
GRNSPG Internship
Introduction to Software Engineering and Digital Systems R eliability

Pisa, 15 June, 2009

Testing, Verification and Validation of I&C
Systems

Andrea Domenici
DIIEIT, Università di Pisa

Andrea.Domenici@iet.unipi.it

C. Bernardeschi, A. Domenici 2/65

SOFTWARE LIFECYCLE AND PROCESSES

C. Bernardeschi, A. Domenici 3/65

Generic product lifecycle

Verification

Planning & mgmt

Design validationAnalysis and specification

(Usage and) maintenance

Manufacturing

Decommissioning

The lifecycle of a product is the set of activities affecting it from
conception to retirement.

The lifecycle of software products is similar to the general lifecycle,
but there are important differences.

C. Bernardeschi, A. Domenici 4/65

Software lifecycle

Verification

Planning & mgmt

Design validationAnalysis and specification

(Usage &)
maintenance

(?)

Coding

Coding is actually the final phase of design.

Software maintenance is actually redesign/recoding to correct or
improve deployed software components.

In this seminar we ignore issues about software decommissioning.

C. Bernardeschi, A. Domenici 5/65

Software development processes (1)

Verification

logical precedence

temporal precedence

mapping

Analysis and specification Design Coding Validation

APh DPh CPh VPh

A software development process maps activities (i.e., things to be
done) into phases (i.e., periods wherein activities are carried out).

Each phase has well-defined milestones (important events at
planned dates) and produces some deliverables (documents or
code).

The waterfall family of processes maps each activity to a distinct
phase.

C. Bernardeschi, A. Domenici 6/65

Software development processes (2)

Analysis and specification Design Coding Validation

DPh 1APh 1 VPh 1CPh 1 VPh nCPh nAPh n DPh n

cycle 1 cycle n

Verification

logical precedence

temporal precedence

mapping

Other families of processes, such as the iterative processes, have
more complex mappings from activities to phases.

The waterfall processes, however, are usually preferred (or
mandatory) for software with safety requirements.

C. Bernardeschi, A. Domenici 7/65

The IAEA TRS 282 waterfall model

Feasibility study

Requirements specification

SW functional specn

Module coding

Module design

Detailed module specn

SW system design

System testing

Decommissioning

Integration and testing

Commissioning & handover

Use & maintenance

International Atomic Energy Agency, Manual on Quality Assurance
for Computer Software Related to the Safety of Nuclear Power
Plants, Tech. Reports Series No. 282, IAEA, Vienna, 1988.

C. Bernardeschi, A. Domenici 8/65

The Gullfoss waterfall model

(brunnur.stjr.is/embassy/strasb.nsf/pages/index.html)

C. Bernardeschi, A. Domenici 9/65

REQUIREMENTS ANALYSIS AND SPECIFICATION

C. Bernardeschi, A. Domenici 10/65

Requirements

■ A requirement is a statement about a relevant aspect of a system
that must be developed: a service it must deliver, a property or
constraint it must satisfy, and so on.

■ Some requirements may concern the development process itself,
rather than the system; for example, it may be a requirement that
the system is developed following certain standard procedures.

C. Bernardeschi, A. Domenici 11/65

Functional and non-functional requirements

■ Functional requirements describe the services offered by the
system in terms of relationships between inputs and outputs.

■ A system that satisfies its functional requirements is said to be
correct.

■ Non-functional requirements describe properties of or constraints
on the system or process.

■ Some non-functional requirements are reliability, robustness,
safety, and performance.

C. Bernardeschi, A. Domenici 12/65

Constraints

■ Constraints are non-functional requirements that impose
limitations on design choices.

■ Time constraints are particularly important in control systems.
■ Synchronization constraints impose some ordering among events,

without specifying bounds on time intervals between events.
◆ E.g.: “Valve B must not be opened before valve A”.

■ Real-time constraints impose bounds on time intervals between
events.
◆ E.g.: “Valve B must be opened between 10 and 20 seconds

after valve A”.

Note that a real-time system is not necessarily a fast system.
Predictability is more important than speed.

C. Bernardeschi, A. Domenici 13/65

Analysis and specification

■ Requirements analysis is the process of understanding what is
required of a system.

■ Requirements analysis involves studying the application domain,
so that software developers may understand the relationship of the
software with its environment.

■ A requirements specification is the result of the requirements
analysis process, i.e., a document that gives a precise and
complete description of the requirements.

■ The analysis process results in the construction of a model, i.e., an
abstraction of the relevant aspects of the system and its
environment.

■ Using a specific analysis method helps making this model and its
underlying assumptions more explicit and verifiable.

C. Bernardeschi, A. Domenici 14/65

Traceability

Requirements should be traceable to design; design
should be traceable to code; requirements, design and code
should be traceable to tests.

Traceability should be maintained when changes are
made.

There should be traceability in the reverse direction, to
ensure that no unintended functions have been created.

IAEA Safety Guide Software for Computer Based Systems Important
to Safety in Nuclear Power Plants, NS-G-1.1

C. Bernardeschi, A. Domenici 15/65

Testability

Each requirement and each design feature should be
expressed in such a manner that a test can be done to
determine whether that feature has been implemented
correctly.

Both functional and non-functional requirements should be
testable.

Test results should be traceable back to the associated
requirements.

IAEA Safety Guide Software for Computer Based Systems Important
to Safety in Nuclear Power Plants, NS-G-1.1

C. Bernardeschi, A. Domenici 16/65

Models and deliverables

state
city

GeogLocation

Flight

Airport

Arline

data

Passenger

1
1

*
*

1..*

1..*

dep_airport

1
1

* *

//

books

close_airport

departure

destination

destn_airport

Analysis

Requirements
Specification

SW

Test Plan

User Manual

The analysis phase produces an analysis model.

The analysis model is defined by the Software Requirements
Specification document.

Other deliverables include the Test Plan and User Manual(s).

C. Bernardeschi, A. Domenici 17/65

DESIGN AND REALIZATION

C. Bernardeschi, A. Domenici 18/65

Architectures and modules

■ In the design phase developers find technical solutions to build a
system that satisfies the requirements.

■ The design phase produces a software architecture.
■ An architecture is a model of the internal structure of the software.
■ A system architecture consists in the set of the system’s

components and their reciprocal connections and relationships.
■ The architecture is hierarchical: the major components

(subsystems) are composed of smaller components (modules)
and so on, recursively.

■ The smallest-scale modules are called unit modules.

C. Bernardeschi, A. Domenici 19/65

An architectural model

«component»

Interface
Control

Display

«component»

«component»

Protection

«component»

Monitoring

Control

«component»

Sensors

«component»

Actuators

«component»

A hypothetical architecture, using the UML notation for subsystems.

WARNING: this is not a real system!

C. Bernardeschi, A. Domenici 20/65

Coding

■ In the unit coding and testing phase the modules specified in the
design phase are implemented in some programming language.

■ Programming involves translating the structuring concepts used in
the design, such as interfaces and relationships of various kinds,
into the concepts made available by the chosen programming
language.

■ Programming also involves filling in several details left unspecified
in the design phase.

C. Bernardeschi, A. Domenici 21/65

Development tools

■ Basic tools support programming and SW building: text editors,
compilers, debuggers, linkers, tools for automatic compilation and
configuration. . .

■ Integrated development environments co-ordinate basic tools
through a user-friendly interface, and may offer more advanced
capabilities.

■ Computer assisted software engineering (CASE) tools enable
designers to create analysis and design models in some formal or
semiformal language (we’ll see them shortly).

■ Tools may also support various forms of verification, and
documentation.

C. Bernardeschi, A. Domenici 22/65

Automatic code generation

■ CASE tools can generate code for a usually partial implementation
of the system.

■ If the model is correct and the code generation mechanism is
correct, then we are reasonably sure that the code is correct.

C. Bernardeschi, A. Domenici 23/65

Integration

■ Software integration is the process of assemblying the whole
software system from its components.

■ This process is carried out incrementally:
◆ a first module is linked to a test harness that simulates the rest

of the system,
◆ and this simulated system (harness plus the integrated module)

is tested,
◆ then another module is integrated and tested, and so on.

■ The process of testing each module as it is added to the system
under integration is called integration testing.

■ Hardware and software integration is the installation of the
software on the computer(s) where it must run (that may be
different from the development computer).

■ The Integrated computer system tests are then performed.

C. Bernardeschi, A. Domenici 24/65

V&V ACTIVITIES

C. Bernardeschi, A. Domenici 25/65

Verification and validation (1)

A common definition:

■ Verification checks an implementation against its specification.
◆ Are we making the product right?

■ Validation checks a product (final or intermediate) against its
intended requirements.
◆ Are we making the right product?

With these definitions, deliverables at any stage of the process may
be validated.

C. Bernardeschi, A. Domenici 26/65

Verification and validation (2)

Another definition, as in IAEA TRS 384:

■ Verification: The process of determining whether or not the
product of each phase of the digital computer system process
fulfils all the requirements imposed by the previous phase.

■ Validation: The testing and evaluation of the integrated computer
system (hardware and software) to ensure compliance with the
functional, performance and interface requirements.

With these definitions, only the final product is validated. Verification
applies to the intermediate deliverables.

C. Bernardeschi, A. Domenici 27/65

Verification and validation (3)

User requirements

Software coding

Software design

Computer system specn

System reqmts specification

Software test

Computer system integration

Integd computer system test

Validation system test

V
er

ifi
ca

tio
n

Verification

Validation

Validation

The V-model (as in IAEA TRS 384).

C. Bernardeschi, A. Domenici 28/65

LANGUAGES

Wovon man nicht sprechen
kann, darüber muß man
schweigen.

L. Wittgenstein, Tractatus,
Satz No. 7

Apie ką negalima kalbėti,
apie tai reikia patylėti

(Picture from Wikipedia)

C. Bernardeschi, A. Domenici 29/65

Modeling and programming languages

■ Modeling languages enable developers to define analysis and
design models.

■ Programming languages are the material out of which software is
built.

■ Programming languages can be seen as modeling languages with
a very fine-grained level of detail.

C. Bernardeschi, A. Domenici 30/65

Modeling languages

■ Informal : natural language, or loosely defined graphical notations.
■ Formal : textual or graphical languages with well-defined syntax

and semantics.
■ Semiformal : graphical languages with well-defined syntax but

loosely defined semantics.

C. Bernardeschi, A. Domenici 31/65

Formal languages (1)

■ A formal language identifies some basic attributes that are simple
and general enough to describe a large class of systems in an
abstract way.
◆ E.g., the behavior of many systems can be described in terms of

sets of states and sequences of actions.
■ The possible values of these attributes form the domain of the

language (just like numbers form the domain of algebra).
■ The language defines operations that act on the elements of the

domain, such as forming sets and sequences, and combining
them in various ways.
◆ E.g., we may define operations for parallel and sequential

composition to describe the interaction of two processes.
■ We can then describe systems with formulas whose meaning can

be understood in terms of mathematical concepts, such as sets
and functions.

C. Bernardeschi, A. Domenici 32/65

Formal languages (2)

■ Finite State Automata (FSA). A large class of languages and a
fundamental modeling paradigm, based on states, transitions,
inputs, and outputs (and many extensions). Also called (Finite)
State Machines.

■ Petri Nets. More abstract, based on places, transitions, and
markings. They can model the interaction of components of a
complex system (whereas FSA’s model a system as a whole).

■ Predicate logics. Based on predicate logic and set theory, very
general applicability.

■ Temporal logics. Used to specify properties related to
synchronization.

■ Process algebras. A large class of languages that describe
concurrent processes by means of operators on elementary
actions. Often used in conjunction with temporal logics.

■ . . .

C. Bernardeschi, A. Domenici 33/65

Example: LOTOS (1)

Subsystem S1 is composed of processes P and Q. Subsystem S2 is
composed of processes R and S.

P can execute actions of type a and b, Q can execute actions of type
c and d.

R can execute actions of type a, S can execute actions of type c.

P and Q execute their actions independently of each other: An
unconstrained parallel composition. Similarly for R and S.

Subsystems S1 and S2 must execute “simultaneously” actions of type
a or c: A synchronized parallel composition.

The next slide shows this specification as a diagram and as a
LOTOS expression.

C. Bernardeschi, A. Domenici 34/65

Example: LOTOS (2)

P
b

a

Q
d

c

Ra

Sc

S1 S2

a

c

(P [a, b] ||| Q[c, d]) | [a, c] | (R[a] ||| S[c])

C. Bernardeschi, A. Domenici 35/65

Example: LOTOS (3)

Within the theory underlying the LOTOS language, the previous
expression can be transformed in an equivalent one, where the
processes are rearranged.

The resulting system has the same behavior of the initial one, but a
simpler structure.

The next slide shows the transformed system.

C. Bernardeschi, A. Domenici 36/65

Example: LOTOS (4)

P
b

R

Q
d

S

S ’

S "

a

c

(P [a, b] | [a] | R[a]) ||| (Q[c, d] | [c] | S[c])

C. Bernardeschi, A. Domenici 37/65

A few modeling languages

■ Z /zεd/. Based on predicate logic and Zermelo-Fränkel set theory.
■ Vienna Development Method (VDM). Well-known predicate logic

formalism.
■ Calculus of Communicating Systems (CCS). A process algebra.
■ Communicating Sequential Processes (CSP). Another process

algebra.
■ Language of Temporal Ordering Specification (LOTOS). Yet

another process algebra.
■ SDL (Specification and Description Language). Based on an

extension of FSA’s, used for telecommunication systems, process
control and real-time systems.

■ UML (Unified Modeling Language). Probably the most popular
language to date. Very large, general-purpose, composed of
several sub-languages. Semiformal, with formal parts.

C. Bernardeschi, A. Domenici 38/65

Programming languages

■ Imperative: The programmer describes the algorithm, i.e., the
sequence of steps, that the computer must execute to produce the
solution.
◆ Procedure-oriented : The elementary module is the procedure

(or function, subroutine), a small subprogram that can be
combined with other subprograms. Some data are private to
each procedure, other data are shared among procedures.

◆ Object-oriented : The elementary module is the class, a
template that defines a set of related subprograms (operations,
or methods) and the data they act upon. The instances of a
class are called objects, and the data contained in an object are
private to the object. A program is composed of objects that
interact by calling each other’s methods.

■ Declarative: The programmer describes the conditions that the
solution must satisfy. The language interpreter finds the solution
with a built-in general-purpose problem-solving algorithm.

C. Bernardeschi, A. Domenici 39/65

A few programming languages

■ Microcode. Extremely low-level, defines the behavior of single HW
components, such as CPU’s and network adapters.

■ Assembler. Very low-level, specific to each processor type. Used
to program the machine-dependent parts of the operating system.

■ C. Wide-spectrum (from low- to high-level), procedure-oriented,
used both for system and application programming.

■ Fortran. High-level, procedure-oriented, a mainstay of scientific
and engineering computation.

■ Ada. High-level, object-oriented, conceived to support rigorous
development processes, sometimes mandatory for SW with safety
constraints.

■ C++. Wide-spectrum, object-oriented, currently one of the most
used languages in industrial applications.

■ Java. High-level, object-oriented, used in a very wide range of
applications, particularly web applications and graphical interfaces.

■ TTCN-3 (Testing and Test Control Notation). Used mainly in the
communications area to program the test harness.

C. Bernardeschi, A. Domenici 40/65

Ada

(www-history.mcs.st-andrews.ac.uk/Biographies/Lovelace.html)
(www.computerhistory.org)

Augusta Ada King, Countess of Lovelace, born Byron.

C. Bernardeschi, A. Domenici 41/65

CONCEPTS OF SW DESIGN

C. Bernardeschi, A. Domenici 42/65

Goals of SW design

Designers strive to maximize several properties of the design model:

■ Correctness: The model satisfies the specification.
■ Comprehensibility : Easy to understand (obvious, but hard to

achieve).
■ Verifiability : Easy to verify.
■ Modifiability : Easy to change (“Design for change!”).
■ Reusability : Some or all the components can be reused un other

applications.
◆ Relevant to safety: old, proven components may be be more

reliable.
■ . . .
■ Modularity : The key all above properties.

A system is modular if each of its components has a clearly
understood and defined boundary (interface), is responsible for a
well defined task and depends on other components in a simple way.

C. Bernardeschi, A. Domenici 43/65

Logical and physical architecture

■ The logical architecture models the system as a set of abstractions
(modules) that have structure and behavior, with their reciprocal
relationships.

■ The physical architecture describes the system as a set of
software artifacts and hardware components. The software
artifacts are the files (such as executables and libraries) containing
the actually executed code, or the source code, or auxiliary data.

C. Bernardeschi, A. Domenici 44/65

Layers of a SW system

■ Execution environment : general-purpose operating system (e.g.,
Linux), real-time system, micro-kernel. . .

■ Libraries and frameworks: E.g., for numerical computation,
input/output, graphical user interface. . .
◆ A library is a collection of independent modules that are

assembled without modification to build a complex system.
◆ A framework is a collection of inter-related and configurable

modules that are specialized and assembled to build a complex
system. Frameworks provide ready-made solution schemas for
common problems.

■ Application-specific components: They implement the
application-specific logic.

Execution environments and libraries are often provided by
third-party suppliers, i.e., they are Commercial off-the-shelf software
(COTS), or, more generally, pre-existing software (PSW).

C. Bernardeschi, A. Domenici 45/65

Modular design

■ Interface: Specification of the services (including operations, data,
and types) offered by a module.

■ Implementation: The internal elements of a module, whose
structure and behavior satisfy the interface specification.

■ Hiding: Making the internal elements of a module invisible to
elements outside that module.

Information hiding is the basis of modular design, as it avoids
unnecessary inter-module dependencies.

Object-oriented languages allow each internal element of a module
to be declared public (externally visible) or private (hidden).

C. Bernardeschi, A. Domenici 46/65

TECHNIQUES FOR V&V

C. Bernardeschi, A. Domenici 47/65

Static analysis in V&V (1)

The following is based on IAEA TRS 384:

■ Walk-through: A document (such as code, design, etc.) is
presented to a group including developers and people possibly not
involved in development. The document is evaluated and criticized.

■ Inspection: A document or set of documents is read by a group of
people who check the document(s) for expected defects of some
class (e.g., typical programming mistakes, common design
flaws. . .). Checklists are commonly used.

■ Formalized descriptions: Writing a specification (or design)
document using a formal language. This is a way to validate an
informal requirements statement, and a pre-requisite for formal
verification.

C. Bernardeschi, A. Domenici 48/65

Static analysis in V&V (2)

■ Program proving: Assertions (statements about relationships
among variables) are associated with the beginning
(pre-conditions) and the end (post-conditions) of a program
segment (such as a procedure), and if the program is correct, the
post-conditions can be proved by logical arguments to be a
consequence of the pre-conditions.

■ Symbolic execution: The input variables are assigned symbolic
values (say, x) instead of numeric ones. A symbolic interpreter
applies the program statements to the input variables and
computes the output values as symbolic (i.e., algebraic or logical)
expressions that can be checked for compliancy with the program
specification.

■ Automatic analysis: Automatic tools can check a program for
indicators of possible anomalies, such as unreachable statements
or usage of non initialized variables a

aThis technique is not mentioned in IAEA TRS 384.

C. Bernardeschi, A. Domenici 49/65

Example: Program proving

for (i = 0; i < M; i++) { // 0 ≤ i < M

for (j = 0; j < M-i; j++) { // 0 ≤ j < M − i

if (v[j] > v[j+1]) {
t = v[j];
v[j] = v[j+1];
v[j+1] = t;

} // vj ≤ vj+1 (i)
} // ∀k(M − i − 1 ≤ k < M ⇒ vk ≤ vk+1) (ii)

} // ∀k(0 ≤ k < M ⇒ vk ≤ vk+1) (iii)

This program sorts an M -element vector a. Formulas (i), (ii), and (iii)
are conditions that must hold at the respective points in the program.
Formula (iii) is the definition of an ordered vector.

aI.e., a sequence of values, in computer science jargon.

C. Bernardeschi, A. Domenici 50/65

Formal verification

A formal model enables developers to find out about important
properties of the system:

■ Safety properties: undesired states will not be reached, undesired
actions will not be executed.
◆ E.g., Will the temperature raise above a given threshold? Will

the reactor trip on a false alarm?
■ Liveness properties: desired states will be reached, desired

actions will be executed.
◆ E.g., Will the reactor reach full power? Will it trip on a real

alarm?

C. Bernardeschi, A. Domenici 51/65

Dynamic analysis

■ Prototype execution: A prototype is a partial or simplified version
of a software system, whose internal structure is often unrelated to
that of the final product. Prototypes can be used to assess the
feasibility of design choices, to let users validate the specifiers’
interpretation of the requirements, and to experiment with different
design choices.

■ Simulation: The environment (e.g., the plant) where the software
will operate may be simulated by a simulator program.

■ Testing: The software is exercised by a selected set of inputs (test
data) to discover possible malfunctions.

C. Bernardeschi, A. Domenici 52/65

TESTING

(www.adeptis.ru/vinci/m_part7.html)

Program testing can be used to
show the presence of bugs, but
never to show their absence.

E. Dijkstra, quoted in Dahl et al.,
Structured Programming.

C. Bernardeschi, A. Domenici 53/65

Software faults and failures

■ A failure is an incorrect behaviour of the software.
■ A fault (commonly known as bug) is a defect in the software that

may cause an observable failure.
■ Software failures are systematic, not random.
■ Nevertheless software failure appear to occur randomly, since a

given failure may occur only when a particular “unlucky” input
activates the fault.

■ Further, a given fault may cause different failures, a given failure
may be produced by different faults, a fault may hide another
one. . .

C. Bernardeschi, A. Domenici 54/65

Oracles

An oracle is someone or something that tells us if a test result is
correct or not. How does the oracle know?

■ Well known data (e.g., standard numerical tables).
■ Hand computation.
■ Comparison with results of previous or alternate versions.
■ Executable specifications: A prototype is written in a formal

executable language (e.g., LOTOS, Prolog. . .), and used as a
reference.

C. Bernardeschi, A. Domenici 55/65

Testing in the development process (1)

Acceptance testsUser requirements

SW reqmts specification System tests

SW system design Integration tests

Module design Unit tests

Module coding

A more specific V-model, adapted from H. Waeselynck, Introduction
to Software Testing, in F. von Henke et al., Testing, Verification, and
Validation, ReSIST NoE courseware,
http://resist.isti.cnr.it/files/corsi/courseware_slides/testing.pdf

C. Bernardeschi, A. Domenici 56/65

Testing in the development process (2)

■ Unit testing: Each unit module is tested in the coding phase.
■ Integration testing: In the SW integration phase, the correct

interfacing of each unit module with the rest of the system is tested.
■ Regression testing: After each change in the software, tests are

made to ensure that at least the previous functionalities are
preserved. Regression testing is then applied during coding,
integration, and maintenance.

■ System testing: The final system is tested.

C. Bernardeschi, A. Domenici 57/65

SW integration testing (1)

Higher1

«component»

Higher2

«component»

Client1

«component»

Client2

«component»

ClentN

«component»

UnderTest

«component»

Provider1

«component»

ProviderM

«component»

Interf3

Interf2

Interf1

PInterfM

PInterf1

A module within the architecture.

C. Bernardeschi, A. Domenici 58/65

SW integration testing (2)

TestExecutor

«component»
Driver

«component»

UnderTest

«component»

Stub1

«component»

StubM

«component»

Interf3

Interf2

Interf1

PInterfM

PInterf1

A module under test within the test harness.

C. Bernardeschi, A. Domenici 59/65

SW integration testing (3)

TestExecutor

«component» Driver

«component»

UnderTest

«component»

Provider1

«component»

StubM

«component»

Interf3

Interf2

Interf1

PInterfM

PInterf1

Another module is integrated.

C. Bernardeschi, A. Domenici 60/65

Data selection criteria

Testing techniques may be grouped by their criteria for data
selection:

■ Structural (white-box): the choice of test data is driven by our
knowledge of the internal structure of the software, i.e., we try to
exercise (probe) the various parts of the software.

■ Functional (black-box): the choice of test data is driven by our
knowledge of the requirements.
◆ Statistical testing: test data are selected according to a

statistical distribution of the input data.

C. Bernardeschi, A. Domenici 61/65

Structural testing

1 read(x);
2 read(y);
3 if (x != 0)
4 x = x + 10;
5 y = y / x;
6 write(x, y);

1

2

5

6

4x == 0

x != 0

Any single pair (x1, y1) with x1 6= 0 covers all statements, but two
pairs {(x1, y1), (0, y1)}, with x1 6= 0, cover all branches, and find the
fault in stmt 5.

Different coverage criteria spot different types of faults.

C. Bernardeschi, A. Domenici 62/65

Data flow criteria

A form of structural criteria, where data are selected in order to cover
all paths containing significant operations on variables:

■ Variable definition.
■ Variable usage in a computation.
■ Variable usage in the evaluation of a logical condition.

C. Bernardeschi, A. Domenici 63/65

Functional testing

■ Equivalence classes and boundary values: The set of possible
inputs (including invalid ones) is divided into subsets, such that the
values within each class produce equivalent outputs (under some
criterion). Test data are then chosen “inside” each class and at the
class boundaries.

■ Decision tables: First, we identify logical conditions that different
outputs must satisfy (e.g., a variable may be positive or negative, a
signal may be ON or OFF. . .), then we find combinations of
conditions on inputs that make output conditions true or false.
These relationships are summarized in a decision table (or graph).
Data are selected to cover all columns of the table.

■ Formal models: If there is a formal model, test data may be
selected by criteria based on the model. For example, if the
system is modeled as a state machine, possible criteria are
coverage of all states, all transitions, all paths. . .

C. Bernardeschi, A. Domenici 64/65

Statistical testing

The statistical distribution from which test data are obtained can be
derived from experimental data and/or assumptions on:

■ The application’s input space.
■ The fault distribution in the object to be tested.
■ The frequency with which the different parts of the input space will

be exercised.

(Adapted from IAEA TRS 384).

C. Bernardeschi, A. Domenici 65/65

SAFETY-RELATED STANDARDS

■ IAEA Safety Guide Software for Computer Based Systems
Important to Safety in Nuclear Power Plants, Safety Guide
NS-G-1.1, Vienna, 2000.

■ Licensing of safety critical software for nuclear reactors – Common
positions of seven European nuclear regulators and authorised
technical support organizations, Revision 2007, c© AVN (Belgium),
BfS (Germany), CNS (Spain), ISTec (Germany), NII (United
Kingdom), SKI (Sweden), STUK (Finland).

■ IEC, Software for Computers in the Safety Systems of Nuclear
Power Stations, Standard 880, IEC, Geneva, 1986.

■ IEEE, Standard Criteria for Digital Computers in Safety Systems of
Nuclear Power Generating Stations, IEEE Std 7-4.3.2-2003.

■ IEC, Functional safety of electrical/electronic/programmable
electronic safety-related systems, IEC/TR 61508-0, 2005.

	=11pt --1 .75=minus .25==minus .251.75ex minus .35ex .2ex minus .2ex 1ex minus .2exSOFTWARE LIFECYCLE AND PROCESSES
	Generic product lifecycle
	Software lifecycle
	Software development processes (1)
	Software development processes (2)
	The IAEA TRS 282 waterfall model
	The Gullfoss waterfall model
	=11pt --1 .75=minus .25==minus .251.75ex minus .35ex .2ex minus .2ex 1ex minus .2exREQUIREMENTS ANALYSIS AND SPECIFICATION
	Requirements
	Functional and non-functional requirements
	Constraints
	Analysis and specification
	Traceability
	Testability
	Models and deliverables
	=11pt --1 .75=minus .25==minus .251.75ex minus .35ex .2ex minus .2ex 1ex minus .2exDESIGN AND REALIZATION
	Architectures and modules
	An architectural model
	Coding
	Development tools
	Automatic code generation
	Integration
	=11pt --1 .75=minus .25==minus .251.75ex minus .35ex .2ex minus .2ex 1ex minus .2exV&V ACTIVITIES
	Verification and validation (1)
	Verification and validation (2)
	Verification and validation (3)
	=11pt --1 .75=minus .25==minus .251.75ex minus .35ex .2ex minus .2ex 1ex minus .2exLANGUAGES
	Modeling and programming languages
	Modeling languages
	Formal languages (1)
	Formal languages (2)
	Example: LOTOS (1)
	Example: LOTOS (2)
	Example: LOTOS (3)
	Example: LOTOS (4)
	A few modeling languages
	Programming languages
	A few programming languages
	Ada
	=11pt --1 .75=minus .25==minus .251.75ex minus .35ex .2ex minus .2ex 1ex minus .2exCONCEPTS OF SW DESIGN
	Goals of SW design
	Logical and physical architecture
	Layers of a SW system
	Modular design
	=11pt --1 .75=minus .25==minus .251.75ex minus .35ex .2ex minus .2ex 1ex minus .2exTECHNIQUES FOR V&V
	Static analysis in V&V (1)
	Static analysis in V&V (2)
	Example: Program proving
	Formal verification
	Dynamic analysis
	=11pt --1 .75=minus .25==minus .251.75ex minus .35ex .2ex minus .2ex 1ex minus .2exTESTING
	Software faults and failures
	Oracles
	Testing in the development process (1)
	Testing in the development process (2)
	SW integration testing (1)
	SW integration testing (2)
	SW integration testing (3)
	Data selection criteria
	Structural testing
	Data flow criteria
	Functional testing
	Statistical testing
	=11pt --1 .75=minus .25==minus .251.75ex minus .35ex .2ex minus .2ex 1ex minus .2exSAFETY-RELATED STANDARDS

