
GRNSPG Working Seminar
Methodologies for I&C Systems Specification and Design

Pisa, 2 September, 2009

Andrea Domenici
DIIEIT, Università di Pisa

Andrea.Domenici@iet.unipi.it

C. Bernardeschi, A. Domenici 2/61

Outline

■ DEVELOPMENT OF SAFE SOFTWARE
◆ Issues and Requirements

■ Part 1: THE OBJECT-ORIENTED APPROACH
◆ Structural Modeling
◆ Behavioral Modeling
◆ Component-oriented Modeling
◆ Development and Verification

■ THE FORMAL APPROACH
◆ Process Algebras and Temporal Logics
◆ Model Checking
◆ Example

■ THE AUTOMATED DEVELOPMENT APPROACH
◆ The TXS SPACE Development Environment

C. Bernardeschi, A. Domenici 3/61

DEVELOPMENT OF SAFE SOFTWARE

C. Bernardeschi, A. Domenici 4/61

Requirements (1)

The three main requirements for I&C software in NPP’s are:

1. Safety,
2. safety, and
3. safety.

. . . but let us take a closer look.

C. Bernardeschi, A. Domenici 5/61

Requirements (2)

■ Fault avoidance : Software quality is the first line of defense.
◆ Rigorous development process.
◆ Testing, verification, and validation.
◆ Competence and experience.

■ Fault tolerance : Specific provisions designed into the software
are the second line of defense, against undetected design (or
coding) errors and unforeseen accidents.
◆ Compliance with system-level safety requirements and design.
◆ System-level exception handling.
◆ Choice of fault-tolerant mechanisms (redundancy, diversity,

voting schemes. . .).
◆ Issues specific to computer systems (interrupts, memory

management, clocks. . .).

C. Bernardeschi, A. Domenici 6/61

HW and SW issues affecting reliability

■ Operating system and processes.
■ Interrupt handling, clocks, and scheduling.
■ Memory management.
■ Loops and other programming issues.

C. Bernardeschi, A. Domenici 7/61

Operating system and processes

The operating system (OS) has direct control on the physical
resources (CPU, memory, peripherals) of a computer system.

User applications are physically prohibited from accessing the
computer resources directly: they must go through the OS by issuing
system calls (except in very simple systems).

A process is a program in execution. Processes are controlled by the
OS, that starts their execution and allocates (assigns) resources
(including execution time-slots).

OS’s support multitasking, i.e. concurrent execution of multiple
proceses.

General-purpose OS’s (e.g., Linux, Mac OSX, MS Windows) handle
multitasking with the goal of maximizing throughput and average
response time.

Real-time OS’s must ensure respect of execution deadlines and
priorities among processes.

C. Bernardeschi, A. Domenici 8/61

External Interrupts

memory I/O adapter I/O adapter

CPU

interrupt bus

data bus

External interrupts are signals that peripheral devices send
asynchronously to the CPU on the occurrence of some events, such
as completion of a HW operation, availability of input data, HW
faults. . .

C. Bernardeschi, A. Domenici 9/61

Interrupt handling, clocks, and scheduling

When the CPU receives an interrupt, it suspends its current activity,
executes an interrupt handler routine associated with the specific
signal, then returns to the previous activity.

Internal interrupts may be generated by program errors (e.g., division
by zero or access to forbidden memory areas) or system calls.

Clock interrupts are used for various timing purposes, including the
demarcation of time-slices allotted to processes.

Interrupts are a fundamental mechanism in the OS and are very
convenient in general-purpose time-sharing environments, but they
may introduce nondeterminism, i.e., unpredictable behavior.

Real-time and control systems often reduce usage of interrupts to a
minimum and resort to cyclic execution: all operations are executed
in a fixed sequence within a main operation cycle, and no operation
can be interrupted by another task. The CPU repeats the cycle
indefinitely.

C. Bernardeschi, A. Domenici 10/61

Memory management

A process memory space can be managed in three ways:

■ Static: allocated at the beginning of process execution, released at
the end. The space size is known in advance (computed by the
compiler) and fixed.

■ Automatic: allocated for each subroutine of the process when the
subroutine is called, released when it exits. The space size is
known in advance and fixed.

■ Dynamic: allocated on demand at any time during execution, with
a size known only at execution time. The space may be released
by the process explicitly, or (depending on the language) reclaimed
by an underlying garbage collection mechanism.

Dynamic memory management allows for a very flexible and efficient
use of memory, but it may introduce nondeterminism due to “out of
memory” failures or untimely intervention of the garbage collector.
Programming errors are possible with explicit memory release.

As a result, some development methods or tools avoid dynamic
memory management.

C. Bernardeschi, A. Domenici 11/61

Example: Memory Management in C++

int n = 0; // a static variable
// (declared outside
// any function)

void some_function()
{

float x; // an automatic variable
float* p = // a pointer to an array

// of 4 numbers...
new float[4]; // ... created in

// dynamic memory
p[0] = 3.14;
// ...
delete[] p; // release memory

}

C. Bernardeschi, A. Domenici 12/61

Example: Loops

for (int i = 0; i++; i < 100 {
// this loop will be executed
// no more than 100 times

};

float x = 100.0;
while (x != 0) { // not equal

// we do not know how many times
// this loop will be executed...
// maybe for ever!
x = ... ; // change x

}

C. Bernardeschi, A. Domenici 13/61

THE OBJECT-ORIENTED APPROACH

C. Bernardeschi, A. Domenici 14/61

Simulating Real-world Objects

O-O methods and languages (e.g., UML [1]) are based on simulation.

■ An object represents a real-world entity, concrete (e.g., a motor) or
abstract (e.g., a system of equations).

■ An object is defined by its identity, by the values of the entity
attributes (e.g., a motor’s nameplate data, current speed and
torque. . .) and by the operations the entity can execute on request
by other entities (e.g., changing the speed. . .).

■ Links between objects represent logical relationships between the
corresponding entities. E.g. a motor opens a valve, a vector
satisfies a set of equations.

■ A class is a template description for a set of objects having the
same attributes (possibly with different values) and operations.

■ An association between two classes is a template for the links
between the respective objects.

C. Bernardeschi, A. Domenici 15/61

Example: A Very Simple Class Diagram

nominal_speed

start()
stop()

Motor

change(rpm)

positioncurrent_speed

Valve

diameter

move(percent)

open

Actuator

C. Bernardeschi, A. Domenici 16/61

Special Associations and Relationships

■ Aggregation: The (weak) association of a compound entity with its
components, when the components may exist outside the
compound entity (e.g. a team and its players, a library and its
books).

■ Composition: The (strong) association of a compound entity with
its components, when the components may not exist outside the
compound entity (e.g. a motor and its parts).

■ Generalization: A relationship (not an association) specifying that
a class is a subset of another one (e.g., motors are a subclass of
actuators).

C. Bernardeschi, A. Domenici 17/61

Example: Aggregation

Team

Player

11

C. Bernardeschi, A. Domenici 18/61

Example: Composition

Motor

Stator Rotor

Stator

Rotor

Motor

1

1

1 1

C. Bernardeschi, A. Domenici 19/61

Behavioral Modeling

Modeling languages such as the UML complement the basic OO
structural concepts with behavioral concepts drawn from other
modeling approaches:

■ State Machines describe how an object or (sub)system responds
to events. The UML uses a complex state machine language
derived from the Statecharts formalism [2].

■ Interactions describe how objects or (sub)systems interact by
exchanging messages.

■ Activities describe the flow of control and data involved in carrying
out a task.

C. Bernardeschi, A. Domenici 20/61

Example: State Machines (1)

after(delay) timeout/ send

Idle
start

stop

set_delay(d) / delay := d

Timer

Timer

delay

set_delay(d)
start()
stop(d)

Running

after(. . .): fire transition after delay seconds (time event)
send: generate a timeout signal

C. Bernardeschi, A. Domenici 21/61

Example: State Machines (2)

when(t >= t_max) / send turn_off

start / send turn_on

Idle
set_t_max(t) / t_max := t do/ loop {

t := read() }

Runningstop

Heater

t_max
t

+ stop()
+ start()
+ set_t_max(t)
− read()

Heater

when(. . .): fire transition when a condition becomes true (change
event)
do/: perform an activity while in a given state.

C. Bernardeschi, A. Domenici 22/61

Example: State Machines (3)

Timer

Heater

start

timeout / heater.stop()

Idle entry/ timer.start(); heater.start()

Running

set_max_time(d) / timer.set_delay(d)

stop
exit/ heater.stop()

set_max_temp(t) / heater.set_t_max(t)

Programmer

set_max_temp(temp)
set_max_time(time)

Programmer timer

heater
start()
stop()

heater, timer: rolenames to identify participants in an association
entry/: activity performed when entering a state
exit/: activity performed when leaving a state

C. Bernardeschi, A. Domenici 23/61

Example: State Machines (4)

start

timeout / heater.stop()

after(delay) timeout/ send

Idle
start

set_delay(d) / delay := d
Running

stopTimer

start / send turn_on

when(t >= t_max) / send turn_off

Idle
set_t_max(t) / t_max := t do/ loop {

t := read() }

Runningstop

Heater

Idle entry/ timer.start(); heater.start()

Running

set_max_time(d) / timer.set_delay(d)

stop
exit/ heater.stop()

set_max_temp(t) / heater.set_t_max(t)

Programmer

C. Bernardeschi, A. Domenici 24/61

Example: Sequence Diagram

 : Timerp : Programmer : Heater : User

set_delay(d)
set_max_time(d)

set_max_temp(t)
set_t_max(t)

start()
start()

start()

timeout

Scenario 1: the heater reaches the limit temperature before timeout
or manual stop.

C. Bernardeschi, A. Domenici 25/61

Example: Sequence Diagram

 : Timerp : Programmer : Heater : User

set_delay(d)
set_max_time(d)

set_max_temp(t)
set_t_max(t)

start()
start()

start()

timeout

stop()

Scenario 2: timeout occurs before the heater reaches the limit
temperature.

C. Bernardeschi, A. Domenici 26/61

Example: Sequence Diagram

 : Timerp : Programmer : Heater : User

set_delay(d)
set_max_time(d)

set_max_temp(t)
set_t_max(t)

start()
start()

start()

stop()
stop()

Scenario 3: manual stop.

C. Bernardeschi, A. Domenici 27/61

Example: Activity Diagram

start

P A B

C

Open valve BOpen valve A Start pump P

A and B open

Open valve C

finished

Compute parameters

[not enabled]

[enabled]

C. Bernardeschi, A. Domenici 28/61

Physical Modeling

Deployment diagrams describe the physical structure of a system:

■ Nodes represent hardware devices performing computations
(typically, whole computer, or lower-level parts if necessary).

■ Artifacts represent files (containing programs or data).
■ Associations represent communication paths between nodes.

C. Bernardeschi, A. Domenici 29/61

Example: Deployment Diagram

<<artifact>>

controller emergency

<<artifact>>

<<device>>

PC

<<artifact>>

firesubsys

<<artifact>>

powersubsys

<<device>>

controlboard«tcp»

C. Bernardeschi, A. Domenici 30/61

Design Modeling

An object-oriented design evolves from the analysis model. The
analysis model describes the system in terms of its externally visible
properties and behavior, while the design model describes its
internal structure.

In the analysis model we find classes that represent real-world
entities; in the design model we have the same classes (or similar
classes related to them) that simulate (i.e., define a software model
of) the real-world entities or interface them with the system.

Classes and associations in the design model add detailed
information to those in the analysis model.

The component diagram element models a replaceable part of a
system, defined by its provided and required interfaces. A
component may have more than one provided or required interface:
this enables designers to specify precisely the dependencies
between components. A group of related interfaces of a component
is a port.

A component usually contains other components or classes.
Components enable designers to build hierarchical models.

C. Bernardeschi, A. Domenici 31/61

Example: Component Diagrams (1)

Radio TunerRPY

TunerREQ

CdPlay

PlayerRPY

PlayerREQ

StereoSystem

«component»

PwrVolume

Tuner

Player

User

Switch
Supply

Amplifier
Amp

Switch, Amplifier, TunerREQ, PlayerREQ: required interfaces (sets
of operations called by the component)
PwrVolume, Tuner, Player, TunerRPY, PlayerRPY: provided
interfaces (sets of operations called by other components)

C. Bernardeschi, A. Domenici 32/61

Example: Component Diagrams (2)

:Power

:Amplif

:Tuning

:CDReading

StereoSystem

«component»
Radio TunerRPY

TunerREQ

CdRdr

ReaderRPY

ReaderREQ

PwrVolume

Tuner

Reader

User

Switch
Supply

Amplifier
Amp

Internal structure of the component.

C. Bernardeschi, A. Domenici 33/61

Example: Component Diagrams (3)

PowerSupply
«component»

«component»

Tuner

«component»

Player

«component»

UserInterface

PlayerREQ

AmplifierSys
«component»

StereoSystem

«component»

TunerRPY

TunerREQ

PlayerRPY

Player

Tuner

PwrVolume

AmplifierSwitch

Interconnected components.

C. Bernardeschi, A. Domenici 34/61

Coding

OO languages, such as C++, directly map the concepts of class and
generalization into programming language constructs.

Other concepts (such as associations) are not supported directly and
may be implemented in different ways.

C. Bernardeschi, A. Domenici 35/61

Support for Development and Verification

Even if the UML is a semi-formal language, it allows precise and
detailed models to be built, thus enabling tools to automatically
generate much of the source code.

Tools may also check against errors and inconsistencies.

Any model element may be annotated with comments and
constraints.

Constraints may be expressed in a formal language, including the
UML-specific Object Constraint Language (OCL).

C. Bernardeschi, A. Domenici 36/61

Example: Constraints (1)

«constraint»

{ 0 < t_max < 300 C }

{ 0 < t =< t_max }

Heater

t_max
t

+ stop()
+ start()
+ set_t_max(t)
− read()

Constraints on attribute values.

C. Bernardeschi, A. Domenici 37/61

Example: Constraints (2)

: Heater : Timerp : Programmer : User

{ d − a >= 2.5 ms }

set_delay(d)
set_max_time(d)

set_max_temp(t)
set_t_max(t)

start()
start()

start()

stop()
stop()

a

d

b

c
{ c − b =< 1 ms }

{ b − a =< 1 ms }

a, b, c, and d are timing marks
the constraints on the diagram specify that a stop request must not
be issued before both the timer and the heater have been started.

C. Bernardeschi, A. Domenici 38/61

THE FORMAL APPROACH

C. Bernardeschi, A. Domenici 39/61

Modeling: Process Algebras and LTS’s

■ A process algebra [3, 4] is a language that describes systems in
terms of sets of states and sequences of actions.
◆ More precisely, it describes the actions that a system may execute at

each step of its evolution. A state is defined implicitly by the set of
action that are possible at a given step.

■ The algebra defines operations that act on the elements of the
domain, such as forming sets and sequences, and combining
them in various ways.

■ E.g., we may define operations for parallel and sequential
composition to describe the interaction of two processes.

■ A system is described by a process algebra formula, that in turn is
represented by a Labelled Transition System (LTS), a graph whose
nodes are states and whose edges are transitions.

■ A LTS may also model the behavior of a state machine, or
conversely, state machines are an alternative way to specify a LTS.

C. Bernardeschi, A. Domenici 40/61

Equivalence of Labeled Transition Systems

Several equivalence relations have been defined for LTS’s, along
with techniques to prove if such relations are satisfied.

It is then possible to verify if two specifications (by process algebra
expressions o state machines) define the same behavior.

In particular, it is possible to prove (at least in principle), that a design
model is equivalent to an analysis model.

It is also possible to verify a refinement relation, i.e., whether a
model satisfies a superset of the requirements of another model.

C. Bernardeschi, A. Domenici 41/61

Example: Vending Machine (1)

take

coin

tea coffee

tea coffee

coin

V

take

coin

tea coffee

A vending machine V accepts a coin, then it delivers tea or coffee,
then, after the drink has been taken by the customer, returns to the
initial state.

In a CCS-like [3] process algebra, this can be described as:

V = coin.(tea.take.V + coffee.take.V)

C. Bernardeschi, A. Domenici 42/61

Example: Vending Machine (2)

coin

coffeetea

tea coffee

coin

V

take

coin

tea coffee

take stop

A broken vending machine V , that may go out of service if coffee is
selected.

V = coin.(tea.take.V + coffee.(take.V + stop))

C. Bernardeschi, A. Domenici 43/61

Expressing Properties: Temporal Logics

■ To each state we may associate state variables representing
physical quantities or logical conditions.

■ Properties of the system in a given state are expressed with
formulas of ordinary logic (propositional logic or predicate logic).

■ Temporal logics express properties related to the evolution of the
system in time or, equivalently, to the states it can reach.

■ E.g., we may say that “The coolant temperature will never exceed
a given limit”, or “if signals A and B are activated, signal C will
eventually be activated”.

■ Temporal logics use operators that relate the truth values of
formulas to periods or instants of time, e.g.:
◆ �F means that F will be true from now on.
◆ ♦F means that F will eventually become true.

C. Bernardeschi, A. Domenici 44/61

Proving Properties: Model Checking

Model Checking is a common technique used in the automatic
verification of temporal logic properties over systems specified by an
LTS.

Model checking consists in exploring the LTS (augmented with state
variables) and evaluating temporal logic formulas at each node.

If a formula is not satisfied, the model checker tool can usually
produce a counterexample, e.g., a path through the LTS leading to a
state that violates the formula.

C. Bernardeschi, A. Domenici 45/61

Example: A Stepwise Shutdown Logic (1)

This example is taken from [5] (K. Björkman et al., Verification of
Safety Logic Design by Model Checking, NPIC&HMIT 2009), with
some adaptations.

A Stepwise Shutdown Logic (SSL) responds to disturbances in plant
variables by applying a corrective action for a limited time interval,
and then checking if the disturbed variables have returned within
normal limits.

A manual trip signal may interrupt the cycle and force the corrective
action to a complete shutdown.

In this case study, a SSL design is modeled as a LTS, and then its
correctness is verified by means of the Uppaal [6] model checking
tool.

The tool is based on a behavior specification language called Timed
Automata [7], and a temporal logic called Timed Computational Tree
Logic (TCTL) [8].

C. Bernardeschi, A. Domenici 46/61

Timed Automata

■ Timed Automata are finite state machines extended with clocks
that model the passing of time.

■ A transition may be triggered by an action, possibly under a
constraint (called a guard) on one or more clock values.

■ A transition may reset clocks.
■ The language used in the Uppaal tool introduces several other

features, including integer variables and channels that connect
automata to form networks.

C. Bernardeschi, A. Domenici 47/61

Timed Computational Tree Logic

■ State formulae are logical conditions on clocks and integer
variables associated with single states.

■ Path formulae are logical conditions on clocks and integer
variables, quantified wrt time and paths in the LTS associated with
an automaton or a network:
◆ E♦φ: there exists a path leading to a state where φ holds

(reachability).
◆ E�φ: there exists a maximal path whose states all satisfy φ

(safety).
◆ A�φ: all reachable states satisfy φ (safety).
◆ A♦φ: for all paths, φ will eventually hold (liveness).
◆ ψ φ: shorthand for A�(ψ ⇒ A♦φ), i.e., for all paths, if ψ

holds, then φ will eventually hold (liveness).

C. Bernardeschi, A. Domenici 48/61

Example: A Stepwise Shutdown Logic (2)

3 s

15 s

T111

T112

T211

T211

P121

P221

1 out of 2

F131

F231

1 out of 2

M141

M241

1 out of 2

5 s 0

OR AND

or_out

T2_out

R

2 Max

T2

T1_out
T1

T: temperature
P: pressure
F: water flow
M: manual trip

(adapted from K. Björkman et al., Verification of Safety Logic Design by Model Checking, NPIC&HMIT 2009)

C. Bernardeschi, A. Domenici 49/61

Example: A Stepwise Shutdown Logic (3)

3 s

15 s

OR AND

or_out T1_out

T2_out

T2

T1

R

A close-up view of the control logic.

C. Bernardeschi, A. Domenici 50/61

Example: A Stepwise Shutdown Logic (4)

Trigger Out1Out0

[or_out = 1] T2_change?

input_change?
[T2_out = 0]

output_change!
t := 0; T1_out := 1

C

{T2_out = 0}

[t = 3] T1_out := 0

The timed automaton for the T1 timer.

Out0, Trigger, Out1: states; or_out, T1_out, T2_out: state variables;
input_change, T2_change: input events;
output_change: output event. t: clock variable;

T1 is triggered if either there is a rising edge on the or_out wire
(input_change event) and T2_out is zero, or there is a falling edge on the
T2_out wire (T2_change event) and or_out is one. Then T1 enters Out1,
T1_out is set to 1 and clock t starts. After 3 s T1 goes back to Out0.

NOTE: Notation and terminology are slightly different from those of the
original paper.

C. Bernardeschi, A. Domenici 51/61

Example: A Stepwise Shutdown Logic (5)

OR T1

T2

AND

input_change

T2_change

output_change

The network of timed automata for the SSL.

Automata are connected by channels that propagate events.

NOTE that channels do not necessarily correspond to physical
connections.

Only the channels related to T1 are shown.

C. Bernardeschi, A. Domenici 52/61

Example: A Stepwise Shutdown Logic (6)

The model was checked against these properties:

1. If at least two of the temperature measurements are over the limit,
then eventually the output of the system becomes 1.

2. If at least one of the temperature measurements are over the limit,
then eventually the output of the system becomes 1.

3. If at least one of the two water inflow signals have been on at least
five seconds, then eventually the output of the system becomes 1.

4. If at least one of the two manual trigger signals is on, then
eventually the output of the system becomes 1.

E.g., Property 2, can be expressed by this TCTL formula:

A�(((P121 ∨ P221) ∧ T2_out = 0) ⇒ A♦T1.Out1)

where T1.Out1 means “T1 is in state Out1”.

C. Bernardeschi, A. Domenici 53/61

Example: A Stepwise Shutdown Logic (7)

Automatic verification found that all four properties were violated.

The counterexamples provided by the model checker tool enabled
designers to find the error: If a manual trip button is pushed during
the 3 second time pulse, then the 15 second block is reset and the 3
second block will never receive a rising edge again.

A different design was proved to be correct.

C. Bernardeschi, A. Domenici 54/61

Example: A Stepwise Shutdown Logic (8)

T111

T112

T211

T211

P121

P221

1 out of 2

F131

F231

1 out of 2

M141

M241

1 out of 2

5 s 0

3 s

3 s

15 s

OR AND

2. Max

OR
out

A correct design for the SSL.

C. Bernardeschi, A. Domenici 55/61

THE AUTOMATED DEVELOPMENT APPROACH

C. Bernardeschi, A. Domenici 56/61

Code from Specifications

“The graphic user interface [. . .] permits the process
engineer to specify the functional requirements of the I&C
system without any software knowledge ”.

Qualification of the Framatome ANP TXS Digital Safety I&C System
– Revision to EPRI TR-114017: Compliance with EPRI TR-107330,
“Generic Requirements Specification for Qualifying a Commercially

Available PLC for Safety-Related Applications in Nuclear Power
Plants”, EPRI, Palo Alto, CA: 2002. 1003567.

C. Bernardeschi, A. Domenici 57/61

Example: the SPACE Environment (1)

■ The Specification and Coding Environment (SPACE) [9] is the tool
used to develop application software for the TELEPERM XS Digital
Safety I&C System (TXS).

■ Process engineers specify both the software and the hardware
architecture of the application.

■ The HW architecture is specified by hierarchical structural
diagrams and interconnection diagrams.

■ The SW (or, more precisely, functional) architecture is specified by
Function Block Diagrams.

■ The information contained in the diagrams is stored in a relational
database.

■ A code generator produces the application code and the
configuration parameters needed for execution.

■ Each function block is implemented by a library module.

C. Bernardeschi, A. Domenici 58/61

Example: the SPACE Environment (2)

■ The quality of the development process is based on the reliability
of the library modules, of the code generating tool, and of the
underlying run-time environment.

■ All SW module have a simple structure, they have been developed
according to well-established safety guidelines (e.g., no dynamic
memory etc.), and have been thoroughly tested.

■ The code generator is (probably) rather straightforward, as it must
translate FBD’s composed out of a small set (ca. 120) of
predefined blocks with well defined interfaces and semantics, and
strict composition rules that are checked automatically.

■ The run-time environment and OS have been developed according
to strict safety requirements (e.g., limited use of interrupts, cyclical
behavior. . .).

■ The SPACE environment provides tools for simulation and
automated testing.

C. Bernardeschi, A. Domenici 59/61

References (1)

[1] J. Rumbaugh et al., The Unified Modeling Language Reference
Manual – Second Edition, Addison–Wesley, 2005.

[2] D. Harel, Statecharts: A Visual Formalism for Complex Systems,
Science of Computer Programming, 8(3):231–274, 1987.

[3] R. Milner, A Calculus of Communicating Systems, Lecture Notes
in Computer Science, vol. 92, Springer-Verlag, 1980.

[4] L. Aceto et al., Reactive Systems: Modelling, Specification and
Verification, Cambridge University Press, 2007.

[5] K. Björkman et al., Verification of Safety Logic Design by Model
Checking, NPIC&HMIT, 2009.

[6] Uppaal integrated tool environment v. 4.0.6,
http://www.uppaal.com (2009).

C. Bernardeschi, A. Domenici 60/61

References (2)

[7] R. Alur and D. L. Dill, A Theory of timed automata, Theoretical
Computer Science, 126(2):183–235, 1994.

[8] R. Alur et al., Model-checking for real-time systems, Fifth Annual
IEEE Symposium on Logic in Computer Science, pp. 414–425,
IEEE, 1990.

[9] K. Waedt and S. Stöcker, SPACE, Specification and Coding
Environment. A Toolkit allowing the Graphical Specification of Safety
Critical Programs for Automation, ESREL ’93, pp. 825–839,
München, 1993.

C. Bernardeschi, A. Domenici 61/61

Thank you

Ačiū
Grazie
Obrigado

	Outline
	=11pt --1 .75=minus .25==minus .251.75ex minus .35ex .2ex minus .2ex 1ex minus .2exDEVELOPMENT OF SAFE SOFTWARE
	Requirements (1)
	Requirements (2)
	HW and SW issues affecting reliability
	Operating system and processes
	External Interrupts
	Interrupt handling, clocks, and scheduling
	Memory management
	Example: Memory Management in C++
	Example: Loops
	=11pt --1 .75=minus .25==minus .251.75ex minus .35ex .2ex minus .2ex 1ex minus .2exTHE OBJECT-ORIENTED APPROACH
	Simulating Real-world Objects
	Example: A Very Simple Class Diagram
	Special Associations and Relationships
	Example: Aggregation
	Example: Composition
	Behavioral Modeling
	Example: State Machines (1)
	Example: State Machines (2)
	Example: State Machines (3)
	Example: State Machines (4)
	Example: Sequence Diagram
	Example: Sequence Diagram
	Example: Sequence Diagram
	Example: Activity Diagram
	Physical Modeling
	Example: Deployment Diagram
	Design Modeling
	Example: Component Diagrams (1)
	Example: Component Diagrams (2)
	Example: Component Diagrams (3)
	Coding
	Support for Development and Verification
	Example: Constraints (1)
	Example: Constraints (2)
	=11pt --1 .75=minus .25==minus .251.75ex minus .35ex .2ex minus .2ex 1ex minus .2exTHE FORMAL APPROACH
	Modeling: Process Algebras and LTS's
	Equivalence of Labeled Transition Systems
	Example: Vending Machine (1)
	Example: Vending Machine (2)
	Expressing Properties: Temporal Logics
	Proving Properties: Model Checking
	Example: A Stepwise Shutdown Logic (1)
	Timed Automata
	Timed Computational Tree Logic
	Example: A Stepwise Shutdown Logic (2)
	Example: A Stepwise Shutdown Logic (3)
	Example: A Stepwise Shutdown Logic (4)
	Example: A Stepwise Shutdown Logic (5)
	Example: A Stepwise Shutdown Logic (6)
	Example: A Stepwise Shutdown Logic (7)
	Example: A Stepwise Shutdown Logic (8)
	=11pt --1 .75=minus .25==minus .251.75ex minus .35ex .2ex minus .2ex 1ex minus .2exTHE AUTOMATED DEVELOPMENT APPROACH
	Code from Specifications
	Example: the SPACE Environment (1)
	Example: the SPACE Environment (2)
	References (1)
	References (2)
	Thank you

