
Unexcitability Analysis of SEUs Affecting the

Routing Structure of SRAM-based FPGAs∗

Cinzia Bernardeschi Luca Cassano Andrea Domenici

Luca Sterpone

November 30, 2016

Abstract

Testing SEUs in the configuration memory of SRAM-based FPGAs
is very costly due to their large configuration memory, therefore it is
necessary to optimize the generation of test patterns. In particular, in
order to reduce the effort required of automatic test pattern generators,
it is useful to identify early the unexcitable faults, i.e., those faults that
cannot be excited by any combination of input signals. In this paper,
the unexcitability of SEUs affecting the configuration bits controlling the
routing resources of SRAM-based FPGAs is considered. Since this part
of the configuration memory contains the largest number of configuration
bits, its testing is particularly onerous. Faults in the routing resources
are modeled considering the actual electrical behavior of the affected in-
terconnections, thus the resulting fault model is more accurate then the
classical open/short model usually considered. This paper introduces a
methodology to prove the unexcitability of these faults. The methodology
has been implemented in a tool based on a formal specification language
(SAL) and a model checker (SAL-SMC). Results from the application of
the tool to some circuits from the ITC’99 benchmark are reported.

Keywords Model Checking, SAL, Single Event Upset, SRAM-based
FPGA, Untestability Analysis

1 Introduction and Related Work

SRAM-based FPGAs are increasingly being employed in safety critical appli-
cations such as avionic or space ones, where a harsh radiation environment
causes a high incidence of Single Event Upsets (SEUs) that may corrupt the
functionality of the device [1, 6]. The industrial use of electronic devices in
safety-critical systems is regulated by application-related safety standards that
impose strict safety requirements on the system. In particular safety standards,
such as ISO 26262-5 [8], CENELEC 50129 [5], and IAEA NS-G-1.3 [7], require
in-service testing activities for safety-related systems.

∗submitted to GLSVLSI 2013.

1



Automatic test pattern generation (ATPG) for integrated circuits is a hard
task, since in modern Very Large Scale of Integration (VLSI) systems the total
number of faults that need to be detected may be very large. In FPGA-based
systems, faults in the configuration memory must be tested, in addition to
those in user resources. A number of these faults may be demonstrated to
be untestable, thus reducing the effort required of ATPG tools. Moreover,
demonstrating the untestability of faults in a VLSI design provides a way to
assess the degree of testability of the system.

A number of works addressing various aspects of the analysis of untestabil-
ity of faults in digital systems can be found in the literature. In [13] and [11] a
new subclass of untestable faults, called register enable stuck-on is defined and a
method for generating property specification language (PSL) assertions for prov-
ing the untestability of this class of faults is presented. In these papers stuck-at
faults on the clock-enable signals of registers at the register transfer level (RTL)
are addressed. The same authors propose in [12] a hierarchical untestability
identification method. The method addresses untestable faults in functional
units, such as adders and multiplexers, at the RTL level. In [16] a preprocessing
method for accelerating SAT-based ATPGs by eliminating untestable faults is
presented. The method takes into account the stuck-at fault model and it ad-
dresses only easy-to-classify untestable faults. In [10] two algorithms (FILL and
FUNI) for untestability demonstration of stuck-at faults are presented. FILL
identifies large subsets of illegal states in synchronous sequential circuits, and
FUNI finds untestable faults that require illegal states previously found by FILL
to be detected. Untestability analysis of SEUs in the configuration bits control-
ling logic components of SRAM-based FPGAs was proposed in [3], assuming
the fault model proposed in [14], much more accurate than the stuck-at fault
model.

As shown in [17], a more accurate fault model than the open/short (usually
assumed for interconnection faults) has to be considered for SEUs in the con-
figuration memory controlling routing resources of FPGA-based systems. This
detailed fault model, together with the large number of configuration bits, makes
the issue of fault untestability more relevant.

The present work introduces a methodology to prove the unexcitability of
SEUs in the configuration memory of SRAM-based FPGAs controlling routing
resources. The tool relies on the Electrical Effects Static Analyzer (E 2STAR) [4]
tool for the identification of the effects of the considered SEUs, and on the SAL
environment [2] for the modeling of netlists and for the proof of the unexcitability
of faults. The tool implements the accurate fault model proposed in [17]. The
main contribution of this paper consists in presenting the first automatic tool
for the analysis of the unexcitability of SEUs in the routing structure, at the
post place-and-route netlist level, and with an accurate model of the effects of
SEUs.

The remainder of this paper is organized as follows: in Section 2 the consid-
ered fault model is presented; Section 3 introduces some background information
on the E 2STAR tool and the SAL environment; Section 4 describes the pro-
posed approach; Section 5 reports results from the application of approach to

2



some circuits from the ITC’99 benchmark; Section 6 concludes the paper.

2 Effects of SEUs in the Routing Structure

An FPGA is an array of programmable logic blocks, interconnected through a
programmable routing architecture and communicating with the output through
programmable I/O pads [9]. Logic blocks may be simple combinational or se-
quential functions, called soft logic blocks, e.g., lookup tables, multiplexers and
flip-flops, or more complex structures, called hard logic blocks, e.g., memories,
adders, and micro-controllers. The routing architecture in an FPGA consists
of wires of various length and programmable switches that form the desired
connections among logic blocks and I/O pads. Finally, the I/O architecture
is composed of I/O pads disposed along the perimeter of the device, each one
implementing one or more communication standards.

The programming of an FPGA device consists in downloading a program-
ming code, called a bitstream, in its configuration memory. The bitstream de-
termines the hardware structure of the system to be implemented in the FPGA,
and thus the functionality performed by the system. In particular the bitstream
determines the functionalities performed by programmable logic blocks, the in-
ternal connections among logic blocks and the external connections among logic
blocks and I/O pads.

Each net of a circuit implemented in an FPGA device is realized by the
connection of logic modules through Switchboxes, i.e. programmable routing
components that can be configured through Programmable Interconnect Points
(PIPs). An SEU occurring in a configuration bit controlling a PIP may alter
or interrupt the propagation of one or more signals to the logic block at the
downstream of the effect.

To show the model of SEUs [17], let us consider the original interconnection
illustrated in Figure 1 that provides the implementation of two different routing
nets using the two PIPS A → B and C → D, respectively. Depending on
the position and the electrical properties of the affected PIP, a SEU in the
routing structure can cause the following topological modifications (also shown
in Figure 1): (i) Open, where the PIP is not programmed any more and thus
a the corresponding routing segment (A → B) is deleted; (ii) antenna, where
a new routing segment (unused → B) is added between an unused input node
and a used output node; (iii) conflict, where a new routing segment (A→ D) is
added between a used input node and a used output node; and (iv) bridge, where
an existing routing segment is deleted (C → D) and a new routing segment
(A→ D) is added between a used input node and the output node of the deleted
routing segment. Effects of SEUs in PIPs involving unused connections [17] are
not considered as they do not cause a faulty behaviour.

3



Correct configuration

Open Antenna

Conflict Bridge

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

Figure 1: Effects of SEUs in the routing components of an FPGA.

3 Background

In this section we provide background information about E 2STAR [4] and the
SAL environment [2].

3.1 The E2STAR Tool

The purpose of the E 2STAR tool is to provide an accurate model of SEU ef-
fects in the FPGA configuration memory. E 2STAR not only reports information
about the routing topology modifications induced by an SEU, but it also deter-
mines the generated electrical effect and the corresponding propagation points
in the routing and logic resources used by the circuit mapped on the FPGA.

In order to characterize the logical effects induced by routing faults, fault
injection experiments were carried out on a physical prototype of an FPGA
application, and the corresponding outputs were observed. Then, logical faults
were simulated in a behavioral model of the same application, and by comparing
the outputs of the prototype with those of the simulation it was possible to map
routing faults to logical effects [17].

For each given configuration memory bit the E 2STAR tool is able to find the
routing segments through which an SEU in the configuration bit is propagated
and the logic effects that the SEU will have in the various propagation routing
segments. The following logical effects associated with the routing faults shown
in Fig. 1 have been detected:

• Stuck-at: A node is stuck at a constant logic value.

• Bridge: Two nodes exchange their values.

4



K

S

Pi
Pj

Ci

Dj

D

C
H

Figure 2: Routing example.

• Wired-AND (Wired-OR): The value of a node C is the AND (OR) of the
values of two nodes A and B.

• Wired-MIX: The values of two nodes A and B are mixed as follows: If the
values A and B are equal, A and B keep their correct values, otherwise A
takes the zero logic value and B takes the one logic value.

With reference to Fig. 2, if S is a switch box, C and D are two components
directly connected to S, Ci and Dj are the input pins of C and D connected to
S through the PIPs Pi and Pj , respectively, the five possible effects of an SEU
in the configuration bit controlling P are modeled as follows:

• A stuck-at on Pi is modeled by setting the logic signal on Ci at the corre-
sponding fixed value.

• A bridge between Pi and Pj is modeled by exchanging the logic values on
Ci and Dj .

• A Wired-AND (Wired-OR) between Pi and Pj is modeled by setting the
logic signals on Ci and on Dj to the AND (OR) of the outputs of Pi and
Pj .

• A Wired-MIX between Pi and Pj is modeled by setting the logic signals
on Ci to 1 and on Dj to 0 if the output of Pi and Pj are different, while
leaving Ci and Dj unaltered otherwise.

It may be observed that a given SEU in the configuration bit associated with
a PIP can propagate to different routing segments, and that the same SEU can
have different effects on the routing segments through which it propagates.

3.2 The SAL Environment

The Symbolic Analysis Laboratory (SAL) is a framework for combining different
tools for the specification and verification of concurrent systems [2].

5



The SAL language is a strongly-typed description language. Supported types
are Booleans, scalars, integers and integer subranges, records, arrays, and ab-
stract datatypes. Expressions consist of constants, variables, applications of
Boolean, arithmetic, bit-vector operations, array and record selection and up-
date. New types can be defined and conditional expressions and user-defined
functions are supported.

The basic concept in the SAL specification language is the Module. A SAL
module is a self-contained specification of a transition system. A module consists
of a State and an Initialization on the state and a list of Transitions on
the state. The state is defined by four disjoint sets of Input, Output, Global,
and Local variables. The input and global variables are observed, i.e., they can
only be read. The output and local variables are controlled, i.e., they can be
both read and written. Each SAL variable has two values, the current value
(denoted, e.g., by x) and the next value (denoted, e.g., by x’), valid in the
current and the next state (respectively) of the module.

The initialization is used to specify an initial value for all or some of the
controlled state variables of the module. Like initializations, a Definition is
a simple assignment of a value to a controlled variable. Transitions are assign-
ments of a value to a next-state variable. A guarded command is composed of
a guard, i.e., a Boolean condition defined on state variables, and one or more
transitions. The transitions can be performed only if the guard is satisfied.

The SAL Symbolic Model Checker (SAL-SMC) uses LTL (Linear Temporal
Logic) as an assertion language [15]. LTL formulas state properties about each
linear path induced by a transition system. Typical LTL operators are:

• G(p) states that p is always true.

• F(p) states that p will eventually be true.

• U(p, q) states that p is true until a state is reached where q is true.

• X(p) states that p is true in the next state.

For a formal definition of LTL see [15]. Typical properties expressed with
LTL formulas are safety, in the formG(¬χ), stating that the undesired condition
χ is never satisfied, and liveness, in the form G(F(ψ)) stating that the desired
condition ψ will eventually be satisfied. An expression of the formM ⊢ F means
that a SAL specification M is a model of the LTL formula F , i.e., property F
holds for the system specified by M .

4 The Proposed Approach

The language provided by SAL has been used to model FPGA-based systems
starting from a description of the circuit at the netlist level before the place-and-
route phase. Each netlist is described by a SAL MODULE. Inputs and outputs of
the system are modeled by SAL Input and Output variables. Each component

6



LUT_0 LUT_2

LUT_1

D Q

i_buff_0

i_pin_0

i_buff_1

i_pin_1

i_buff_2

i_pin_2

o_buff_0

o_buff_0

d_ff_0

clock

Figure 3: An example netlist.

in the netlist is modeled as a SAL Local variable that represents the output of
the component itself.

The behavior of each component except flip-flops is described by Definitions.
The behavior of an input buffer can be described as an assignment between a
local variable, modeling the buffer, and an input variable, modeling the asso-
ciated input pin. Similarly, the behavior of an output buffer can be described
as an assignment between two local variables, one modeling the buffer and the
other modeling the connected component. The behavior of LUTs is described
by the corresponding logic functions. To show how we modeled the behav-
ior of components we refer to the simple example of netlist shown in Fig. 3,
where LUT0 implements the OR function, while LUT1 and LUT2 implement
the AND function. Examples of SAL models for input and output buffers are
shown below:

i_buff_0 = i_pin_0;

o_buff_0 = d_ff_0;

The lookup tables of the circuit can be modeled as follows:

LUT_0 = i_buff_0 OR i_buff_1;

LUT_1 = i_buff_0 AND i_buff_1;

LUT_2 = LUT_0 AND LUT_1;

Multiplexers can be described by a conditional clause, as follows (s represents
the select signal for the multiplexer):

y IN IF(s = FALSE) THEN {x1} ELSE {x2} ENDIF;

Flip-flops are described by Transitions. D-flip-flops can be described as a
simple assignment between the next value of the flip-flop and the current value
of its input:

d_ff_0’ = LUT_2;

Other types of flip-flops (FDC, FDP, FDCE and FDPE) can be described
by a conditional clause.

7



4.1 Unexcitability Theorems for SEUs in the Routing Struc-

ture

The analysis carried out by the E 2STAR tool makes it possible to model the
effects of SEUs in the routing structure as observed at the netlist (functional)
level, instead of modeling them explicitly, i.e., at the level of the routing struc-
ture itself.

Proving that a routing fault is unexcitable means proving that the signal
propagated by a given faulty routing line is always the same as the signal that
the line would have propagated if no fault had occurred. More precisely, with
reference to Figure 2, let Pi and Pj be two PIPs in a switchbox, H and C two
components connected through Pi, with signals going from H (source) to C

(destination), and let K and D be two components similarly connected through
Pj . According to the caused logical effect, an SEU s in the configuration bits
controlling Pi and Pj is unexcitable if:

• stuck-at 0 in Pi: s is unexcitable if the output of H is always 0.

• stuck-at 1 in Pi: s is unexcitable if the output of H is always 1.

• bridge between Pi and Pj : s is unexcitable if the output of H always
equals the output of K.

• wired-AND between Pi and Pj : s is unexcitable if (i) the output of H
always equals H AND K and (ii) the output of K always equals H AND
K.

• wired-OR between Pi and Pj : s is unexcitable if (i) the output of H always
equals H OR K and (ii) the output of K always equals H OR K.

• wired-MIX between Pi and Pj : s is unexcitable if (i) the output of H
always equals the output of K or (ii) the output of H is always 1 and the
output of K is always 0.

Further, let Ĥ and K̂ be the SAL variables modeling H and K respectively.
The unexcitability theorems associated with the six possible logical effects of
an SEU in the configuration bits controlling Pi and Pj are shown in Table 1
(see the discussion about logical effects in Section 3.1). Note that unexcitability
theorems are safety theorems of the form G(¬(fault excitation condition)).

The table shows that in order to prove a given fault as unexcitable, we try to
prove that the components feeding the putatively affected components through
a switchbox will never produce the combinations of values that excite the fault.

It may be observed that a given SEU in the configuration bit associated
with a PIP can propagate to different routing segments, and that the same
SEU can have different logical effects on the routing segments through which it
propagates. In such a case the unexcitability theorem associated with the SEU
will be composed of the disjunction of a number of unexcitability lemmas, each
associated with one of the propagation segments of the SEU itself, since an SEU

8



Table 1: Unexcitability theorems for routing faults.

s-a-0 on Pi C ⊢ G(¬(Ĥ))

s-a-1 on Pi C ⊢ G(¬(¬Ĥ))

bridge between Pi and Pj C ⊢ G(¬(Ĥ 6= K̂))

Wired-AND between Pi and Pj C ⊢ G(¬((Ĥ 6= (Ĥ ∧ K̂)) ∨ (K̂ 6= (Ĥ ∧ K̂))))

Wired-OR between Pi and Pj C ⊢ G(¬((Ĥ 6= (Ĥ ∨ K̂)) ∨ (K̂ 6= (Ĥ ∨ K̂))))

Wired-MIX between Pi and Pj C ⊢ G(¬((Ĥ 6= K̂) ∧ (¬Ĥ ∨ K̂)))

with multiple propagation segments is excited if and only if at least one of the
faulty propagation segments is excited.

As an example, let us consider a PIP P . Let Y1, Y2, Y3 and Y4 be four
destination components connected to P . Let us suppose that an SEU F in P
propagates as a stuck-at-0 towards Y1, as a stuck-at-1 towards Y2, and as a wired-
mix between Y3 and Y4. Let X1, X2, X3, and X4 be the netlist components
generating the signals directed to Y1, Y4, Y3, and Y4, respectively, and let X̂1 X̂2,
X̂3, and X̂4 be the corresponding SAL variables. The unexcitability theorem
associated with F is:

C ⊢ G(¬(X̂1 ∨ (¬X̂2) ∨ ((X̂3 6= X̂4) ∧ (¬X̂3 ∨ X̂4))))

The theorem above is expressed in SAL as follows:

F: THEOREM

circuit |-

G(NOT((X1=TRUE) OR

(X2=FALSE) OR

(X3/=X4 AND (X3=FALSE OR X4=TRUE))));

4.2 The Execution Flow

The overall execution flow of the proposed tool is shown in Fig. 4. The netlist
description file contains an intermediate description of the netlist, generated by
a parser designed for the EDIF language. The routing fault list file contains
the list of the routing faults and the associated logical effects and propagation
routing segments for each effect. This file is produced by the E 2STAR tool
starting from the description of the netlist after the place and route phase.
In this way we are able to interact with commercial CAD tools and thus the
proposed tool could be integrated into the standard design process of FPGA-
based systems.

The first step performed by the proposed tool is the creation of the SAL
specification of the netlist under analysis starting from the netlist description
file. Then, for each possible SEU in in the routing fault list an unexcitability
theorem is specified. At the end of these two steps a SAL specification of the

9



Figure 4: The execution flow of the proposed tool.

netlist and the list of the LTL unexcitability theorems associated with all the
SEUs in the configuration bits controlling routing components of the system are
created.

Finally the SAL-SMC model checker is invoked to prove each unexcitability
theorem, one at a time. If a theorem is proved, the corresponding fault is
demonstrated to be unexcitable and it is logged. These last steps are repeated
until all theorems have been processed by SAL-SMC. At the end of this analysis
a report file containing the number and the list of the unexcitable faults is
created.

5 Experimental Results

We applied the tool to some circuits from the ITC’99 benchmark. These designs
provide various test cases with circuits characterized by single clock signal, no
tri-state buses or internal memories. We synthesized the VHDL code of the
circuits using the Xilinx ISE CAD tool and mapping the benchmark circuits on
the Xilinx Virtex-II SRAM-based FPGAs. The characteristics of the circuits
in terms of name, number of Look-Up Tables (LUTs), Flip-Flop (FFs), MUXs,
Input and Output buffers are shown in Table 2.

In table 3 we show the results from the application of the E 2STAR tool to
the considered circuits. The table shows the number of identified critical con-
figuration memory bits (Faults) and the number of propagation points classified
by logical effects (s-a-0, s-a-1, W-AND, W-Mix, Bridge). From Table 3 it can be
noticed that the number of propagation points per SEU is much higher than the
actual number of SEUs. In particular the number of fault propagation points
is on average 5.3 times larger than the number of faults. Moreover, as it is also
discussed in [17], the largest number of effects of SEUs is stuck-at 0 and stuck-at

10



Table 2: Characteristics of the benchmarks.

Circuit LUTs FFs MUXs IBuffs OBuffs

b01 5 5 0 3 2

b02 4 4 0 2 1

b03 22 30 0 5 4

b06 8 8 0 3 6

b07 135 53 15 2 8

b08 23 21 0 10 4

b09 35 29 0 2 1

b10 40 17 1 12 6

b11 77 32 9 8 6

b13 106 59 11 11 10

1.
Results of the analysis of the considered circuits with the proposed tool

are shown in Table 4. The table shows the circuit name (Circuit), the total
number of SEUs affecting the routing structure (RF), the number of unexcitable
SEUs affecting the routing structure (RUn), and the time (in minutes) needed
by the proposed tool to carry out the analysis. Moreover, the second part of
Table 4 shows the percentage of unexcitable SEUs affecting the routing structure
(RUn%) and compares it with the percentage of unexcitable SEUs affecting logic
resources (LUn%) calculated using the tool presented in [3]. The computer used
for the experiments was equipped with an Intel Core i5 (QuadCore) 2.67 GHz,
256 KB L1 Cache, 1 MB L2 Cache, 8MB L3 Cache, 4 GB RAM.

The experiments show that, in spite of the very large number of propagation
points (that make SEUs much easier to excite) four out of ten circuits have a
number of unexcitable SEUs in configuration bits controlling routing resources.
The average unexcitability is 1.1%, with a peak of about 4.4% for b13. If we look
at the second part of Table 4, we can see that SEUs affecting routing resources
are much easier to excite than faults affecting logic resources. This may appear
obvious, if we take two points into account: (i) the excitation of an SEU in a
configuration bit controlling an LUT depends on the values of all the inputs
of the LUT while, as it has been discussed in Section 4.1, the excitation of an
SEU in a configuration bit controlling a PIP depends on the value of one or two
signals; and (ii) as we previously discussed, each SEU in the routing structure
has a very large number of propagation points. Moreover we can argue that
stuck-at effects seem to be much easier to excite than wired-AND, wired-MIX
and Bridge effects. In fact among the considered circuits, the ones showing
a number of unexcitable SEUs are those circuits with the highest number of
wired-AND, wired-MIX and Bridge effects.

The time required for the analysis ranges from a few seconds up to a few

11



Table 3: Effects of SEUs in the routing structure.

Circuit Faults s-a-0 s-a-1W-ANDW-Mix Bridge

b01 547 708 2,944 5 7 0

b02 304 118 339 5 7 102

b03 5,910 8,105 21,661 1,423 1,431 2,320

b06 566 372 790 0 18 305

b07 10,431 18,331 47,762 4,085 3,911 4,739

b08 2,689 3,074 8,061 464 496 1,217

b09 3,872 6,569 15,948 567 512 1,908

b10 3,942 4,603 10,727 482 692 1,498

b11 10,104 14,059 35,749 3,537 3,536 4,480

b13 7,203 10,390 27,720 1,143 1,387 3,602

minutes for very small circuits. The analysis time for medium size circuits
increases to about a few hours while the required time for larger circuits is about
one day. We believe that these times are reasonable if we take three points into
account: (i) this analysis should be performed just once during the design of
the system; (ii) by demonstrating the unexcitability of faults, the results of
this analysis can reduce the time required for the generation of test patterns,
thus producing an benefit for the design of the system; and (iii) the proposed
analysis addresses a very accurate fault model for SEUs in the configuration bits
controlling routing resources, and this makes the number of faults that have to
be analysed very large.

Moreover, if we look at the unexcitability analysis from the fault tolerance
point of view, we can see that the proposed tool is able to identify a subset
of those SEUs to which the system is not sensitive, thus allowing an early
assessment of the robustness of the system to SEUs in the configuration memory.

6 Conclusions and Future Work

We have proposed a tool for the unexcitability analysis of SEUs affecting the
configuration memory controlling routing resource of SRAM-based FPGAs. The
tool implements a fault model that is more accurate than the open/short model
usually assumed for the analysis of interconnections in digital circuits. The
application of the tool to some circuits from the ITC’99 benchmark has shown
that, in spite of the large number of propagation points, also SEUs in routing
components can be demonstrated to be unexcitable. Such an analysis may have
a twofold benefit for system designers: on the one hand it can reduce the effort
required of ATPG tools; on the other hand it can express a measure of sensitivity
to SEUs of the system.

As future work we plan to analyze the unpropagability, detecting those faults

12



Table 4: Results from the application of the tool

Circuit RF RUn T(min) RUn% LUn%

b01 547 0 2.45 0 0

b02 304 0 0.80 0 0.11

b03 5,910 170 219.36 2.87 48.42

b06 566 0 1.33 0 7.69

b07 10,431 385 1,863.53 3.69 31.33

b08 2,689 0 37.10 0 4.16

b09 3,872 0 93.29 0 27.45

b10 3,942 0 30.70 0 32.27

b11 10,104 13 1,347.54 0.12 21.56

b13 7,203 321 251.91 4.45 39.72

that cannot be tested because they are always masked before reaching the out-
put of the system. Further, the counterexamples produced by SAL-SMC for
excitable faults can be used to generate test patterns. We also plan to substi-
tute the SAL model checker with an on-the-fly model checking tool, in order to
improve the scalability of the tool.

References

[1] R. Baumann. Radiation-induced Soft Errors in Advanced Semiconduc-
tor Technologies. IEEE Transactions on Device and Materials Reliability,
5(3):305 – 316, September 2005.

[2] S. Bensalem, V. Ganesh, Y. Lakhnech, C. Muoz, S. Owre, H. Rueß,
J. Rushby, V. Rusu, H. Sadi, N. Shankar, E. Singerman, and A. Tiwari.
An Overview of SAL. In Proceedings of the Fifth NASA Langley Formal
Methods Workshop (LFM 2000), pages 187–196, 2000.

[3] C. Bernardeschi, L. Cassano, and A. Domenici. SEU-X: a SEu Un-
uXecitbility prover for SRAM-FPGAs. In Proceedings of the 18th IEEE
International On-Line Testing Symposium (IOLTS2012), June 2012.

[4] C. Bernardeschi, L. Cassano, A. Domenici, and L. Sterpone. Accurate
Simulation of SEUs in the Configuration Memory of SRAM-based FPGAs.
In Proceedings of the IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT 2012), 2012.

[5] European Committee for Electrotechnical Standardization (CENELEC).
EN 50129: Railway applications - Communications, signaling and process-
ing systems - Safety related electronic systems for signaling, February 2003.

13



[6] P. Graham, M. Caffrey, J. Zimmerman, D. E. Johnson, P. Sundararajan,
and C. Patterson. Consequences and Categories of SRAM FPGA Configu-
ration SEUs. In Proceedings of the 6th Military and Aerospace Applications
of Programmable Logic Devices (MAPLD’03), September 2003.

[7] International Atomic Energy Agency (IAEA). NS-G-1.3: Instrumentation
and Control Systems Important to Safety in Nuclear Power Plants, 2002.
IAEA Safety Standards Series.

[8] International Organization for Standardization (ISO). 26262-5: Road ve-
hicles - Functional safety - Part 5. Product development: hardware level,
December 2009. Draft.

[9] I. Kuon, R. Tessier, and J. Rose. Fpga architecture: Survey and challenges.
Foundations and Trends Electronic Design Automation, 2(2):135–253, Feb.
2008.

[10] D. Long, M. Iyer, and M. Abramovici. FILL and FUNI: Algorithms to
Identify Illegal States and Sequential Untestable Faults. ACM Transaction
on Design Automation of Electronic Systems, 5(3):632–657, 2000.

[11] J. Raik, H. Fujiwara, R. Ubar, and A. Krivenko. Untestable Fault Identifi-
cation in Sequential Circuits Using Model-Checking. In Proceedings of the
17th Asian Test Symposium (ATS’08), pages 21–26, 2008.

[12] J. Raik, A. Rannaste, M. Jenihhin, T. Viilukas, R. Ubar, and H. Fujiwara.
Constraint-Based Hierarchical Untestability Identification for Synchronous
Sequential Circuits. In Proceedings of the 16th European Test Symposium
(ETS’11), pages 147–152, 2011.

[13] J. Raik, R. Ubar, A. Krivenko, and M. Kruus. Hierarchical Identification
of Untestable Faults in Sequential Circuits. In Proceedings of the 10th
Euromicro Conference on Digital System Design Architectures, Methods
and Tools (DSD’07), 2007.

[14] M. Rebaudengo, M. Sonza Reorda, and M. Violante. A new functional fault
model for FPGA application-oriented testing. In Proceedings of the 17th
IEEE International Symposium on Defect and Fault Tolerance in VLSI
Systems (DFT 2002), pages 372 – 380, 2002.

[15] K. Rozier. Linear Temporal Logic Symbolic Model Checking. Computer
Science Review, 5(2):163 – 203, 2011.

[16] D. Tille and R. Drechsler. A Fast Untestability Proof for SAT-based ATPG.
In Proceedings of the 12th International Symposium on Design and Diag-
nostics of Electronic Circuits & Systems (DDECS’09), pages 38–43, 2009.

[17] M. Violante, N. Battezzati, and L. Sterpone. Reconfigurable Field Pro-
grammable Gate Arrays for Mission-Critical Applications. Springer Science
& Business Media, 2011.

14


