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Abstract

As the ASIC design cost becomes affordable only for very large

scale productions, the FPGA technology is currently becoming the

leading technology for those applications that require a small scale

production. FPGAs can be considered as a technology crossing be-

tween hardware and software. Only a small number of standards for

the design of safety-critical systems give guidelines and recommenda-

tions that take the peculiarities of the FPGA technology into consid-

eration. The main contribution of this paper is an overview of the

existing design standards that regulate the design and verification of

FPGA-based systems in safety-critical application fields. Moreover,

the paper proposes a survey of significant published research propos-

als and existing industrial guidelines about the topic, and collects

and reports about some lessons learned from industrial and research

projects involving the use of FPGA devices.
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1 Introduction and Motivations

Since the first FPGA device was developed by Xilinx in 1984 with the XC2064
chip, the FPGA technology has enormously grown in terms of flexibility,
reliability and computational power. Although it is still not comparable
with ASIC technology either in terms of computational power or silicon area
occupation, the FPGA technology has imposed itself in many application
fields thanks to very good performance, low non recurrent design cost and
very short time to market.

In particular, SRAM-based FPGA devices are employed in many applica-
tion fields such as broadcast, wireless and wired communication systems [15],
cryptography and network security [49], and consumer products, as well as
in fields with stringent safety requirements, such as airborne [19], aerospace
and defense [47], railways [21], and industrial and nuclear power plant con-
trol [55].

This interest is due to the capability of SRAM-based FPGAs of being
dynamically and partially reconfigured at run-time, which makes this tech-
nology much more powerful and flexible than non dynamically reconfigurable
technologies, such as flash- and antifuse-based FPGAs. Using SRAM-based
FPGAs and exploiting dynamic partial reconfiguration, a designer can adapt
the functionality implemented by the system to changing environment and
operational requirements. For example, dynamic partial reconfiguration has
been used in a platform for satellite payload processing [60]. A satellite
payload may perform different tasks in the course of its mission, such as ac-
quiring data, process it, and transmit it to ground. FPGA devices may be
reconfigured for each task, thus improving resource utilization.

Nevertheless, SRAM-based FPGA devices are still seldom used in those
parts of systems related with the safety of the system itself, due to the
vulnerability to faults of the SRAM-based configuration memory [61]. On
the other hand, in the last years a number of dedicated conferences and
workshops, such as the NASA/ESA Conferences on Adaptive Hardware and
Systems and the Military and Aerospace Programmable Logic Devices Work-
shops demonstrate great interest in employing SRAM-based FPGA devices
in safety- and mission-critical applications. In [53], the maturity of reconfig-
urable FPGA technologies for safety-critical applications is discussed.

A safety-critical system is a system whose failure or malfunction may
result in death or serious injury to people, loss or serious damage of equip-
ment, or environmental harm. In the IEC 61508-2 functional safety stan-
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dard [42], for safety related Electric/Electronic/Programmable Electronic
systems (E/E/PE) operating in a low-demand mode of operation, the lower
limit on the target failure measures is set at an average probability of 10−5

dangerous failures per hour of functioning. On the other hand, for E/E/PE
safety-related systems operating in a high-demand continuous mode of oper-
ation, the lower limit is set at an average probability of 10−9.

As discussed in [13], testing alone cannot guarantee such requirement;
combining fault tolerant approaches, such as replication and diversity, to-
gether with testing and other techniques such as Failure Mode and Effects
Analysis (FMEA) and reliability analysis methods, can improve the relia-
bility of the system, but the result is still far from the 10−9 goal. It is
then necessary to complement the fault removal (i.e., testing) and fault tol-
erance strategies with a fault avoidance strategy, with the goal of producing
high-quality systems, as free as possible of systematic faults. This goal can
be achieved with rigorous development processes carried out according to
standards that explicitly take into account the requirements of safety-critical
systems.

Many standards are available to developers of safety-critical systems, but
most of them do not directly address the specific issues of the FPGA tech-
nology, or provide only limited guidance about them. Two are the main
differences between the ASIC and the FPGA design from the system de-
signer point of view. The first difference is that the FPGA design flow is
much more automated than the ASIC one, and thus it leads designers to
rely much more on the CAD tools provided by the FPGA vendor and to pay
less attention to verifying the correctness of the intermediate products of the
various design phases and to trust too much the CAD tools [22]. The second
difference is that the final product of the FPGA design is a software, i.e., the
bitstream. Because of this, FPGAs are often perceived by designers as easy
to modify and correct late in the development process, thus FPGA based
systems are often designed with development methods more similar to a code
and fix approach than a true hardware design process, methods that would
not be accepted for the design of more costly and less flexible technologies,
such as ASICs or microprocessors [18].

In [18] Cercone et al. discuss how FPGA programming has not evolved
much beyond the classical sequential development methodology of specifying
requirements, creating the design, coding, simulating and testing. Often the
documentation and testing of an FPGA project is left as an “end of project”
task. The authors discuss how logic and functional testing are often com-
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pleted only for known operational conditions, thus ensuring that the device
does what it is supposed to do, but without ensuring that it does not perform
unrequested functions. The paper strongly endorses the necessity of adapting
verification and validation methodologies relying on modern design processes
to the FPGA design, incorporating verification techniques as integral parts
of the entire design process.

Habinc et al. [35], as well as Fernández-León in [22] and Gibbons and
Ames in [29], discuss how many problems and failures in space applications
involving FPGA devices are the result of applying inadequate development,
verification and validation methodologies. The authors observe that since
the FPGA technology became sufficiently mature, it is being employed more
and more heavily in space applications, performing more and more complex
and critical tasks.

Gibbons and Ames discuss the failure of the NASA Wide Field Infrared
Explorer (WIRE) project, that was due to the indeterminate state of the
output of a control FPGA device, during the power-up phase. The authors
focus on that experience, arguing that a robust design process of an FPGA-
based safety-critical system must rely on a great experience of designers in
any aspect of the specific FPGA technology employed.

Finally, in [22], Fernández-León discusses the results of an audit of FPGA-
based designs conducted by the European Space Agency, which revealed that
the overall design methodology and quality control applied to these designs
were often poorly defined and in some cases even risky or negligent.

Taking these issues into account, designers of FPGA-based systems of-
ten borrow standards and guidelines from more traditional technologies and
adapt them to the needs of FPGA-based development. Moreover, because of
the lack of specific regulations and standards, a number of guidelines, such
as [1, 7, 56], and lessons learned from research and industrial projects, such
as [18, 22, 29], have been published over the years.

Our work intends to present a brief overview of the existing standards
for the use of FPGAs in safety-related systems, and, in general, hardware-
based systems development, and to survey proposed techniques, guidelines
and lessons learned about the design, verification and validation of FPGA-
based safety-critical systems. This work is meant for both practitioners and
researchers working in the field of design and verification of FPGA-based
safety-critical systems. In particular, practitioners could exploit the present
work to get a quick overview of the existing standards as well as to enrich their
background through lessons learned from industrial and research projects
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involving the development of FPGA-based systems. On the other hand,
researchers approaching the novel design and verification techniques could
obtain from the present work a first picture of the existing trends.

Since the design of an FPGA-based system has many steps in common
with the ASIC design flow and since there is not yet a comprehensive and
specific standard for the development of FPGA-based systems, in the fol-
lowing sections we report general information, requirements and guidelines
specific of ASIC designs but also applicable to FPGA designs, and, when
available, activities and requirements specific of the FPGA design flow.

The remainder of this paper is organized as follows: in Section 2 we
briefly describe the main features of the FPGA technology; in Section 3 we
quickly review the standards in force for FPGAs in safety-critical application
fields; in Section 4, we present a survey of the research proposals, guide-
lines and lessons learned for FPGA-based system design and verification in
safety-critical application fields; Section 5 presents the main techniques for
the analysis of the effects of radiation on SRAM-based FPGA systems; Sec-
tion 6 reports on some published case studies; Section 7 discusses open issues;
finally, Section 8 concludes the paper.

2 The FPGA Technology

An FPGA is a prefabricated array of programmable blocks, interconnected
by a programmable routing architecture and surrounded by programmable
input/output blocks. Figure 1 shows the basic architecture of an FPGA chip.

Programmable blocks may be simple combinatorial logic (Soft Logic Blocks)
or memories, multiplexers, ALUs and other kinds of prefabricated circuitry
(Hard Logic Blocks). Logic blocks may be programmed to implement a cer-
tain functionality, the routing architecture may be programmed to intercon-
nect various blocks, and I/O pads may be programmed to ensure off-chip
connections.

The purpose of the logic block is to provide the basic computational
and storage element for the construction of the complete logic system. The
programmable routing architecture, composed of wires and programmable
switches, provides connections among logic blocks and I/O blocks to complete
a user-designed circuit. Finally, the I/O architecture is composed of I/O pads
disposed along the perimeter of the FPGA device, each one implementing one
or more communication standards.
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Figure 1: Basic FPGA structure.

FPGA programming consists in downloading to the device a programming
code, called bitstream, that directly defines the hardware structure of the
FPGA device by enabling or disabling gates in logic blocks to implement a
certain function and in enabling or disabling connections between wires to
connect or disconnect logic blocks, or to connect or disconnect logic blocks
to/from I/O pads.

Three FPGA programming technologies exist: static memory (SRAM)
based, non-volatile memory (flash and EEPROM) based and antifuse based [46].

In the static memory based programming technology, the bitstream is
downloaded in the configuration memory of the device. This technology
allows an indefinite number of device reprogrammings and has the best ratio
of the device area for user resources to the area used by configuration memory,
because static memory is realized with the same standard CMOS used for
FPGA devices. On the other hand, SRAM-based FPGAs need a supporting
non-volatile memory to store the configuration data while the device is not
powered. Further, FPGA devices based on SRAM are the most susceptible
to the adverse effects of radiations.

The flash/EEPROM programming technologies grant a limited number
of reprogramming processes and have a worse real-estate utilization, because
flash/EEPROM cells are fabricated with a non standard CMOS production
process. On the other hand these technologies do not need any supporting
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non-volatile memory. Further, flash/EEPROM-based FPGAs are much less
susceptible to the effects of radiations, and, in particular, almost immune to
single event upsets in the configuration memory.

The antifuse programming technology does not allow any reprogramming
of the device. Like flash/EEPROM-based FPGAs, also antifuse-based ones
have bad real-estate utilization, but, again, they do not need any supporting
non-volatile memory. Finally, antifuse-based FPGAs have no configuration
memory, and are thus immune from long-term effects of SEUs.

The FPGA device performance both in terms of computational speed and
silicon area occupation is proportional to the size and complexity of the basic
logic block, but the simpler is the structure of the logic block itself, the higher
is the degree of flexibility and programmability offered to the designer, so a
trade-off between performance and flexibility must be found. Likewise, the
higher is the number of switch boxes and long wires in the routing architec-
ture and the number of communication standard implementable in a single
I/O pad, the higher is the flexibility level, but at the same time, the worse
are the computational speed and area occupation performance.

Modern FPGAs are extremely complex and powerful devices. They can
be configured to host a complete microprocessor, or even a System-on-Chip,
i.e., a complete system, composed of processor, memory and peripherals, all
placed on the same chip. Many embedded processors that can be placed on
FPGA devices exist, among which we can mention the Xilinx MicroBlaze and
PicoBlaze, and the Altera Nios and Nios II, provided by the FPGA vendors
themselves. Further, apart from the previously mentioned soft-CPUs, more
complex and powerful cores, such as the ARM Cortex-M1 core or the Gaisler
LEON4 CPU, can be placed on modern, high-performance, FPGA devices.

More detailed discussions about FPGA architectures can be found in [46].

2.1 Advantages and issues related to FPGA-based de-

signs

As has been analyzed in depth by Kuon and Rose [45], FPGA-based designs
are usually larger, slower and much more energy-consuming than full-custom
designs. Nevertheless, they are more and more widely employed in all appli-
cation fields and the interest in using FPGA devices in safety-related applica-
tions, such as space missions or railways systems, is growing. This is basically
due to the two main factors of low costs and short time-to-market [46].
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A full-custom design needs very expensive CAD tools for simulation, ver-
ification, synthesis, and floor-planning. Further, a full-custom design needs
a large number of engineers working for many months. Finally, full-custom
designs require the use of masks, which may cost several millions dollars,
to drive the lithographic process. On the other hand, the cost of an FPGA
device ranges between some tens and one thousand dollars. Further, licenses
of CAD tools for FPGA-based designs are much cheaper than those of tools
for full custom designs. The only large cost related to FPGA-based designs is
the cost of the development team. Thus, especially for low-scale, but also for
medium-scale productions, FPGAs are often the best technological choice.

From the time-to-market point of view, after the completion of a full cus-
tom design process, the designing company must send the obtained masks to
a silicon foundry (often located in a different country or even continent) to
physically produce the chips, which may be sent back to the customer up to
three months later. Then, the chips have to be tested and, if modifications to
the design are needed, the design process has to iterate one of the previously
performed design activities, after which a new fabrication process will be
performed. A full custom design may need up to three fabrication iterations
and thus up to twelve or even eighteen months between the product concep-
tion and its availability to customers. FPGA-based designs, instead, do not
require fabrication delays. Design errors can be identified much more easily
during the prototyping phase and thus the time-to-market of an FPGA-based
design generally ranges between three and six months.

The main issues related to the design of FPGA-based systems and to
their adoption in safety-critical application fields are the lack of standards
specifically addressing the FPGA technology and the severe susceptibility of
FPGA devices to the effects of radiations.

As we have already discussed in the introduction of this paper, given the
relative youth of the FPGA technology, and its not yet wide acceptance in
safety-related application fields, very few design standards specifically ad-
dressing the FPGA technology exist. This, together with the ease and the
low cost of prototyping and fixing defects, often led designers to underesti-
mate design issues, thus causing projects failures. In order to overcome the
lack of standards and to guide designers, several industrial guidelines and
lessons learned from projects have been published.

Radiations, both in space and at ground level, may cause a system to
fail. In particular, radiations hitting the silicon surface of digital circuits may
alter the content of memory elements. Radiation hitting SRAM-based FPGA
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devices may have even worse effects, since they could permanently corrupt
the contents of the configuration memory (until a device reconfiguration),
thus changing the functionality implemented in the device.

3 Standards regulating the design of Hard-

ware Systems in Safety-Critical Systems

A general framework for the design and development of hardware and soft-
ware safety-critical systems is the IEC 61508 standard, and in particular the
IEC 61508-2 [42] and the IEC 61508-3 [43] for hardware and software sys-
tems respectively. Currently a specific regulation on FPGA design in safety-
critical systems exists only in the aerospace application field: the ECSS-Q-
ST-60-02C [26]. Moreover, in the airborne application field, the RTCA/DO-
254 standard [23] can be applied to the design and development of electronic
systems and thus also to FPGA-based systems. In all the other application
fields, the in force regulations require adopting the standard for the design
and development of both software and hardware systems. In particular, in
the automotive application field the reference standards are the ISO/DIS
26262-5 [27] and the ISO/DIS 26262-6 [28]; in the railways application field
the CENELEC EN 50128 [24] and the CENELEC EN 50129 [25].

Since the design of modern VLSI systems always involves the use of high
level hardware description languages, all the standards agree on the appli-
cation of a V-shaped design flow, which is inspired by the classical software
design flow. Figure 2 shows the V-shaped design flow taken from the IEC
61508-2 [42] standard for the ASIC development lifecycle. Note that, al-
though the figure representing the V-shaped lifecycle seems to be specifically
related to ASIC designs, the same lifecycle has to be taken into account also
when the design of an FPGA-based system is addressed [42].

In the V-shaped lifecycle, in each phase of the development (the left-hand
branch of the V) requirements are defined and sub-products are produced to
fulfill the requirements. Moreover, after each phase the intermediate products
of the phase are verified against the requirements specified in the previous
phase: for example, the adequacy of the hardware architecture in fulfilling
the requirements specification must be verified, the adequacy of the designed
modules and their integration in fulfilling the architecture must be verified
and so on.
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Figure 2: ASIC development lifecycle (the V-shaped model) [42].

In the validation phase of the lifecycle (the right-hand branch of the V)
all the products of the development phase are evaluated in order to ensure
correctness and consistency with respect of the global requirements. In other
words, it must be verified that the obtained FPGA-based system fulfills the
functional and safety requirements specified in the requirement specification
phase and does not contain undesired functionalities. In some cases, this
final validation shall be carried out by an independent party.

The ECSS-Q-ST-60-02C standard requires that the system verification is
performed in a realistic application environment. Thus, a system breadboard
shall be designed and used covering all the operating modes and conditions of
the device. Also radiation testing shall be performed on the prototype if the
required radiation-hardening level is not yet granted by the used technology.

In the following of this section we present a brief summary of the re-
quirements imposed by the previously mentioned safety standards, for each
phase of the V-shaped design lifecycle, placing particular emphasis on the
requirements imposed by the ECSS-Q-ST-60-02C standard for FPGAs.
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3.1 Development Process

3.1.1 System safety requirements specification

In this phase, starting from the requirements specification document of the
whole system (named “E/E/EP system safety requirement specification” in
the figure), requirements for the FPGA-based system are extracted and an-
alyzed. In particular it is recommended to identify those requirements that
involve functionalities that allow the system to reach and maintain a given
safety level, those functions that allow the system to detect, identify and
handle faults and those functions related to performance- and time-critical
operations.

The specification of the system requirements shall contain details relevant
to the design, to achieve the safety integrity level and the required target
failure measure for the safety function, as specified by the E/E/PE system
safety integrity requirements specification.

In particular, the ECSS-Q-ST-60-02C standard imposes the following ad-
ditional requirements related to the occurrence of faults due to radiation:

• error handling

• test device on ground and flight

• proof of required fault coverage during tests

Moreover, the standard imposes the production of a feasibility study in
order to estimate the requested power consumption, speed and radiation
tolerance. At the end of this phase a document that completely collects
and defines the requirements for the FPGA-based system is produced. This
document is required to be complete, unequivocal, clear and precise, verifiable
and testable.

An interesting point is that all the standards highly recommend the use
of semi-formal methods, such as logic/function block diagrams, sequence di-
agrams, data flow diagrams, and of formal methods, such as finite state ma-
chines, timed Petri nets, LOTOS, OBJ and Z, for the specification, analysis
and verification of high-level system requirements.

3.1.2 System Architecture

In this phase the overall architecture of the system is defined. In particu-
lar, the high-level components that will compose the system are identified,
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the interfaces among them are specified and the input and output of the
system are defined. Moreover, the decision on how to partition the system
into its hardware and software components shall be taken during this design
phase. A significant effort shall be paid in identifying a hardware architec-
ture able to fulfill the previously defined safety requirements: for example,
architectural-level fault-tolerance schemes are selected in this phase. More-
over, in this phase, it must be defined which components of the architecture
will be developed from scratch and which ones will be purchased as third
party intellectual properties.

Desired qualities of the produced architecture are modularity, testability,
maintainability and low complexity. The produced architecture shall be ver-
ified according to the previously defined requirements. To ensure that the
architectural design captures the information necessary to allow the subse-
quent development activities to be performed correctly and effectively, the
architectural design shall be described with appropriate levels of abstraction
by using semi-formal and formal notations.

3.1.3 System design and behavioral modeling

In this phase the previously defined architecture is refined into a number
of sub-components. The high-level behavioral specification of these compo-
nents is defined in this phase. All the standards agree in requiring the use
of hardware description languages (behavioral VHDL/Verilog) to describe
the behavior of the components and about the observance of coding guide-
lines. Furthermore, proven-in-use design environments and simulators shall
be used.

3.1.4 Module design

During the module design the high level behavioral model of the design is
translated into a structural description composed of the hardware modules
in accordance with the architectural design. In this phase the use of be-
havioral/structural hardware description languages is highly recommended.
Moreover, in this phase area, power consumption and timing constraints of
the defined modules are specified. The ECSS-Q-ST-60-02C standard places
particular emphasis on the definition of time constraints and of a detailed
pin plan for FPGA designs.

12



After each module has been designed, it must be tested in order to de-
termine if it is fit for use. The purpose is to verify the implementation by
testing every possible operational mode of the module. Static analysis tools
are used to facilitate this process.

After all modules have been designed and integrated in the complete
system, integration testing shall be performed. In integration testing the
separate modules will be tested together to expose faults in the interfaces
and in the interaction between integrated components. Testing is usually
black-box as the code is not directly checked for errors.

3.1.5 Synthesis, placement and routing

After the detailed design has been completed it must be synthesized so to
generate the gate-level netlist implementing the system. During this phase,
proven-in-use simulation, synthesis tools and technological libraries must be
used.

In the placement and routing phase the synthesized netlist is placed on
the chip and routing information is defined in order to meet the timing con-
straints. Moreover, the power and clock distribution is performed.

3.1.6 Final coding

In the FPGA programming phase the placed and routed design is translated
into the programming bitstream, the FPGA device is programmed and the
resulting prototype is tested. The design validation will be performed on the
produced prototypes of the system.

3.2 Validation Process

After the development phase, the implemented design must be validated.
The first validation step is the post-layout simulation. At this stage (i) esti-
mated delays shall be verified; (ii) gate-level simulations, formal verification
and static timing analysis shall be performed; (iii) key parameters such as
voltages, noise, frequencies, bandwidth, power consumption, shall be verified;
(iv) functional verification shall be performed.

Moreover, the ECSS-Q-ST-60-02C standard asks to verify the effective-
ness of the implemented radiation-hardening mechanism. Finally, the stan-
dard places particular emphasis on the use of IP-cores: when such modules
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are purchased and used, great attention must be paid in the verification of
the IP-core itself and in the verification of the correct integration of the IP-
core into the architecture under design. In particular it must be verified that
the third-party IP-core exactly performs the functionalities declared by the
vendor and does not implement hidden unwanted functionalities.

Post placement and routing verification shall be performed: electrical
properties and cross-talk sensitivity shall be evaluated; I/O timing and power
distribution shall be checked; it must be verified whether the obtained post
place-and-route netlist is functionally consistent with the gate-level netlist;
timing performance shall be evaluated; clock skew and clock latency shall be
estimated.

Complete system testing will compare the system specifications against
the actual system implementation. After the integration test is completed,
the next test level is the system test. In the lower-level tests, testing is
done against technical specifications, while system tests look at the system
from the perspective of the customer and the future user. The testers vali-
date whether the requirements are completely and appropriately met. Many
functions and system characteristics result from the interaction of all system
components, consequently, they are only visible on the level of the entire
system and can only be observed and tested there.

4 FPGA research proposals, guidelines and

lessons learned

In this section we propose a survey of research proposals, industrial and aca-
demic guidelines and lessons learned from real-world projects regarding the
design and verification of FPGA-based systems in safety-critical application
fields. We have organized the survey following the structure of the V-shaped
lifecycle previously presented. For each phase of the design process we report
activities that should be carried out as well as proposed techniques and tools.

4.1 Safety Requirements Specifications

In accordance to the standards, in [35] and [56] it is confirmed that the risk
analysis should be carried out during the concept and requirements definition
phase, along with the feasibility study and the requirements specification.
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According to these two works, the feasibility study should: (i) Analyze the
availability and quality levels of the existing FPGA technologies and identify
a set of candidate FPGA target devices taking into account the amount
of available logic blocks and I/O pins, the maximum reachable operating
frequency and the power consumption level; (ii) conduct a preliminary worst
case timing analysis of external interfaces and clock domains; (iii) check the
availability and reliability of all required design tools and libraries.

The requirements specification document should discuss the following as-
pects of the design: (i) Identify details of the operating environment, such
as temperature, humidity and dust; (ii) discuss safety-related requirements,
such as self-test and auto-diagnostic capabilities, reliability, testability, main-
tainability and observability requirements and radiation-hardening level; (iii)
identify requirements on the interfaces with external devices and the proto-
cols that have to be followed between the device under design and any ex-
ternal devices; (iv) determine the power budget and the operating frequency
range of the system; (v) identify the timing, size and electrical constraints of
the system.

The risk analysis should identify the critical issues of the design and iden-
tify the possible backup solutions, including but not limited to: (i) Maturity
of the foreseen FPGA device family, including CAD tools, libraries and ven-
dor support; (ii) suitability of the chosen technology for the intended mission;
(iii) undetermined I/O behavior and internal initial state during power-up.

In [22], Fernández-León stresses that a designer should implement a reli-
able development methodology for the definition, design, verification, physi-
cal implementation and validation phases. Moreover, the author points out
that designers should assess and document the radiation threats to the cir-
cuit. The effects of radiation on the circuit shall be identified and counter-
measures shall be properly designed, implemented and verified.

In [39], an innovative FPGA requirements specification process for the de-
sign of safety-critical systems based on programmable devices is presented.
It is suggested that the design process should start with a requirements spec-
ification redacted using the formal specification language Z. Then, using the
INFORMED design method, the boundary between hardware and software
components of the system is identified. Any basic computation is then parti-
tioned, by deciding what shall be implemented in hardware and what shall be
implemented in software. For those functionalities that shall be implemented
in hardware a manual refinement using Synchronous Receptive Process The-
ory (SRPT) is performed, and then each hardware module is compiled into
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Figure 3: Development Process Proposed by Hilton et al. [39].

Pebble, and subsequently in VHDL. Software components shall be imple-
mented in SPARK Ada and they will interact using the Ravenscar tasking
subset. The main Ada program, and the FPGA device will then commu-
nicate through a veneer component, sending data to and from the FPGA
via a method appropriate to the particular system, such as shared memory
or dedicated bus. Figure 3 shows the overall development process proposed
in [39].

In [61], Sutton underlines the need of machine-readable formalisms for
requirements specification in order to guarantee that all the requirements
have been addressed during the design process.
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4.2 System Architecture

At this stage of the design life-cycle the target device shall be chosen and
consequently the vendor’s CAD tool shall be chosen and purchased. The
choice of older and more stable and reliable CAD tool instead of newer ones,
with better performance but lower reliability, is recommended. The use of
hardware description languages, such as Verilog or VHDL, and of CAD tools
to produce the architectural design is highly recommended [1].

The guidelines proposed in [35] and [56] give also suggestions about the
architectural design phase.

In [35], Habinc gives recommendations about the architectural design
phase of an FPGA employed in a safety-critical system, that were learned
from the analysis of a great number of FPGA designs for space projects, many
of which showed problems related with the FPGA device itself. In particular,
Habinc focuses on four main issues: reset, clocks, power and interfaces.

While asynchronous reset allows an immediate reset of the flip-flop, it
most often poses tight timing requirements on the routing of the reset signal.
Because of this, the solution proposed in [35] is to assert the internal reset
signal asynchronously and to de-assert it synchronously. For outputs that are
critical for the system operation, it is recommended that the corresponding
flip-flops are reset asynchronously. Finally, the state during and just after a
reset should be documented in detail.

Clocks should control all storage elements, i.e, the design should be fully
synchronous. The number of clock regions should be minimized since FPGA
devices normally have only a few dedicated clock buffers. Since the choice
between synchronous or asynchronous design is made at the HDL description
phase, the use of simple HDL source code templates that are available from
the FPGA vendors is highly recommended in order to avoid coding errors that
would lead to an asynchronous architecture, while the desired architecture
was synchronous, or viceversa. Clock gating techniques should be avoided.

Concerning power consumption, Habinc suggests avoiding clock signal
manipulations that are in conflict with synchronous design methods. Care-
ful attention to the power up and down sequences of FPGA devices should
always be paid, since some technologies exhibit an uncontrollable behavior
on their input and output pins during these phases. The power-up/power-
on-reset sequence should be carefully defined and documented, following the
vendor guidelines.

About I/O interfaces, Habinc suggests placing a Schmitt trigger inverter
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between the analog input sources and the FPGA inputs pins to reduce the
risk of violating the rise and fall times. Moreover, Habinc recommends much
attention in ensuring that bus contention cannot occur, internally as well
as externally to the FPGA. FPGA devices have several special pins that
are often not used by the application. Nevertheless, these pins need careful
consideration during the design of the board on which the device will work.
In general, it should be ensured that all special pins, test pins and unused
pins are properly terminated, strictly following the FPGA vendor guidelines.
Unused pins should normally be left unconnected. It is not recommended to
connect unused pins directly to power or ground. Finally, the state of the
unused pins shall be properly documented.

In [48], a large number of formalisms for high-level architectural system
modeling are presented, such as Finite State Machines, Petri Nets and all
their extensions, Statecharts and UML. Similarly, many languages and tech-
niques for the verification of designed modules are discussed in [2]. The
main approaches are: (i) The e language, an object-oriented language for
testbench design, giving designers the chance to easily generate sets of input
stimuli, specify constraints and properties and assess the simulation cover-
age; (ii) OpenVera, a testbench language similar to e, with a C-like syntax;
(iii) ForSpec, a temporal logic based specification and modeling language de-
veloped at Intel; and (iv) Property Specification Language (PSL), originally
developed in 2004 by Accellera, and then standardized in 2005 by IEEE,
which allows the designer to specify complex properties, combine them and
then verify the final properties.

4.3 Behavioral Modeling and Module Design

In this phase a detailed description of the high level functional blocks defined
in the previous phase shall be produced, implementing the defined function-
alities, interfaces, interconnections and interactions [35].

In this phase the use of a hardware description language, such as Ver-
ilog or VHDL, and of CAD tools is also highly recommended [1]. A strict
coding standard should be used to avoid systematic faults due to coding
errors: it is suggested to avoid non-synthesizable code and coding instruc-
tions that would lead to the insertion of latches. The use of constants and
parameters is highly recommended. Naming, indenting, spacing and com-
menting standards are useful to easily detect coding errors and to improve
code understandability [56].
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In [20], a VHDL guidance for safe and certifiable FPGA design is reported.
In that paper Conmy at al. recommend avoiding states with encodings that
differ by just one bit when designing finite state machines: in this way, a
single event upset could not cause the machine to jump into an unwanted
state. Moreover, they strongly suggest limiting the size of each VHDL mod-
ule in order to improve module testability and maintainability. Finally, they
suggest careful attention to the development of operations involving float-
ing point numbers since they are particularly difficult to manipulate on an
FPGA.

A very large number of alternative high-level hardware programming lan-
guages has been proposed as intermediate languages between the architec-
tural design and the description of the device structure in a hardware descrip-
tion language. Most of these languages are derived from C, such as Handel-C
and SPARK, from C++, such as Streams-C and ASC, or from Java, such as
Sea Cucumber. A particular mention should be paid to SystemC, which is
widely employed as a high-level design language for electronic systems.

Alternative approaches are: ELLA, which allows abstraction and formal
reasoning about the design; Esterel, a synchronous language used for pro-
gramming reactive systems, that can be automatically compiled in VHDL
or Verilog; LAVA, a relational language designed to express circuit designs
by describing the relative placement of building blocks of the circuit itself.
Finally the MATCH compiler and the AccelFPGA compiler that allow trans-
lating MATLAB programs in VHDL and Verilog code for FPGAs.

After the implementation of all HDL modules the module integration
phase shall be performed, gradually integrating the HDL modules in order
to compose the whole system. Compliance to the required coding standards
and guidelines must be verified [56]. Test benches shall be designed in order
to perform behavioral simulations of each module, to check both external
interactions and interfaces and internal data flows. For complex designs it is
important to use self-checking test benches, that can perform the test activity,
automatically check the results and produce a test report, without requiring
a visual inspection of the waveforms. It is important at this phase to have
automated test vector generators, in order to generate input sequences that
can stimulate each part of the component at least once and as randomly
as possible [56]. Also boundary value tests shall be performed in order to
evaluate the robustness of the design.

In [22], the necessity of inspecting and simulating the synthesized netlist
in order to verify its correctness is emphasized. Moreover, SEU simulation
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and emulation are recommended. Finally, it is required to check whether
the designed fault tolerance techniques have been properly implemented and
synthesized, without any unwanted extra logic insertion or redundant logic
resources removal by CAD tools.

4.4 Synthesis, placement and routing, and final coding

A number of works presenting alternative place-and-route algorithms able to
increase the robustness of a given design against faults have been published
in the last years. In [58], the Reliability-oriented Routing Algorithm (RoRA)
for TMR-based designs is presented. The work starts from the consideration
that the XTMR tool from Xilinx fails in some cases to protect the design
from single event upsets due to the presence of common causes of failure in
the routing of the design. RoRA heuristically places and routes the three
replicas of the design and the voting circuit in such a way that the four
components of the design do not share any routing resource. The algorithm
proposed in [64] tries to keep the length of wires as short as possible in order
to reduce the likelihood of open/short faults and to reduce the common
regions between two nets in order to reduce the likelihood of bridge faults.
In [40], an alternative cost function for an existing place-and-route algorithm
is presented. While legacy place-and-route algorithms try to optimize the
timing or the area occupied by the design, the algorithm proposed in [40] tries
to minimize the error propagation probability of the design. In [31], a place-
and-route algorithm that aims at minimizing the number of configuration
bits used by the routing resources of the design is presented. Finally, the
problem of multiple cell upsets (MCUs) (bit flips of multiple configuration
memory elements due to a single particle strike) in TMR-based designs is
addressed in [57]. The paper presents PHAM, a placement algorithm that
exploits the knowledge of the physical layout of the configuration memory
of the device to maximize the distance between configuration memory cells
belonging to different replicas of the design.

After the synthesis, place-and-route and bitstream generation, the cor-
rect functionality of the system coded in the bitstream shall be verified, as
discussed in [22, 56]. Moreover, the correctness and trustworthiness of ex-
ternally purchased IP-cores shall be assessed. Nevertheless, verifying the
correctness of a system at the bitstream level is an extremely hard task.
FPGA vendors do not provide any detail about the structure of the bit-
stream, and the problem of verifying third-party IP-cores is made harder

20



by the fact that very often these cores are provided as obfuscated or en-
crypted netlists. Thus, designers generally perform testing activities on the
programmed device, spending great effort in designing sufficiently effective
test cases. Nevertheless, testing cannot be exhaustive for medium/large scale
designs.

Recently, Luna Inc. developed a software platform called Change Detec-
tion Platform (CDP) [32]. This environment is able to reconstruct the logic
and post-place-and-route netlists, as well as the behavioral description of the
system, starting from the bitstream. In this way it is possible to verify that
the translation tool provided by the FPGA vendor did not introduce bugs in
the bitstream. Further, it is possible to verify whether the purchased netlist-
level IP-cores do not contain defects, unwanted functionalities, or security
flaws.

5 Radiation Effects Analysis and Mitigation

Radiations may produce system malfunctions [8]. In particular, radiations
affecting digital circuits may cause changes in the contents of memory ele-
ments and in the value of signals. Radiations on SRAM-based FPGA devices
have even worse effects, since, when affecting the configuration memory, they
could permanently change the functionality implemented in the device (until
reconfiguration) [33]. The above mentioned effect is known as Single Event
Upset (SEU). Other effects of radiations on digital circuits are the Total Ion-
izing Dose (TID), i.e., accumulation of charge in the interface between the
metal and oxide layers that cause an increase of power consumption and a
decrease of circuit speed, and Single Event Transients (SETs), i.e., transient
impulses on wires in the circuit. Neither TID or SETs have been widely
studied in SRAM-based FPGAs since these devices are much more suscep-
tible to SEUs, but they must be considered when other FPGA technologies
are used [63, 52].

Although the effects of radiation are much more intense in space, it has
been demonstrated that radiation may corrupt the behavior of digital circuits
also at ground level [50]. The ECSS-Q-ST-60-02C requires that the radia-
tion hardening techniques implemented in the design are assessed through
radiation testing and the SEU sensitivity of the system is analyzed. More-
over techniques for mitigation of SEUs are either highly recommended or
mandatory, depending on the safety level. A number of techniques have
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been proposed to this purposes. In the remainder of this section we will
first present the main techniques for the analysis of the effects of SEUs on
SRAM-based FPGA systems, and then some SEU mitigation techniques.

5.1 SEU Effects Analysis Techniques

The sensitivity to SEUs of SRAM-based FPGA systems can be analyzed
according to four main approaches: accelerated radiation ground testing, fault
emulation boards, analytical computation, and fault simulation.

Accelerated radiation ground testing [17] emulates the radioactive en-
vironment in which the system will work by exposing a prototype of the
FPGA-based system to a flux of radiations. During the exposure to the radi-
ation flux, the prototype is fed with a set of input patterns, and its behavior
is monitored. The drawbacks of accelerated radiation testing are: (i) The im-
possibility of injecting SEUs only in the configuration memory of the FPGA,
since the whole chip area will be irradiated (including user resources); (ii)
a possibility that the device be permanently damaged after the experiment;
and (iii) high cost.

A number of fault emulation boards has been developed to evaluate the
effects of SEUs in the configuration memory of SRAM-based FPGAs sys-
tems [4, 3]. These boards emulate the occurrence of SEUs by modifying the
bitstream of the target system whose behavior is then dynamically evaluated.
Fault emulation can be performed either before downloading the bitstream
on the device under test, or at run time exploiting partial dynamic reconfigu-
ration. Unlike radiation testing experiments, fault emulation allows focusing
specifically on SEUs in the configuration memory of the FPGA, leaving out
any other resources. Moreover, fault emulation avoids the risk of damaging
the device under analysis. The drawbacks of SEU emulation are: (i) high
costs; (ii) complex usability; and (iii) strong chip and vendor dependence.

Analytical approaches, such as those presented in [59, 6, 38], have been
developed to avoid the high cost of radiation testing and the long experimen-
tal time of fault emulation. In [59], a model based on the structure of the
design implemented on the FPGA is built, and the topological modifications
induced by SEUs in each configuration bit are deduced, thus discovering
which SEUs affect the design. In [6], a model for the identification of sensi-
tive paths to SEUs is presented. The model combines the error probability
of all nodes of the circuit with the error propagation probability of each path
of the circuit. Finally, in [38] a probabilistic model to estimate the relia-
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bility of SRAM-based FPGA system is presented. Given the probability of
occurrence of a SEU, the model estimates the probability of having a system
failure after a given amount of time. The drawback of these approaches is
that, since the analysis is carried out without taking into account the input
patterns fed into the system, they are able to provide a worst case analysis
while they are not able to provide information about the behavior of the
system in its normal operating conditions.

A large number of fault simulators for digital circuits can be found in the
literature, but very few of them target the analysis of the effects of SEUs.
Moreover, an even smaller number of simulators that specifically address
the FPGA technology can be found. In [54, 14], two simulators of SEUs
affecting digital circuits have been proposed. Both simulators work at the
gate-level representation of the circuit, thus ensuring accurate results, but
neither one takes into account any details specific of the FPGA technology.
The only simulator targeting SEUs in FPGAs is SST [34] that works on the
register transfer level representation of the system. Because of this, SST
can only emulate the effects of SEUs in logic resources, e.g., flip-flops and
memories, but it cannot reproduce the effects of SEUs in the configuration
memory. Recently, a simulator of SEU effects in SRAM-based FPGAs, based
on the stochastic activity networks formal specification language, has been
proposed [11, 9].

5.2 SEU Mitigation and Correction Techniques

Many SEU mitigation techniques are discussed in the literature. In [44],
SEU mitigation techniques are classified into two main families: Fabrication
process-based and Design-based.

Fabrication process-based techniques aim at reducing the effects of ra-
diation through the use of non standard CMOS logic gates, such as the
Silicon-on-insulator (SOI) technology from IBM [41] and radiation-hardened
memory cells [?]. The approach proposed by IBM in [41] relies on the place-
ment of a thin layer of silicon on top of an insulator during the manufacturing
process. All the transistors of the device are then built on top of this silicon
layer, which is characterized by a reduced capacitance, and then by a reduced
susceptibility to the effects of radiations. Radiation-hardened memory cells
rely on providing standard memory cells with feedbacks devoted to restore
the correct value when the content of the cell is corrupted. These techniques
are able to alleviate the long-term effects of radiation exposure (i.e., TID),
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and to reduce, but not eliminate, SEUs. The main drawback of such solutions
is the high cost due to the non standard CMOS fabrication process.

Design-based techniques rely on hardware redundancy, i.e., the use of ex-
tra components of the FPGA device (duplication or triplication) and voting
systems to detect (when duplication is used) or correct (when triplication is
used) the occurrence of SEUs [16]. A generalization of hardware redundancy
is device redundancy, that is, using multiple independent FPGA devices per-
forming the same functionality, whose output is then checked by a voting
system. Design-based techniques are widely accepted because they are much
cheaper than fabrication process-based techniques. Hardware redundancy
exploits the spare components (when available) of the FPGA device, thus its
cost (apart from the increased power consumption) is actually null. When
device redundancy is used, the cost of multiple devices is always lower than
the cost of non-standard CMOS devices. An additional advantage of design-
based techniques is that they can be applied to different levels of design
abstraction and can address different fault types.

Finally, SEUs may be corrected by exploiting the partial dynamic re-
configuration capabilities of modern FPGA devices through readback and
reconfiguration [30] or memory scrubbing [37]. Both techniques are applied
at run-time, during the system normal operation. Readback and reconfigura-
tion consists in periodically reading, either partially or totally, the contents
of the configuration memory, comparing it to a golden copy of the bitstream
and reconfiguring the device in order to correct any detected fault. Mem-
ory scrubbing is similar to memory readback and reconfiguration, the main
difference being that reconfiguration occurs at regular intervals. With blind
scrubbing the whole bitstream is reloaded, irrespective of the occurrence of
faults, whereas with selective scrubbing readback operations make it possible
to identify faults and correct them with partial reconfigurations.

6 Case Studies

In this section we cite works that report on FPGA applications in different
industrial fields and address development issues.
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Figure 4: Hydraulic monitoring system (from [36]).

6.1 Hydraulic Leakage Monitoring

Hydraulic systems are used in aircraft to actuate highly critical components,
such as control surfaces and landing gear. Leakages may cause pressure losses,
which may lead to catastrophic failures, so a Hydraulic Leakage Monitoring
(HLM) system is used to detect leakages and isolate defective sections of the
hydraulic system by operating shut-off valves.

Hammarberg and Nadjm-Tehrani [36] report on the development of the
electronic components of a HMS (white boxes in Figure 4), based on formal
specifications written in the Esterel language. Esterel modules are used both
for the system and the fault model, thus allowing verification of safety prop-
erties in the presence of faults. The main safety property is that no more
than one valve be closed at the same time, since this condition could block
the hydraulic system. The property has been verified by model checking
combined with FTA and FMEA under several fault hypotheses. The Esterel
model has then been automatically translated into VHDL, leading to the
FPGA implementation. The authors compare the automatic generation of
VHDL code from Esterel with handwritten and optimized code, and conclude
that the overhead of the automatically generated code is acceptable for the
application, given the resource availability afforded by the FPGAs.
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Figure 5: Reactor trip system (from [5]).

6.2 Reactor Trip System

Andrashov et al. [5] describe the development and V&V process used for the
control logic of reactor trip systems (RTS) implemented with FPGA technol-
ogy. The RTS is the central and most critical part of a nuclear powerplant’s
protection system. It samples sensor signals measuring physical magnitudes
(e.g., temperature, pressure, or neutron flux), compares them with the al-
lowed operating values, and shuts down the reactor if the prescribed limits
are exceeded. Figure 5 shows the considered RTS, consisting of three signal
channels feeding a two-out-of-three voter.

The adopted development process is an adaptation of the V-lifecycle,
where the development branch of the V is divided in two main phases, FPGA
design and FPGA implementation. The design phase consists in the prelimi-
nary electronic design subphase, where the system is modeled at the diagram
level and verification is done by design review, and the detailed electronic de-
sign subphase, where system is modeled at the schematics and VHDL level,
and verification is done by simulation and static analysis. The implementa-
tion phase consists in the subphases of logic synthesis, placement and routing,
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and bitstream generation, where the system is modeled at the register trans-
fer, netlist, and floorplan level, respectively. Verification is done by gate
simulation and time simulation.

Special emphasis is placed on testing the RTS algorithms, i.e., the logic
functions performed by the basic RTS subsystems. Thirty-four algorithms
have been identified and tested by simulation with a 100% coverage of input
value combinations chosen with the boundary value criterion.

6.3 Car Body Controller

Traub et al. [62] describe the development of an FPGA-based body controller
unit (BCU) (Figure 6), in charge of controlling a car’s electrically operated
windows, rear-view mirrors, and other components. The considered BCU
has been designed as a centralized FPGA controller replacing a number of
electronic control units. The BCU includes a MicroBlaze processor, thus
supporting the implementation of different functional parts of the application
in software or in hardware.

The adopted development process is centered on model-based design, both
for hardware and software. The BCU functions are modeled with Simulink
and Stateflow diagrams, from which HDL code (for hardware modules) and
C code (for software) is automatically generated. The code is then synthe-
sized for the Xilinx Spartan 3 FPGA. The authors report data on resource
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requirement for different architectural approaches. An interesting results is
that for some functional modules a hardware implementation may require
more FPGA resources than a software implementation using the MicroBlaze
processor.

7 Open Issues

Many issues are still unsolved and make the application of SRAM-based
FPGA devices in the safety-related parts of systems still problematic. Three
main points remain open. The first is the lack of methods and tools for the
formal verification of netlists both at the logic and the post-place-and-route
level: What designers can do is just simulate the obtained netlist trying to
apply a sufficiently effective set of tests. This lack of methods has a twofold
negative result: On the one hand it is very difficult to verify the functional
equivalence of the synthesized netlist with respect of the original high-level
behavioral specification, which forces designers to trust the correctness of the
synthesis process implemented by the vendor tool; on the other hand it is
unfeasible to verify the functional correctness and the absence of unwanted
functionalities of third-party IP-cores provided at the netlist-level, which
forces designers to rely on the correctness of the purchased netlist.

The second open point is the lack of open-source, freely modifiable and
usable tools for the verification of the functional equivalence and absence
of unwanted functionalities of the obtained bitstream with respect of the
previously verified netlist. For example, the Change Detection Platform of
Luna Inc. is a high-end tool developed in a research project of the US
Defense Advanced Research Projects Agency, specifically addressed to the
contractors of the US Department of Defense and not freely available. The
lack of such tools, again, forces designers to rely on the correctness of the
translation tool provided by the device vendor and on the trustworthiness of
the IP-core provider.

Finally, partial dynamic reconfiguration in safety-critical applications rep-
resents a still open point. Modern devices largely support partial dynamic
reconfiguration: This allows the system to both activate a given functional-
ity only when needed and deactivate functionalities when not needed (thus
saving space) and to adapt its behavior to changes in the working environ-
ment or in the user requirements [51]. On the other hand, the use of partial
dynamic reconfiguration in safety-critical systems imposes hard requirements
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to the design, as discussed in [51]. In particular, the reliability of the data
transfer is required if the new bitstreams are dynamically sent to the system
when required, or a highly reliable persistent memory has to be used to store
the unused bitstreams if the system is equipped with all the bitstreams since
power-up. Furthermore, it must be ensured that the partial reconfiguration
process does not affect the correct operation of the non reconfigured part,
that may be required to keep working transparently.

An additional open issue is related to the assessment of the sensitivity
to SEUs. Radiation testing may entail too high a cost for small-scale de-
signs and fault emulation takes a very long time for real-world designs. This
gets even worse when a number of iterations of design and sensitivity anal-
ysis is required before achieving an acceptably robust design. To alleviate
these problems early assessment techniques have been proposed, in order to
estimate the sensitivity of the system before implementing a prototype and
thus allowing early corrections [59, 6, 38]. On the other hand, a number of
techniques aimed at identifying the untestable faults in a design have been
proposed [10, 12]. The identification of those faults that can never be tested
allows reducing the number of faults that must be taken into account during
the fault emulation process, thus speeding it up. On the other hand, what is
still lacking is a unified framework of tools and techniques integrated in the
standard design flow that may be used by designers at the various stages of
the design.

8 Conclusions

This paper summarizes the design standards for the development of FPGA-
based systems in safety critical applications together with the literature pro-
posals, industrial and academic guidelines, and lessons learned from real
projects.

Three main points about the design of FPGA-based systems in safety-
critical application field can be identified. The first point is that it is strongly
recommended to start the design of a safety-critical FPGA-based system only
after a well structured and well documented design flow has been identified.

The second recommendation is never to trust completely the CAD tools
provided by the FPGA device vendor, and always to verify the intermedi-
ate products of all phases of the design process using external tools (both
simulation tools and formal methods).
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Finally, even if the design and development process of an FPGA-based
system is very much like the design and development process of a software
system, the designer must know in depth all the technological details of the
final target device that will host the system, such as special I/O pins, working
frequency range, temperature, voltage and humidity ranges.

Tools and methodologies addressing these issues will boost the application
of SRAM-based FPGA devices in safety-critical systems.
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