
𝑗=1

𝐺(𝑀,𝐾)
≈ 9 = 𝐾 − 1 , whereas for 𝑖 > 1  we have 𝐸[𝑁𝑖] =

∑
𝐺(𝑀,𝐾−𝑗)

5𝑗
𝐾
𝑗=1

𝐺(𝑀,𝐾)
≈ 0.25 =

1

𝑀−1
. Of course, ∑ 𝐸[𝑁𝑖]

𝑀
𝑖=1 = 𝐾. 

4) The utilization is 𝜌𝑖 ⋅
𝐺(𝑀,𝐾−1)

𝐺(𝑀,𝐾)
≈ 𝜌𝑖. This makes sense: as the number of jobs increases, the proba-

bility that SC 1 is idle should go to zero (every job passes through SC 1 in a round). Moreover, the 

utilization of SCs 2 to 𝑀 tends to 𝜋𝑖 ⋅ 𝜇1 𝜇𝑖⁄ = 1 𝑀⁄ , and this makes sense as well. The throughput is:  

𝑋𝑖 ≈ 𝜇𝑖 ⋅ 𝜌𝑖 = {
𝜇 𝑖 = 1

𝜋𝑖 ⋅ 𝜇 =
𝜇

𝑀
2 ≤ 𝑖 ≤ 𝑀

, 

which again makes sense, given that the routing probabilities are uniform. This said, we can compute 

𝐸[𝑅𝑖] as: 

𝐸[𝑅1] =
𝐸[𝑁1]

𝜇
= 9

1

𝜇
 

𝐸[𝑅𝑖] =
𝐸[𝑁𝑖]

𝜇
=

1

𝑀 − 1
⋅
𝑀

𝜇
=
5

4𝜇
,    2 ≤ 𝑖 ≤ 𝑀 

6.2.4 Problem (classed open queueing network) 

Consider a system serving two clients, 𝑎 and 𝑏. Client 𝑎 (𝑏) issues service requests independently, 

with exponential interarrival times, at a rate 𝛾𝑎  (𝛾𝑏 ). Service requests are queued FCFS, and the 

queue is infinite. Each service request may require more than one passage through the system: on 

average, requests by client 𝑎 (𝑏) require 𝑚𝑎 (𝑚𝑏) such passages. This is achieved by sending requests 
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that leave the server back to the queue with a certain probability (to be computed). The server is 

exponential with a rate 𝜇. 

1) Model this system as a queueing network and compute the routing probabilities and the arrival 

rates; 

2) Compute the stability condition as a function of the system parameters; 

3) Compute the mean number of service requests in the system; 

4) Compute the joint probability to have 𝑛𝑎 requests of client 𝑎 and 𝑛𝑏 requests of client 𝑏 in 

the system. Explain your findings; 

Solution 

m

pa

1−pa
ga

pb

1−pb
gb

 

1) The system can be modeled as a classed OJN, where the two clients are two classes. There is 

only one SC, that has a rate 𝜇, and the routing matrixes are 𝚷𝒂 = [𝜋𝑎], 𝚷𝒃 = [𝜋𝑏]. The num-

ber of visits to the SC is a geometric RV, where 𝑃{𝑉𝑖 = 𝑘} = 𝜋𝑖
𝑘−1 ∙ (1 − 𝜋𝑖), hence 𝑚𝑖 =

𝐸[𝑉𝑖] =
1

1−𝜋𝑖
 and 𝜋𝑖 = 1 −

1

𝑚𝑖
.  

Using input-output balance, one finds that 𝛾𝑖 = (1 − 𝜋𝑖) ∙ 𝜆𝑖, hence 𝜆𝑖 = 𝛾𝑖 ∙ 𝑚𝑖. 

2) The total ingress rate to the system is therefore 𝜆𝑎 + 𝜆𝑏 = 𝛾𝑎 ∙ 𝑚𝑎 + 𝛾𝑏 ∙ 𝑚𝑏, hence stability 

reads 𝛾𝑎 ∙ 𝑚𝑎 + 𝛾𝑏 ∙ 𝑚𝑏 < 𝜇.  

3) Under the above conditions, define 𝜌 =
𝛾𝑎∙𝑚𝑎+𝛾𝑏∙𝑚𝑏

𝜇
, and it is  

𝑃{𝑛𝑎 + 𝑛𝑏 = 𝑛} = 𝜌𝑛 ∙ (1 − 𝜌) 

4) In a classed system, the probability to be in any state 𝑆 having 𝑛𝑎 + 𝑛𝑏 service requests is 

equal to:  

𝑃𝑆 =
𝜆𝑎
𝑛𝑎 ∙ 𝜆𝑏

𝑛𝑏  

𝜇𝑛𝑎+𝑛𝑏
∙ (1 − 𝜌) 

There are (𝑛𝑎+𝑛𝑏
𝑛𝑎

) such states 𝑆, their number being the number of possible subsets of 𝑛𝑎 

items in a set of 𝑛𝑎 + 𝑛𝑏.  

Call 𝑺 = {𝑆|𝑛𝑎 𝑗𝑜𝑏𝑠 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑎 𝑎𝑛𝑑 𝑛𝑏 𝑗𝑜𝑏𝑠 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑏}. We obtain: 

𝑃𝑺 = (
𝑛𝑎 + 𝑛𝑏
𝑛𝑎

)
𝜆𝑎
𝑛𝑎 ∙ 𝜆𝑏

𝑛𝑏  

𝜇𝑛𝑎+𝑛𝑏
∙ (1 − 𝜌) 
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= (
𝑛𝑎 + 𝑛𝑏
𝑛𝑎

)
𝜆𝑎
𝑛𝑎 ∙ 𝜆𝑏

𝑛𝑏  

(𝜆𝑎 + 𝜆𝑏)𝑛𝑎+𝑛𝑏
∙ 𝜌𝑛𝑎+𝑛𝑏(1 − 𝜌) 

= [(
𝑛𝑎 + 𝑛𝑏
𝑛𝑎

) (
𝜆𝑎 

𝜆𝑎 + 𝜆𝑏
)
𝑛𝑎

 ∙ (
𝜆𝑏 

𝜆𝑎 + 𝜆𝑏
)
𝑛𝑏

] ∙ 𝜌𝑛𝑎+𝑛𝑏(1 − 𝜌) 

The first term in the above expression is the probability of having 𝑛𝑎 successes in a repeated 

trial of 𝑛𝑎 + 𝑛𝑏 trials, whereas the second term is the SS probability to have 𝑛𝑎 + 𝑛𝑏 jobs in 

the system at all.  

The alert reader can check that ∑ ∑ 𝑃𝑺
+∞
𝑛𝑏=0

+∞
𝑛𝑎=0

= 1. This is obtained by rewriting the above 

double sum as ∑ ∑ 𝑃𝑺
𝑛
𝑛𝑎=0

+∞
𝑛=0 , where 𝑛 = 𝑛𝑎 + 𝑛𝑏. 

6.2.5 Problem (classed open QN of PS systems) 

A processing system has two CPUs (CPU1 and CPU2), which are shared by a number of flows. Tasks 

are scheduled round-robin on both CPUs.  CPU 1 serves 𝑛(1) + 1 flows. One flow (pictured in red in 

the figure below) has an external arrival rate 𝛾(3), whereas the other 𝑛(1) flows have an arrival rate 

𝛾(1). Similarly, CPU 2 serves 𝑛(2) + 1 flows, 𝑛(2) of which have an external arrival rate 𝛾(2). We are 

interested in the performance of tasks belonging to the red flow. The latter is served at least once at 

CPU 1, and then is routed to CPU 2 (or back to CPU 1) with a probability 𝜋 (1 − 𝜋).  

The distribution of service times at CPU 2 is an Erlang with 5 equal stages, each one with a rate 𝜇2. 

The distribution of service times at CPU 1 is a 2-stage Coxian as in the figure below.  

CPU 1 CPU 2g(3)

n(1), g(1)
n(2), g(2)

p

1−p

 

m1,1 m1,2

p1,1

1−p1,1

CPU 1

 

1) Compute the mean service time at CPU 2, and the parameters of CPU 1’s server that allow 

one to experience a service time with a mean 𝑚 and a CoV 𝜒 (≥ 0.25). 

2) Compute the routing matrix for the red flow and the overall arrival rates at each CPU. 

3) Find the stability condition for the above system 

4) Compute the mean number of jobs at CPU 1 and CPU 2 
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Solution 

1) The service time at CPU 2 is the sum of 5 IID exponentials with a rate 𝜇2. Therefore, it is 𝐸[𝑡𝑆2] =

5/𝜇2. As far as CPU 1 is concerned, it is 𝐸[𝑡𝑆1] = 𝑚 (obviously), and: 

𝜇1,1 = 2𝑚, 𝜋1,1 = 1/2𝜒
2, 𝜇1,2 = 𝑚/𝜒

2. 

 

2) The routing matrix for the red flow is  

𝚷(𝟑) = [
1 − π π
0 0

] 

As far as I/O balance is concerned, we observe that: 

- 𝛾(3) = 𝜆2
(3) and 𝛾(3) = 𝜆1

(3) ⋅ 𝜋, hence 𝜆1
(3) =

𝛾(3)

𝜋
.  

- At CPU 1, we have a further 𝜆1
(1) = 𝑛(1) ⋅ 𝛾(1) of input 

- At CPU 2, we have a further 𝜆2
(2) = 𝑛(2) ⋅ 𝛾(2) of input 

Thus, we have: 

- 𝜆1 = 𝜆1
(1) + 𝜆1

(3) = 𝑛(1) ⋅ 𝛾(1) +
𝛾(3)

𝜋
 

- 𝜆2 = 𝜆2
(2) + 𝜆2

(3) = 𝑛(2) ⋅ 𝛾(2) + 𝛾(3) 

3) The stability conditions are the following: 

- At CPU 1, we have 𝜆1 ⋅ 𝐸[𝑡𝑆1] < 1, i.e. (𝑛(1) ⋅ 𝛾(1) +
𝛾(3)

𝜋
) ⋅ 𝑚 < 1 

- At CPU 2, we have 𝜆2 ⋅ 𝐸[𝑡𝑆2] < 1, i.e. 5 ⋅
𝑛(2)⋅𝛾(2)+𝛾(3)

𝜇2
< 1 

4) Under the above conditions, the mean number of jobs at each CPU is the following: 

𝐸[𝑁1] =

(𝑛(1) ⋅ 𝛾(1) +
𝛾(3)

𝜋 ) ⋅ 𝑚

1 − (𝑛(1) ⋅ 𝛾(1) +
𝛾(3)

𝜋 ) ⋅ 𝑚

 

 

𝐸[𝑁2] =
5 ⋅
𝑛(2) ⋅ 𝛾(2) + 𝛾(3)

𝜇2

1 − 5 ⋅
𝑛(2) ⋅ 𝛾(2) + 𝛾(3)

𝜇2

=
5 ⋅ (𝑛(2) ⋅ 𝛾(2) + 𝛾(3))

𝜇2 − 5 ⋅ (𝑛
(2) ⋅ 𝛾(2) + 𝛾(3))
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7 Appendix  

7.1 Stochastic processes 

Take a system consisting of a FCFS queue and a server. We need to characterize the state of this 

system at a given time 𝑡. The way we characterize its state depends on what we want to observe. 

For instance, we may be interested in: 

1) The number of jobs in the system at time 𝑡 (also called the backlog at that time) 

Job 1 
arrives

Job 2 
arrives

Job 3 
arrives

Job 4 
arrives

Job 1 
leaves

Job 2 
leaves

j1 response time

j2 response time

j1 service time

j2 service timej2 q-ing time

N(t)

t

 

𝑁(𝑡) is a discrete quantity (it is an integer), which is a function of a continuous parameter (time). 

The above is a trajectory (or realization, or sample path), which depends on the interarrival times 

of the customers at the queue, as well as on the service times (or service demands). Given different 

interarrival and service times, the trajectory is going to be different.  

 

2) The number of jobs that a departing job leaves behind. 

This is a discrete variable 𝑵𝒌, which is a function of a discrete pa-

rameter (the job number). Again, the one in the figure is a trajec-

tory, and different trajectories are possible. For instance, if interar-

rival times were generally shorter, then the trajectory would be 

higher. The same would occur if the service times were longer, all 

else being equal.  

 

Nk

1 2 3

Since interarrival and service times are normally random variables, we should be a little more pre-

cise when we use terms such as “higher”. We mean “higher” in a stochastic sense: if the interarrival 

times are shorter (in a stochastic sense: shorter interarrivals times have a higher probability), then 
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the trajectory will be higher (in a stochastic sense: higher trajectories will have a higher probability). 

Of course, lower, flatter trajectories will still be possible, but they will occur less frequently.  

Note that you can always compute this trajectory 𝑵𝒌 given the first state characterization 𝑁(𝑡). 

In fact, it is  𝑵𝒌 = 𝑵 (𝒕𝒌
𝑫+). The vice versa, instead, does not hold - since you cannot create infor-

mation that you do not possess. We say that the process 𝑵𝒌 is embedded into 𝑁(𝑡). 

 

3) The time it takes for job k to leave the system 

 

The above time is called response time of job k. This is a contin-

uous-space variable 𝑹𝒌, whose parameter is discrete. 

Rk

1 2 3 k

4) The time it takes to clear the backlog at time 𝒕 

 

The backlog at time t is the amount of work it takes to serve 

all the jobs which are in the system at time 𝑡. This is a contin-

uous-space variable 𝑾(𝒕), whose parameter is a continuous 

time. A trajectory is going to look like this: 

W(t)

t

Slope = service rate

Job 2
arrival

Job 1
arrival

 

 

To summarize, we are talking about random trajectories, which can be any combination of  

- Discrete/continuous in the state space (i.e., in the ordinates) 

- Discrete/continuous in the parameter (i.e., in the abscissas) 

The parameter is often (albeit confunsingly) called time, even when it is not (e.g., case 2 and 3). Thus, 

we talk about discrete-space/continuous-time trajectories, etc. 

We need a mathematical framework for these entities. We extend the definition of random varia-

ble, which we provided time ago, to functions of time.  

  



Notes on queueing theory (student version) – Giovanni Stea – last saved: 04/08/22 

95 

 

A random variable is a function from a sample 

space to real numbers. We extend this definition, 

and define a random process (or stochastic pro-

cess), as a function from a sample space to a space 

of real-valued (discrete or continuous) func-

tions of (discrete or continuous) time.  

.

.

.

.

S :f →

1

2

( ) 1tX 

( ) 2tX 

 

For instance, given an outcome of a random experiment 𝜔1, a process is the mapping from that 

outcome to a function of time (e.g., a real-valued function of continuous time). The outcome of the 

experiment can be, in this case, a suitably large number of interarrival times and service times for the 

jobs in the system.  

Given that outcome, the trajectory 𝑋𝑡 is perfectly deterministic. The fact that makes these trajectories 

aleatory is the fact that the outcomes are aleatory. Other common names for trajectories are sample 

paths, or realizations of the process. Notation 𝑋𝑡 is used with continuous times as well. 

Consider now several trajectories of the same process (cont. space/cont. time as an example): 

Fix a value for the parameter, e.g. 𝑡1. Now 𝑋𝑡1 is 

a random variable, with some distribution. So is 

𝑋𝑡  for any other value t of the parameter. The 

same obviously happens if the parameter is dis-

crete, and if the state-space is discrete.  

t1 t2 t3

1

2

3

 

Suppose that you want to characterize the above process from a stochastic point of view. It stands to 

reason that you should need the joint CDF for all the values of the parameter. More specifically, 

∀𝑛 ∈ ℕ, ∀{𝑡1, 𝑡2, . . . , 𝑡𝑛} ∈ ℝ
𝑛|0 < 𝑡1 < 𝑡2 <. . . 𝑡𝑛, 

𝐹𝑋(𝑥1, 𝑥2, . . . 𝑥𝑛) = 𝑃{𝑋𝑡1 ≤ 𝑥1, 𝑋𝑡2 ≤ 𝑥2, . . . 𝑋𝑡𝑛 ≤ 𝑥𝑛} 

For each n-tuple of parameters (and for each value of 𝑛), you would need the JCDF. This is, of course, 

unachievable in practice, unless some more hypotheses are brought on the scene.  

One gross simplification would be to assume that the RVs 𝑋𝑡 are IID. In this case, you would only 

need to know 𝐹𝑋(𝑥), and then any joint characterization could be obtained by leveraging independ-

ence. Processes like these are called independent processes, and unfortunately they are unsuitable 

for our purposes. We have already observed that, in several real systems, trajectories exhibit a posi-

tive correlation, so points in the trajectories are never independent. We need to strike a better trade-

off between analytical tractability and modeling effectiveness. 
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A very good compromise can be found by using a modeling that the Russian mathematician Markov 

obtained at the beginning of the 20th century. 

7.1.1 Markov processes 

Consider, for instance, a discrete-state process. We can characterize it using its JPMF (which is equiv-

alent to using the JCDF, since one can be obtained from the other).  

{𝑋𝑡, 𝑡 ∈ 𝑇}  is known if 𝑝(𝑥1, 𝑥2, . . . 𝑥𝑛) = 𝑃{𝑋𝑡1 = 𝑥1, 𝑋𝑡2 = 𝑥2, . . . , 𝑋𝑡𝑛−1 = 𝑥𝑛−1, 𝑋𝑡𝑛 = 𝑥𝑛}  is 

known for every n and n-tuple of values 𝑥1, 𝑥2, . . . 𝑥𝑛. 

Using a purely algebraic manipulation, we can write the above probability as follows: 

𝑃{𝑋𝑡1 = 𝑥1, 𝑋𝑡2 = 𝑥2, . . . , 𝑋𝑡𝑛−1 = 𝑥𝑛−1, 𝑋𝑡𝑛 = 𝑥𝑛} =

𝑃{𝑋𝑡𝑛 = 𝑥𝑛|𝑋𝑡1 = 𝑥1, 𝑋𝑡2 = 𝑥2, . . . , 𝑋𝑡𝑛−1 = 𝑥𝑛−1} ⋅ 𝑃{𝑋𝑡1 = 𝑥1, 𝑋𝑡2 = 𝑥2, . . . , 𝑋𝑡𝑛−1 = 𝑥𝑛−1}
 

Of course, we can iterate the reasoning using the last available instant every time: 

𝑃{𝑋𝑡1 = 𝑥1, . . . , 𝑋𝑡𝑛 = 𝑥𝑛} =

𝑃{𝑋𝑡𝑛 = 𝑥𝑛|𝑋𝑡1 = 𝑥1, . . . , 𝑋𝑡𝑛−1 = 𝑥𝑛−1} ⋅ 𝑃{𝑋𝑡1 = 𝑥1, . . . , 𝑋𝑡𝑛−1 = 𝑥𝑛−1} =

𝑃{𝑋𝑡𝑛 = 𝑥𝑛|𝑋𝑡1 = 𝑥1, . . . , 𝑋𝑡𝑛−1 = 𝑥𝑛−1} ⋅ 𝑃{𝑋𝑡𝑛−1 = 𝑥𝑛−1|𝑋𝑡1 = 𝑥1, . . . , 𝑋𝑡𝑛−2 = 𝑥𝑛−2} ⋅ 𝑃{𝑋𝑡1 = 𝑥1, . . . , 𝑋𝑡𝑛−2 = 𝑥𝑛−2}

Until we get to the final expression: 

𝑃{𝑋𝑡1 = 𝑥1, . . . , 𝑋𝑡𝑛 = 𝑥𝑛} =

𝑃{𝑋𝑡𝑛 = 𝑥𝑛|𝑋𝑡1 = 𝑥1, . . . , 𝑋𝑡𝑛−1 = 𝑥𝑛−1} ⋅ 𝑃{𝑋𝑡𝑛−1 = 𝑥𝑛−1|𝑋𝑡1 = 𝑥1, . . . , 𝑋𝑡𝑛−2 = 𝑥𝑛−2} ⋅. . .

. . .⋅ 𝑃{𝑋𝑡2 = 𝑥2|𝑋𝑡1 = 𝑥1} ⋅ 𝑃{𝑋𝑡1 = 𝑥1}

 

This can always be written, whatever the process. The Markov property is the following: 

𝑃{𝑋𝑡𝑛 = 𝑥𝑛|𝑋𝑡1 = 𝑥1, . . . , 𝑋𝑡𝑛−1 = 𝑥𝑛−1} = 𝑃{𝑋𝑡𝑛 = 𝑥𝑛|𝑋𝑡𝑛−1 = 𝑥𝑛−1} 

In other words, the state of a process at time 𝑡𝑛 is entirely determined by the state at time 𝑡𝑛−1, and it 

is conditionally independent of any state before 𝑡𝑛−1. Knowledge of what happens at times 𝑡𝑛−𝑗, 𝑗 >

1, does not yield any further information. Quoting a famous phrase, “the future of a process is con-

ditionally independent of the past, once the present is known”. 

The above property implies that the JPMF can be written as follows: 

𝑃{𝑋𝑡1 = 𝑥1, . . . , 𝑋𝑡𝑛 = 𝑥𝑛} =∏𝑃 {𝑋𝑡𝑗 = 𝑥𝑗|𝑋𝑡𝑗−1 = 𝑥𝑗−1}

𝑛

𝑗=2

⋅ 𝑃{𝑋𝑡1 = 𝑥1} 

We call a Markov process one that possesses the Markov property. For a MP, the current state is 

enough to determine (in a stochastic sense) the future state, and knowledge of the past does not yield 

more information. Note – incidentally – that IID processes are a special case of Markov processes, 

since  

𝑃{𝑋𝑡𝑛 = 𝑥𝑛|𝑋𝑡1 = 𝑥1, . . . , 𝑋𝑡𝑛−1 = 𝑥𝑛−1} = 𝑃{𝑋𝑡𝑛 = 𝑥𝑛|𝑋𝑡𝑛−1 = 𝑥𝑛−1} = 𝑃{𝑋𝑡𝑛 = 𝑥𝑛} 
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7.1.2 Example: Bernoulli process 

This is a discrete-space/discrete-time process, which is obtained as follows: suppose you have a slot-

ted-time system, where a customer may or may not arrive at any timeslot 𝑛, 𝑛 > 0. At any timeslot, 

a new customer arrives with probability 𝑝. The sequence of IID Bernoullian RVs {𝑋𝑛, 𝑛 > 0} is one 

way to describe the process. 

A second way to characterize the above process is to consider the number of arrived customers by 

time 𝑛, call it 𝑁𝑛. If 𝑋𝑛 are IID Bernoullian, then 𝑁𝑛 is their sum, hence is a binomial with parame-

ters 𝑛 and 𝑝: 𝑃{𝑁𝑛 = 𝑘} = 𝑝𝑛(𝑘) = (
𝑛
𝑘
) 𝑝𝑘 ⋅ (1 − 𝑝)𝑛−𝑘. It is 𝑁0 = 0. We can see 𝑁𝑛 as a process 

(discrete-space/discrete-time), whose trajectories can only be increasing. We call processes like these 

counting processes, or arrival processes. 

Now, let us consider a given trajectory at time 𝑛, and let us predict its future state at time 𝑛 + 1. 

𝑃{𝑁𝑛+1 = 𝑘} can be obtained using Total Probability as follows: 

 

𝑃{𝑁𝑛+1 = 𝑘} =∑𝑃{𝑁𝑛+1 = 𝑘|𝑁𝑛 = 𝑗} ⋅ 𝑃{𝑁𝑛 = 𝑗}

+∞

𝑗=0

= 𝑝 ⋅ 𝑃{𝑁𝑛 = 𝑘− 1}+ (1 − 𝑝) ⋅ 𝑃{𝑁𝑛 = 𝑘}

 

Since all the other conditional terms in the sum are null.  

.
..

p

1-p

k-1

k

n n+1  

You will have noticed that there is no further information to be gained by knowing 𝑃{𝑁𝑛−1 = 𝑗} 

(or of any less recent time instant), if you already know 𝑷{𝑵𝒏 = 𝒋}. Therefore, {𝑁𝑛, 𝑛 > 0} is a Mar-

kov process. All the information you need in order to predict a future state is summarized in the 

present state, and knowing the past does not bring any further insight.  

Note also that, for this process, the conditional probabilities are independent of the particular time 

𝑛 at which they are computed: 𝑃{𝑁𝑛+1 = 𝑘|𝑁𝑛 = 𝑗} = 𝑃{𝑁𝑚+1 = 𝑘|𝑁𝑚 = 𝑗}.  

A third way of describing the same phenomenon is to measure its interarrival times. Call 𝑌1 the 

time at which the first customer arrives. 𝑌1 is a geometric RV: 𝑃{𝑌1 = 𝑘} = 𝑝 ⋅ (1 − 𝑝)
𝑘−1. 

 

Now, call 𝑌2 the inter-arrival time between customers 1 and 2 

(we can see 𝑌1 as the interarrival time between the start of the 

system, at time 𝑡 = 0, and the arrival time of the first customer). 

In this case as well it is 𝑃{𝑌2 = 𝑘} = 𝑝 ⋅ (1 − 𝑝)𝑘−1, and this 

holds for every interarrival time 𝑌𝑗. Therefore, the sequence of 

interarrival time is a sequence of IID Geometric RVs. 

 

 

Y1

Y2

Y3

Nn

n
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We have discussed three equivalent ways to characterize the above process. 

1) A sequence of IID Bernoulli RVs {𝑋𝑛, 𝑛 > 0}, denoting the probability that a new customer 

arrives at time 𝑛; 

2) A counting process {𝑁𝑛, 𝑛 > 0}, denoting the number of customers arrived by time 𝑛. This 

is a Markov process. 

3) A sequence of IID geometric RVs, modeling the interarrival times. 

7.1.3 Example: Poisson process 

Let us discuss how to model an arrival process in continuous time. This is made slightly trickier by 

the fact that, strictly speaking, the probability that something happens (e.g., a customer arrives) at 

time 𝒕 is zero. Therefore, we need to exert some care when we define the counting process and inter-

arrival times. We define a Poisson process with a parameter 𝜆 as follows: 

Consider the counting process  {𝑁(𝑡), 𝑡 ≥ 0} of customer arrivals by time 𝑡 in a system. This is a 

Poisson process if, in a small interval [𝑡, 𝑡 + Δ𝑡), the following happens: 

1) The probability of one arrival in [𝑡, 𝑡 + Δ𝑡), i.e., 𝑃{𝑁(𝑡 + Δ𝑡) − 𝑁(𝑡) = 1}, is equal to 𝜆 ⋅

Δ𝑡 + 𝑜(Δ𝑡). The term 𝑜(Δ𝑡) groups terms that go to zero faster than Δ𝑡, i.e., lim
Δ𝑡→0

𝑜(Δ𝑡) Δ𝑡⁄ =

0. 

2) The probability of zero arrivals in [𝑡, 𝑡 + Δ𝑡), i.e., 𝑃{𝑁(𝑡 + Δ𝑡) − 𝑁(𝑡) = 0}, is equal to 1 −

𝜆 ⋅ Δ𝑡 + 𝑜(Δ𝑡) 

3) The probability of two or more arrivals in [𝑡, 𝑡 + Δ𝑡), i.e., 𝑃{𝑁(𝑡 + Δ𝑡) − 𝑁(𝑡) > 1}, is 

𝑜(Δ𝑡). 

4) The process has independent increments: ∀{𝑡1, 𝑡2, . . . , 𝑡𝑛} ∈ ℝ
𝑛|𝑡1 < 𝑡2 <. . . 𝑡𝑛 the incre-

ments 𝑵(𝒕𝒋+𝟏) − 𝑵(𝒕𝒋) are independent quantities.  

Let us see what follows from the above properties. Take an arbitrarily large time interval [𝑡, 𝑡 + 𝑇), 

and let us compute 𝑃{𝑁(𝑡 + 𝑇) − 𝑁(𝑡) = 𝑘}. We can divide that interval into m small intervals 

whose width is Δ𝑡 = 𝑇 𝑚⁄ , where – by properties 1 and 2, you will have either one or zero arrivals, 

barring higher-order infinitesimals 𝑜(Δ𝑡). Therefore, you can compute 𝑃{𝑁(𝑡 + 𝑇) − 𝑁(𝑡) = 𝑘} us-

ing the insight of a Bernoulli process with 𝑝 = 𝜆 ⋅ Δ𝑡 = 𝜆 ⋅ 𝑇 𝑚⁄ . You can do this because – by 

property 4 – what happens in [𝑡 + 𝑗𝑇 𝑚⁄ , 𝑡 + (𝑗 + 1)𝑇 𝑚⁄ ) is independent of what happens outside 

that interval. This said: 

𝑃{𝑁(𝑡 + 𝑇) − 𝑁(𝑡) = 𝑘} = (
𝑚
𝑘
) (
𝜆𝑇

𝑚
)
𝑘

(1 −
𝜆𝑇

𝑚
)
𝑚−𝑘

 

However, we know from the theory that, if m is large, we can approximate this expression with: 
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(
𝑚
𝑘
) (
𝜆𝑇

𝑚
)

𝑘

(1 −
𝜆𝑇

𝑚
)

𝑚−𝑘

=
𝑚 ⋅ (𝑚− 1) ⋅. . .⋅ (𝑚− 𝑘+ 1)

𝑘!
⋅ (
𝜆𝑇

𝑚
)

𝑘

⋅
(1 − 𝜆𝑇 𝑚⁄ )𝑚

(1 − 𝜆𝑇 𝑚⁄ )𝑘

=
𝑚 ⋅ (𝑚− 1) ⋅. . .⋅ (𝑚− 𝑘+ 1)

𝑚𝑘
⋅
(𝜆𝑇)𝑘

𝑘!
⋅
(1 − 𝜆𝑇 𝑚⁄ )𝑚

(1 − 𝜆𝑇 𝑚⁄ )𝑘

≃ 1 ⋅
(𝜆𝑇)𝑘

𝑘!
⋅
𝑒−𝜆𝑇

1

 

Therefore, 𝑃{𝑁(𝑡 + 𝑇) − 𝑁(𝑡) = 𝑘} =
(𝜆𝑇)𝑘

𝑘!
⋅ 𝑒−𝜆𝑇. The number of arrivals (increments) in a time 

interval of a length T is a Poisson RV with a mean 𝜆𝑇. This means that 𝜆 is the number of arrivals 

per unit of time, i.e. the arrival rate of the customers.  

Still because of property 4, this result does not depend on the instant t, but only of the width of the 

time interval 𝑇. For this reason, we can (and will henceforth) write it down as 𝑝𝑘(𝑇) =
(𝜆𝑇)𝑘

𝑘!
⋅ 𝑒−𝜆𝑇. 

What about the interarrival times of a Poisson process? Assume, as usual, that 𝑁(0) = 0, and call 

𝑆𝑛 the time at which the 𝑛-th customer arrives. It is easy to observe that these two events are in fact the 

same: {𝑆𝑛 ≤ 𝑡} ≡ {𝑁(𝑡) ≥ 𝑛}. In fact, the n-th arrival occurs by 𝑡 if and only if the counting process 

is at least equal to 𝑛 at time 𝑡. We can use this to compute the CDF of the first arrival time. 

𝐹1(𝑡) = 𝑃{𝑆1 ≤ 𝑡} = 𝑃{𝑁(𝑡) ≥ 1} = 1− 𝑝0(𝑡) = 1−
(𝜆𝑡)0

0!
⋅ 𝑒−𝜆𝑡 = 1− 𝑒−𝜆𝑡 

This means that the CDF of the first arrival time is exponential, with a mean 1 𝜆⁄ . However, we soon 

realize that the above property holds for all the inter-arrival times. In fact: 

𝑃{𝑆𝑘+1 − 𝑆𝑘 ≤ 𝑡} = 𝑃{𝑁(𝑆𝑘 + 𝑡) − 𝑁(𝑆𝑘) ≥ 1} = 𝑃{𝑁(𝑡) ≥ 1} = 1 − 𝑒−𝜆𝑡, 

where the last passage is due to independent increments. Therefore: 

In a Poisson process (and only in a Poisson process), interarrival times are exponentially distributed, 

hence memoryless. Saying “Poisson process” or “exponential interarrivals” is exactly the same. 

 

This states that the only thing that we need to describe the state of the process at time t is 𝑁(𝑡). We 

do not need to know, for instance, how far in the past the last arrival has occurred, because the prob-

ability that the next arrival will be within a given time interval is not influenced by the past, due to 

the memoryless property of the exponential distribution. In other words, a Poisson process is a Mar-

kov process.  

Compare this with a different arrival process, e.g., one where in-

terarrivals are constant. We cannot describe the state of the pro-

cess using 𝑁(𝑡) only: we also need to know 𝑥, the continuous RV 

describing how far in the past the last arrival occurred. With a 

Poisson process, we do not need that piece of information.  

N(t)

t

x
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7.1.4 Properties of Poisson processes 

Take an interval [0, 𝑡], and assume that 𝑁(𝑡) = 1, i.e. we know that one arrival has occurred by time 

𝑡. We want to understand what the distribution is of the arrival time given that one arrival occurred. 

In other words, we want to compute 𝑃{𝑆1 ≤ 𝑠|𝑁(𝑡) = 1}, with 0 ≤ 𝑠 ≤ 𝑡. This is equal to: 

𝑃{𝑆1 ≤ 𝑠|𝑁(𝑡) = 1} =
𝑃{𝑆1 ≤ 𝑠, 𝑁(𝑡) = 1}

𝑃{𝑁(𝑡) = 1}
=
𝑃{𝑁(𝑠) = 1,𝑁(𝑡) − 𝑁(𝑠) = 0}

𝑃{𝑁(𝑡) = 1}
 

Because of the independent increments property, we get: 

𝑃{𝑁(𝑠) = 1,𝑁(𝑡)−𝑁(𝑠) = 0}

𝑃{𝑁(𝑡) = 1}
=
𝑃{𝑁(𝑠) = 1} ⋅ 𝑃{𝑁(𝑡)−𝑁(𝑠) = 0}

𝑃{𝑁(𝑡) = 1}
 

Since arrivals are Poissonian, we easily obtain: 

𝑒−𝜆𝑠 ⋅
𝜆𝑠
1! ⋅ 𝑒

−𝜆(𝑡−𝑠) ⋅
𝜆0 ⋅ (𝑡 − 𝑠)0

0!

𝑒−𝜆𝑡 ⋅
𝜆𝑡
1!

=
𝑠

𝑡
 

In other words, the conditional distribution of arrival times is uniform. 

 

Now we want to derive the distribution of the 𝒏-th arrival time, call it 𝑆𝑛. Recall that {𝑆𝑛 ≤ 𝑡} ≡

{𝑁(𝑡) ≥ 𝑛}. Therefore,  

𝑃{𝑆𝑛 ≤ 𝑡} = 𝑃{𝑁(𝑡) ≥ 𝑛} = 1 − 𝑃{𝑁(𝑡) ≤ 𝑛 − 1} = 1 −∑𝑒−𝜆𝑡
(𝜆𝑡)𝑘

𝑘!

𝑛−1

𝑘=0

 

This distribution is called Erlang distribution with 𝒏 stages.  

The Erlang distribution is quite common. Assume that a system has n jobs queued, and the service 

times are exponentially distributed with a rate 𝜆. Assume that the arrivals are blocked, and compute 

the time it takes to empty the system. It is clear that this is an 𝑛-stage Erlang distribution as well.  

The above expression is the CDF of the Erlang distribution, 𝐹𝑛(𝑡). The PDF 𝑓𝑛(𝑡) can be computed 

mechanically, by deriving the above expression. This is cumbersome, so we use a simple trick instead. 

It is 𝑓𝑛(𝑡) =
𝑑

𝑑𝑡
𝐹𝑛(𝑡). However, 𝑓𝑛(𝑡)𝑑𝑡 ≃ ∫ 𝑓𝑛(𝑦)𝑑𝑦

𝑡+𝑑𝑡

𝑡
, and the latter is the probability that the 𝑛-

th arrival occurs in [𝑡, 𝑡 + 𝑑𝑡). For this to happen, it must be that: 

- 𝑛 − 1 arrivals have occurred before time t; 

- the last arrival occurs in the small interval [𝑡, 𝑡 + 𝑑𝑡). 

The two probabilities can be multiplied because of the independent increments, hence we get: 

𝑓𝑛(𝑡)𝑑𝑡 = 𝑒
−𝜆𝑡 ⋅

(𝜆𝑡)𝑛−1

(𝑛 − 1)!
⋅ 𝜆𝑑𝑡 

Therefore, it is: 𝑓𝑛(𝑡) = 𝑒
−𝜆𝑡 ⋅ 𝜆 ⋅

(𝜆𝑡)𝑛−1

(𝑛−1)!
. 
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Let us take a look at what an Erlang distribution looks like: 

For 𝑛 = 1  it is an exponential. This is clear 

both intuitively and from the formulas. When 

n>1 it starts peaking and then goes down. 

When n gets large, due to the CLT, it looks like 

a Normal.  

 

We can compute 𝐸[𝑆𝑛] and 𝑉𝑎𝑟(𝑆𝑛) leveraging additivity of mean values and independence (recall 

that the Erlang is the sum of n independent exponentials). Therefore, we get 𝐸[𝑆𝑛] =
𝑛

𝜆
, 𝑉𝑎𝑟(𝑆𝑛) =

𝑛

𝜆2
. From these we obtain 𝐶𝑜𝑉(𝑆𝑛) =

√𝑉𝑎𝑟(𝑆𝑛)

𝐸[𝑆𝑛]
=

1

√𝑛
. In other words, the CoV of an n-stage Erlang is 

smaller than one (and, specifically, it is smaller than an exponential’s), and it gets smaller with n 

(which is again a consequence of the CLT). 

7.2 Formal derivation of Chapman-Kolmogorov equations  

In this appendix we use the insight of Poisson processes to derive formally Chapman-Kolmogorov’s 

equations. 

7.2.1 M/M/1 system 

We report here the full derivation of CK equations for an M/M/1 system 

We will now compute the PMF of the number of jobs in the system at time 𝑡. Call 𝑝𝑛(𝑡) 
the prob-

ability that there are 𝑛 jobs at time 𝑡, i.e. 𝑝𝑛(𝑡) = 𝑃{𝑁(𝑡) = 𝑛}.  

The procedure is as follows: we write down 𝒑𝒏(𝒕 + 𝚫𝒕) using Total Probability, and then we let 

Δ𝑡 → 0. 

The expression is: 𝑝𝑛(𝑡 + Δ𝑡) = ∑ 𝑃{𝑁(𝑡 + Δ𝑡) = 𝑛|𝑁(𝑡) = 𝑘} ⋅ 𝑝𝑘(𝑡)
+∞
𝑘=0 , which is an infinite sum. 

Luckily, we can neglect all but three terms in that sum.  

Let us assume first that 𝑛 ≥ 1 (the case 𝑛 = 0 needs special care and will be dealt with separately 

later on), and let us figure out what the possible trajectories are that lead to point (𝑡 + Δ𝑡, 𝑛) in the 

Cartesian plane.  
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1 dep., 0 arr.

0 dep., 1 arr.

0 dep., 0 arr.
n

n+1

n-1

t t+Dt
 

a) The most obvious trajectory is one where 𝑁(𝑡) = 𝑛, and there are zero arrivals/departures 

in [𝑡, 𝑡 + Δ𝑡]. The probability that zero arrivals/departures occur in a small interval [𝑡, 𝑡 + Δ𝑡] 

(recall that we let Δ𝑡 → 0) is:  

[1 − 𝜆 ⋅ Δ𝑡 + 𝑜(Δ𝑡)] ⋅ [1 − 𝜇 ⋅ Δ𝑡 + 𝑜(Δ𝑡)] =

1 − (𝜆 + 𝜇) ⋅ Δ𝑡 + 𝑜(Δ𝑡)
 

Of course, there are infinite possible trajectories such that 𝑁(𝑡) = 𝑛 and 𝑁(𝑡 + Δ𝑡) = 𝑛: for 

instance, one where there is one arrival and one departure in [𝑡, 𝑡 + Δ𝑡]. However, the prob-

ability that there is one arrival and one departure is [𝜆 ⋅ Δ𝑡 + 𝑜(Δ𝑡)] ⋅ [𝜇 ⋅ Δ𝑡 + 𝑜(Δ𝑡)] =

𝑜(Δ𝑡), hence it is negligible. We quickly see that the only possible trajectory such that 𝑁(𝑡) =

𝑛 and 𝑁(𝑡 + Δ𝑡) = 𝑛 whose probability is non-negligible is the one where zero arrivals and 

zero departures occur. All trajectories where two or more events are required have a negli-

gible 𝑜(Δ𝑡) probability. 

b) Another possibility is that 𝑁(𝑡) = 𝑛 + 1, and one departure occurs in [𝑡, 𝑡 + Δ𝑡]. The prob-

ability of zero arrivals/one departure in [𝑡, 𝑡 + Δ𝑡] is:  

[1 − 𝜆 ⋅ Δ𝑡 + 𝑜(Δ𝑡)] ⋅ [𝜇 ⋅ Δ𝑡 + 𝑜(Δ𝑡)] = 𝜇 ⋅ Δ𝑡 + 𝑜(Δ𝑡). 

Again, all other trajectories such that 𝑁(𝑡) = 𝑛 + 1 and 𝑁(𝑡 + Δ𝑡) = 𝑛 require at least two 

events in [𝑡, 𝑡 + Δ𝑡], hence their probability is 𝑜(Δ𝑡). 

c) Another possibility is that 𝑁(𝑡) = 𝑛 − 1, and one arrival occurs in [𝑡, 𝑡 + Δ𝑡]. The proba-

bility of zero departures/one arrival in [𝑡, 𝑡 + Δ𝑡] is:  

[𝜆 ⋅ Δ𝑡 + 𝑜(Δ𝑡)] ⋅ [1 − 𝜇 ⋅ Δ𝑡 + 𝑜(Δ𝑡)] = 𝜆 ⋅ Δ𝑡 + 𝑜(Δ𝑡). 

Again, all other trajectories such that 𝑁(𝑡) = 𝑛 − 1 and 𝑁(𝑡 + Δ𝑡) = 𝑛 require at least two 

events in [𝑡, 𝑡 + Δ𝑡], hence their probability is 𝑜(Δ𝑡). 

Any other trajectory, such as those with 𝑁(𝑡) = 𝑛 ± 𝑗, 𝑗 ≥ 2, requires at least two events to occur, 

hence has 𝑜(Δ𝑡) probability. The only non-negligible terms in the infinite sum are those listed at 

points a-c above. Therefore, we can write: 
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𝑝𝑛(𝑡 + Δ𝑡) = ∑𝑃{𝑁(𝑡 + Δ𝑡) = 𝑛|𝑁(𝑡) = 𝑘} ⋅ 𝑝𝑘(𝑡)

+∞

𝑘=0

= [1 − (𝜆 + 𝜇) ⋅ Δ𝑡 + 𝑜(Δ𝑡)] ⋅ 𝑝𝑛(𝑡) +

    [𝜇 ⋅ Δ𝑡 + 𝑜(Δ𝑡)] ⋅ 𝑝𝑛+1(𝑡) +

    [𝜆 ⋅ Δ𝑡 + 𝑜(Δ𝑡)] ⋅ 𝑝𝑛−1(𝑡)

 

The latter quickly becomes: 

𝑝𝑛(𝑡 + Δ𝑡) − 𝑝𝑛(𝑡)

Δ𝑡

= [−(𝜆 + 𝜇) +
𝑜(Δ𝑡)

Δ𝑡
] ⋅ 𝑝𝑛(𝑡) + [𝜇 +

𝑜(Δ𝑡)

Δ𝑡
] ⋅ 𝑝𝑛+1(𝑡) + [𝜆 +

𝑜(Δ𝑡)

Δ𝑡
] ⋅ 𝑝𝑛−1(𝑡) 

And, if we let Δ𝑡 → 0, we obtain (recall that 𝑜(Δ𝑡) terms go to zero faster than 𝚫𝒕): 

𝑑

𝑑𝑡
𝑝𝑛(𝑡) = −(𝜆 + 𝜇) ⋅ 𝑝𝑛(𝑡) + 𝜇 ⋅ 𝑝𝑛+1(𝑡) + 𝜆 ⋅ 𝑝𝑛−1(𝑡) 

The above is called Chapman-Kolmogorov equation.  

We still have to deal with the case 𝑛 = 0, which we had set apart. In this case, in fact, only two 

trajectories are possible:  

a) The one where 𝑁(𝑡) = 𝑛 = 0, and there are zero arrivals/zero departures in [𝑡, 𝑡 + Δ𝑡]. The 

probability that this occurs is [1 − 𝜆 ⋅ Δ𝑡 + 𝑜(Δ𝑡)] ⋅ 1 = 1 − 𝜆 ⋅ Δ𝑡 + 𝑜(Δ𝑡). This is because 

one cannot have departures when there are no jobs, so “zero departures” is the certain event 

in this case.  

b) The one where 𝑁(𝑡) = 𝑛 + 1 = 1, and there are zero arrivals/one departure in [𝑡, 𝑡 + Δ𝑡], 

with a a probability: 𝜇 ⋅ Δ𝑡 + 𝑜(Δ𝑡). 

1 dep., 0 arr.

0 dep., 0 arr.
0

1

t t+Dt  

The third trajectory, in fact (the one that involves one arrival and zero departures) cannot occur. 

Therefore, we can repeat the same computations and obtain: 

𝑝0(𝑡 + Δ𝑡) =∑ 𝑃{𝑁(𝑡 + Δ𝑡) = 0|𝑁(𝑡) = 𝑘} ⋅ 𝑝𝑘(𝑡)

+∞

𝑘=0

= [1 − 𝜆 ⋅ Δ𝑡 + 𝑜(Δ𝑡)] ⋅ 𝑝0(𝑡)+    [𝜇 ⋅ Δ𝑡 + 𝑜(Δ𝑡)] ⋅ 𝑝1(𝑡)

 

Which leads to: 

𝑑

𝑑𝑡
𝑝0(𝑡) = −𝜆 ⋅ 𝑝0(𝑡) + 𝜇 ⋅ 𝑝1(𝑡) 

This way, we obtain a system of differential equations that describes 𝑝𝑛(𝑡) for each time 𝑡.  
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{

𝑑

𝑑𝑡
𝑝𝑛(𝑡) = −(𝜆 + 𝜇) ⋅ 𝑝𝑛(𝑡)+ 𝜇 ⋅ 𝑝𝑛+1(𝑡)+ 𝜆 ⋅ 𝑝𝑛−1(𝑡) 𝑛 > 0

𝑑

𝑑𝑡
𝑝0(𝑡) = −𝜆 ⋅ 𝑝0(𝑡)+ 𝜇 ⋅ 𝑝1(𝑡) 𝑛 = 0

 

7.2.2 M/M/2 system 

Like we did for the M/M/1 system, we write down Chapman-Kolmogorov’s equations and compute 

𝑝𝑛(𝑡). This time we need to distinguish three cases: 𝑛 ≥ 2, 𝑛 = 1, 𝑛 = 0. 

 

Case 𝒏 ≥ 𝟐: 

Let us figure out what the possible trajectories are that lead to point (𝑡 + Δ𝑡, 𝑛) in the Cartesian plane. 

As usual, there are three such trajectories: 

1 dep., 0 arr.

0 dep., 1 arr.

0 dep., 0 arr.
n

n+1

n-1

t t+Dt
 

a) one where 𝑁(𝑡) = 𝑛, and there are zero arrivals/departures in [𝑡, 𝑡 + Δ𝑡], whose probability 

is: 

 
[(1 − 𝜆 ⋅ Δ𝑡 + 𝑜(Δ𝑡)) ⋅ (1 − 𝜇 ⋅ Δ𝑡 + 𝑜(Δ𝑡))

2
] =

1 − (𝜆 + 2𝜇) ⋅ Δ𝑡 + 𝑜(Δ𝑡)
 

The square is due to the fact that there are two independent busy servers, hence the proba-

bility that neither of them outputs a job is the product of two identical terms. 

b) one where 𝑁(𝑡) = 𝑛 + 1, and one departure occurs in [𝑡, 𝑡 + Δ𝑡], whose probability is:  

[1 − 𝜆 ⋅ Δ𝑡 + 𝑜(Δ𝑡)] ⋅ {[𝜇 ⋅ Δ𝑡 + 𝑜(Δ𝑡)] ⋅ [1 − 𝜇 ⋅ Δ𝑡 + 𝑜(Δ𝑡)] + [1 − 𝜇 ⋅ Δ𝑡 + 𝑜(Δ𝑡)] ⋅ [𝜇 ⋅ Δ𝑡 + 𝑜(Δ𝑡)]}

= 2𝜇 ⋅ Δ𝑡 + 𝑜(Δ𝑡)

In this case, in fact, one server has a departure, and the other hasn’t. However, both events 

(departure, no departure) and (no departure, departure), which are disjoint and with the same 

probability, must be considered, hence the resulting term has a multiplying factor 2. 

c) Another one 𝑁(𝑡) = 𝑛 − 1, and one arrival occurs in [𝑡, 𝑡 + Δ𝑡], whose probability is:  

[𝜆 ⋅ Δ𝑡 + 𝑜(Δ𝑡)] ⋅ [1 − 𝜇 ⋅ Δ𝑡 + 𝑜(Δ𝑡)]2 = 𝜆 ⋅ Δ𝑡 + 𝑜(Δ𝑡). 

Again, mind the square, since there are two busy servers. 
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Any other trajectory, such as those with 𝑁(𝑡) = 𝑛 ± 𝑗, 𝑗 ≥ 2, requires at least two events to occur, 

hence has 𝑜(Δ𝑡) probability. The only non-negligible terms in the infinite sum are those listed at 

points a-c above. Therefore, we can write: 

𝑝𝑛(𝑡 + Δ𝑡) = ∑𝑃{𝑁(𝑡 + Δ𝑡) = 𝑛|𝑁(𝑡) = 𝑘} ⋅ 𝑝𝑘(𝑡)

+∞

𝑘=0

= [1 − (𝜆 + 2𝜇) ⋅ Δ𝑡 + 𝑜(Δ𝑡)] ⋅ 𝑝𝑛(𝑡) +

    [2𝜇 ⋅ Δ𝑡 + 𝑜(Δ𝑡)] ⋅ 𝑝𝑛+1(𝑡) +

    [𝜆 ⋅ Δ𝑡 + 𝑜(Δ𝑡)] ⋅ 𝑝𝑛−1(𝑡)

 

And, if we let Δ𝑡 → 0, we obtain: 

𝑑

𝑑𝑡
𝑝𝑛(𝑡) = −(𝜆 + 2𝜇) ⋅ 𝑝𝑛(𝑡) + 2𝜇 ⋅ 𝑝𝑛+1(𝑡) + 𝜆 ⋅ 𝑝𝑛−1(𝑡) 

 

Case 𝒏 = 𝟏 

In this case, all three trajectories are possible, but probabilities are different. In fact, only one 

server is busy, whereas the other is idle.   

a) one where 𝑁(𝑡) = 𝑛 = 1, and there are zero arrivals/departures in [𝑡, 𝑡 + Δ𝑡], whose prob-

ability is: 

 
[(1 − 𝜆 ⋅ Δ𝑡 + 𝑜(Δ𝑡)) ⋅ (1 − 𝜇 ⋅ Δ𝑡 + 𝑜(Δ𝑡))] ⋅ 1 =

1 − (𝜆 + 𝜇) ⋅ Δ𝑡 + 𝑜(Δ𝑡)
 

There is no square this time, since one of the servers is idle, so the fact that it will have no 

departures is the certain event.  

b) one where 𝑁(𝑡) = 𝑛 + 1 = 2, and one departure occurs in [𝑡, 𝑡 + Δ𝑡], whose probability is:  

[1 − 𝜆 ⋅ Δ𝑡 + 𝑜(Δ𝑡)] ⋅ {2 ⋅ [𝜇 ⋅ Δ𝑡 + 𝑜(Δ𝑡)] ⋅ [1 − 𝜇 ⋅ Δ𝑡 + 𝑜(Δ𝑡)]} =

2𝜇 ⋅ Δ𝑡 + 𝑜(Δ𝑡)
 

c) Another one 𝑁(𝑡) = 𝑛 − 1 = 0, and one arrival occurs in [𝑡, 𝑡 + Δ𝑡], whose probability is  

𝜆 ⋅ Δ𝑡 + 𝑜(Δ𝑡). Note that there are no busy servers in this case. 

 

From the above, we get 

𝑑

𝑑𝑡
𝑝1(𝑡) = −(𝜆 + 𝜇) ⋅ 𝑝1(𝑡) + 2𝜇 ⋅ 𝑝2(𝑡) + 𝜆 ⋅ 𝑝0(𝑡) 

Case 𝒏 = 𝟎 

In this case, only two trajectories are possible:  

a) The one where 𝑁(𝑡) = 𝑛 = 0, and there are zero arrivals/zero departures in [𝑡, 𝑡 + Δ𝑡]. The 

probability that this occurs is [1 − 𝜆 ⋅ Δ𝑡 + 𝑜(Δ𝑡)] ⋅ 1 = 1 − 𝜆 ⋅ Δ𝑡 + 𝑜(Δ𝑡). This is because 
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one cannot have departures when there are no jobs, so “zero departures” is the certain event 

in this case.  

b) The one where 𝑁(𝑡) = 𝑛 + 1 = 1, and there are zero arrivals/one departure in [𝑡, 𝑡 + Δ𝑡], 

with a a probability: 𝜇 ⋅ Δ𝑡 + 𝑜(Δ𝑡) (note that in this case there is one busy server and one 

idle server). 

Thus, we have: 

𝑑

𝑑𝑡
𝑝0(𝑡) = −𝜆 ⋅ 𝑝0(𝑡) + 𝜇 ⋅ 𝑝1(𝑡) 

We thus obtain the usual system of differential equations that describes 𝑝𝑛(𝑡) for each time 𝑡.  

{
 
 

 
 
𝑑

𝑑𝑡
𝑝𝑛(𝑡) = −(𝜆 + 2𝜇) ⋅ 𝑝𝑛(𝑡)+ 2𝜇 ⋅ 𝑝𝑛+1(𝑡)+ 𝜆 ⋅ 𝑝𝑛−1(𝑡) 𝑛 > 1

𝑑

𝑑𝑡
𝑝1(𝑡) = −(𝜆 + 𝜇) ⋅ 𝑝1(𝑡)+ 2𝜇 ⋅ 𝑝2(𝑡)+ 𝜆 ⋅ 𝑝0(𝑡) 𝑛 = 1

𝑑

𝑑𝑡
𝑝0(𝑡) = −𝜆 ⋅ 𝑝0(𝑡)+ 𝜇 ⋅ 𝑝1(𝑡) 𝑛 = 0
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7.3  Useful mathematical series 

Source: Wikipedia 

7.3.1 Sums of powers  

 

 

 

  

 

 

7.3.2 Power series 

 

 

 

7.3.3 Exponential functions 

 

 

  

 

 

7.3.4 Binomial coefficients 

 

 

 

  

 

 

 

 

 


