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Overview

■ A Battery Management System has been designed and
implemented.

■ Charge equalization is controlled by a CPLD.

■ Two ad hoc fault-tolerant designs have been produced to mitigate
the effects of SEUs in the CPLD.

■ The two designs have been simulated and evaluated wrt to the
TMR approach.
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Charge equalization for Li-ion batteries

Lithium-ion batteries are a promising solution for energy storage in
many industrial applications, such as electric transportation and
smart grids.

Li-ion batteries are very sensitive to overcharge, deep discharge and
operation outside the specified temperature range.

A Battery Management System (BMS) is required to guarantee the
safe and effective operation of the battery.

In particular, the BMS must keep a balanced State of Charge among
the battery cells.
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Faults in programmable devices

Programmable Logic Devices (PLD), such as CPLDs and FPGAs,
are cost-effective building blocks for the control logic of a BMS.

However, they are subject to radiation-induced faults, called Single
Event Upsets (SEU), which may alter their behavior.

Since a BMS is a safety-critical component, it is necessary to adopt
appropriate fault-tolerance techniques to improve its reliability.

In this work, we analyze by simulation different fault-tolerant designs
for the control logic of a charge equalizer.
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Architecture of the charge equalizer
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Within a battery pack, a DC/DC converter moves charge from one
cell to another to achieve charge equalization by active balancing.

The d[3..0] signals from the microcontroller encode the required
switch configuration s[11..1], computed by the logic driver.
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Main safety requirement
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To avoid short circuits, only one DPST switch may be conducting at
any time.

Thus, at most one of the s[11..1] signals may be asserted at any
time.
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Or else...

Zap!
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Block diagram of the logic driver

The logic driver ensures that configurations leading to short circuits
are not possible.

The logic driver is a safety critical component.
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Simulated fault-tolerance techniques
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CL: the non-hardened design.

CLF: the control logic followed by the Filter block, which blocks all
commands with more than one closed switch.

CLF3UV: the control logic followed by the triplicated Filter and a
unanimity voter (AND gate).

CL3MV: the classical TMR technique.
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A simplified view of an Altera Max V logic cell.
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Implementation parameters

LCs FFs LUTs LUT-FF LUTs + LUT-FF

CL 26 4 11 11 22

CLF 45 4 30 11 41

CL3MV 89 12 44 33 77

CLF3UV 94 4 79 11 90

LC: Overall number of required logic cells, divided in:

LUTs: LCs using only LUTs;
FFs: LCs using only flip-flops;
LUT-FF: LCs using both LUTs and flip-flops.
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Smallest Altera MAX V CPLDs

Feature 5M40Z 5M80Z 5M160Z

Logic Cells (LCs) 40 80 160

Typical equivalent macrocells 32 64 128

Maximum user I/O pins∗ 54 54 54

Accommodates FT schemas no CLF CLF3UV

∗ 64-Pin EQFP

The 5M40Z device is sufficient for the basic (non-FT) design, but the
5M80Z and 5M160Z are needed for the FT designs.

However, the three devices are all available in the 64-Pin EQFP
package: FT designs do not require board-level redesign.
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Simulation environment
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Each CL implementation has been simulated with sequences of
random test vectors i clock cycles long, with i from 1 to 10.

For each value of i, 10000 simulation runs have been performed.

At each simulation run, a fault has been injected into a random
location of the configuration memory.

System failures (Fi): only affect BMS performance.
Catastrophic failures (CFi): cause physical damage.
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System failure probability
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Failure probability as a function of test vector sequence length i:

FPi = Fi/10000

Triple modular redundance achieves the best results.



F. Baronti et al. 15/18

Catastrophic failure probability
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CFPi = CFi/10000

Triple filtering achieves the best results.

Single filtering has an intermediate performance.
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Summary of simulation results

Ovhd FP10 CFP10

CL 1.0 1.00 1.000

CLF 1.7 0.95 0.090

CL3MV 3.4 0.02 0.010

CLF3UV 3.6 0.96 0.005

Ovhd: Area overhead wrt bare non fault-tolerant design.

FP10: Failure probability with 10 clock cycles.

CFP10: Catastrophic failure probability with 10 clock cycles.

The CLF3UV design is more effective than the CL3MV, with a small
increase of area overhead.
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Conclusions

Two design-specific SEU mitigation techniques for a BMS have been
designed and simulated.

The two designs have been assessed for effectiveness, taking TMR
as a reference.

The TMR approach is most effective at reducing the probability of
system failures, i.e., affecting only BMS performance.

The design-specific solution using the triplicated safety filter is most
effective at reducing the probability of catastrophic failures, i.e.,
leading to physical damage due to short-circuits.

The implementation of these mitigation techniques can be achieved
by a moderate increase of the used logic resources.

In particular, their implementations fit on the same package as the
non-mitigated design, thus requiring no change to the original board
layout.
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Thank you

Danke schön
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