
ISGC 2007
International Symposium on Grid Computing

Taipei, March 26 – 29, 2007

A Model for the Storage Resource Manager

Andrea Domenici
DIIEIT University of Pisa and INFN

Andrea.Domenici@iet.unipi.it

Flavia Donno
CERN, European Organization for Nuclear Research

Flavia.Donno@cern.ch

A. Domenici, F. Donno ISGC07 2/30

Outline

n Storage Elements
n The Storage Resource Manager
n Modeling the SRM
n Spaces, files, and their properties
n The static model
n The dynamic model
n A more formal static model
n Validation of existing SRM implementations
n Conclusions

A. Domenici, F. Donno ISGC07 3/30

Introduction

The HEP community at CERN bases its research on the data
acquired by the Large Hadron Collider (LHC) to explore the
fundamental laws of the Universe. Several Petabytes (10-15) of data
will be collected by the 4 experiment detectors every year.

The Worldwide LHC Computing Grid (WLCG) is one of the largest
Grid infrastructures serving the HEP community. The WLCG counts
today more than 200 computing sites all over the World.

Because of its mission, one of the critical issues that WLCG has to
face is the provision of a Grid storage service that allows for dynamic
space allocation, the negotiation of file access protocols, support for
quality of storage, authentication and authorization mechanisms,
storage and file management, scheduling of space and file
operations, support for temporary files, etc.

A. Domenici, F. Donno ISGC07 4/30

Storage Elements

A Storage Element (SE) is a Grid Service that provides:

n A mass storage system (MSS) that can be provided by either a
pool of disk servers or more specialized high-performing
disk-based hardware, or disk cache front-end backed by a tape
system.

n A storage interface to provide a common way to access the
specific MSS, no matter what the implementation of the MSS is.

n A GridFTP service to provide data transfer in and out of the SE to
and from the Grid.

n Local POSIX-like input/output calls providing application access to
the data on the SE.

n Authentication, authorization and audit/accounting facilities.

A. Domenici, F. Donno ISGC07 5/30

The Storage Resource Manager

The Storage Resource Manager (SRM) is a middleware component
whose function is to provide dynamic space allocation and file
management on shared storage components on the Grid.

More precisely, the SRM is a Grid service with several different
implementations. Its main specification documents are:

n A. Sim, A. Shoshani (eds.), The Storage Resource Manager
Interface Specification, v. 2.2, available at
http://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.pdf.

n P. Badino et al., Storage Element Model for SRM 2.2 and GLUE
schema description, v3.5.

A. Domenici, F. Donno ISGC07 6/30

The Storage Resource Manager interface

The SRM Interface Specification lists the service requests, along
with the data types for their arguments.

Function signatures are given in an implementation-independent
language and grouped by functionality:

n Space management functions allow the client to reserve, release,
and manage spaces, their types and lifetimes.

n Data transfer functions have the purpose of getting files into SRM
spaces either from the client’s space or from other remote storage
systems on the Grid, and to retrieve them.

n Other function classes are Directory, Permission, and Discovery
functions.

A. Domenici, F. Donno ISGC07 7/30

Some space management functions

srmReserveSpace allows the requester to allocate space with specified
properties.

srmReleaseSpace releases an occupied space. If the space contains
copies of a file, the system must check if those copies can be
deleted.

srmChangeSpaceForFiles is used to change the space where the files
are stored.

srmExtendFileLifeTimeInSpace is used to extend the lifetime of files that
have a copy in the space.

A. Domenici, F. Donno ISGC07 8/30

Some data transfer functions

srmPrepareToPut creates a handle that clients can use to create new
files in a storage space or overwrite existing ones.

srmPutDone tells the SRM that the write operations are done.

srmCopy creates a file by copying it in the SRM space.

srmBringOnline is used to make files ready for future use. The system
may stage copies from tape to disk.

srmPrepareToGet returns a handle to an online copy of the requested
file.

srmReleaseFiles marks as releasable the copies generated by
srmPrepareToGet or srmBringOnline.

srmAbortRequest, srmAbortFiles force termination of asynchronous
requests.

srmExtendFileLifeTime extends the (pin) lifetime of files, copies, or
handles.

A. Domenici, F. Donno ISGC07 9/30

Modeling the SRM

The Interface Specification has the purpose of defining the SRM API,
therefore it is not meant to provide an overall view of the underlying
concepts.

The GLUE schema is a UML model meant to define only the SRM
properties relevant for the Information Service, so it cannot fully
represent the SRM and particularly its behavior.

A full-fledged model should complement the Interface Specification
and the GLUE schema, and be:

n clear;
n precise;
n useful for all people involved.

A. Domenici, F. Donno ISGC07 10/30

Spaces, files, and their properties

A space is a portion of storage allocated to a user or a VO. Its main
properties are:

n Retention policy, likelyhood of file loss: REPLICA, OUTPUT,
CUSTODIAL.

n Access latency, readiness of file access: ONLINE (e.g., disk),
NEARLINE (e.g., tape).

A storage class is a combination of retention policy and access
latency. A file has a required storage class and a storage type
related to the file’s lifecycle:

n Volatile: limited lifetime, file is deleted by the SRM after expiration.
n Durable: limited lifetime, file must be deleted by the owner after

expiration.
n Permanent: unlimited lifetime, file may be deleted by the owner.

A. Domenici, F. Donno ISGC07 11/30

SURLs and TURLs

SURL (Storage URL) identifies a file in the logical namespace of a
storage system. For example:

srm://dcache.fnal.gov:8443/somepath/vopath/filename

TURL (Transport URL) identifies an accessible copy in a storage
system and includes a transfer protocol that can be used to
access it. For example:

gsiftp://dcache.fnal.gov:2118/someinternalpath/filename

A. Domenici, F. Donno ISGC07 12/30

The static model (1)

surl: anyURI
fileRetentionPolicy: TRetentionPolicy
fileAccessLatency: TAccessLatency
fileStorageType: TFileStorageType
locality: TFileStorageType
fileLifetimeAssigned: int
fileLifetimeLeft: int

File

spaceRetentionPolicy: TRetentionPolicy
spaceAccessLatency: TAccessLatency

copyRetentionPolicy: TRetentionPolicy
copyAccessLatency: TAccessLatency
copyStorageType: TFileStorageType

requestToken: RetquestToken

Copy

copyPinLifetime: int

turl: anyURI
handlePinLifetime: int

Handle

totalReservedSpace: long int
guaranteedReservedSpace: long int

Space

spaceToken: string

spaceLifetime: int

file 1 .. *

file 1

space 1

0 .. *

master {subsets copies}

copies

0 .. *

1copy

space

1

0 .. *

A. Domenici, F. Donno ISGC07 13/30

The static model (2)

n A File has one or more Copies.
n A File has one master Copy.
n A Space holds zero or more Copies (possibly of different files).
n A file resides in the space holding the file’s master copy.
n A Copy is referred to by zero or more Handles.

A. Domenici, F. Donno ISGC07 14/30

The dynamic model (1)

Top-level states of a File

SURL_Unassigned

extendFileLifetime
extendFileLifetimeInSpace
setPermissions
prepareToPut [busy]
copy [busy]

SURL_Assigned

abortFilesabortRequest rm

releaseSpace [force]

when (fileLifetimeLeft = 0) [type = VOLATILE]

n A File is created by prepareToPut or copy.
n SURL_Unassigned is a waiting state before a SURL is assigned.
n In state SURL_Assigned we list the request that leave the state

unchanged.
n Other requests lead to the destruction of the file.

A. Domenici, F. Donno ISGC07 15/30

The dynamic model (2)

Substates of SURL_Assigned

Nearline

Readable

Online

NearlineOnline

Busy

PrepareToPut [overwrite]

AbortFiles

ReleaseFiles

BringOnline
BringOnline ChangeSpaceForFilesChangeSpaceForFiles

AbortRequest

AbortFiles

ChangeSpaceForFiles

AbortRequest
PrepareToGet

ReleaseFiles [retention <> CUSTODIAL]

PrepareToGet

PutDone [retention <> CUSTODIAL]

SURL_Assigned

PutDone [retention = CUSTODIAL]

A. Domenici, F. Donno ISGC07 16/30

The dynamic model (3)

n In state Busy, a handle is available to write data to (disk) storage.
n When the data have been written, the file becomes Online or

Nearline according to its retention policy.
n In state Readable, a handle is available to read data from (disk)

storage.
n In state Nearline, all copies are on a nearline space (tape).
n In state NearlineOnline, a copy is also on an online space (disk).

A. Domenici, F. Donno ISGC07 17/30

A more formal static model

The model is defined in terms of:

n Basic sets of discrete values for identifiers or properties.
n Constructed sets, Cartesian products of simpler sets.
n Functions, relating elements of the model.
n Constraints, statements about the model elements.

For constructed sets we show their characteristic tuple, showing the
structure of a generic set element, e.g.:

Storage class

��� � ��� � �	

��
 �� �	�� 	�� �
� � � �

i.e., an element of

� � has two components, �
 �� �	 � ��� and	� �
� � � � �	
. The value of �
 �� �	 for an element � is ��� �
 �� �	 .

A. Domenici, F. Donno ISGC07 18/30

Common properties

Sizes

��� =

��

Lifetimes

�

=

�� � ! "

,

#%$& ' () !
Retention policy

��� =

REPLICA� OUTPUT� CUSTODIAL

"

Access latency

�	

=

ONLINE� NEARLINE

"

REPLICA

*

OUTPUT
*

CUSTODIAL

ONLINE
*

NEARLINE

Storage class

��� � ��� � �	

��
 �� �	�� 	�� �
� � � �

A. Domenici, F. Donno ISGC07 19/30

Space

Protocols

+

=

rfio� dcap� gsiftp� file

"
Access Pattern

� � =

TRANSFER� PROCESSING

"

Connection Type

, �

=

WAN� LAN

"
Space Tokens

-

a countable set of symbols
Space requests

.0/ a finite set of symbols

Properties

1� �� � ��� � 1 � � � � , �

�2 � 	�� 2 2 � � � � � � � �	� � � �
2 2 � � � � �
 � � 3 � � �

Spaces
� � - � � � 1� �� � ��� � ./

 � � 4
� � 	 3 5
 � 376
� � � �� 2 � 2 3 �
� �
89
2 � �

A. Domenici, F. Donno ISGC07 20/30

Copy and handle

Physical File Names

1 5� a countable set of symbols
Copy requests

.;: a countable set of symbols

Copies

, � 1 5� � < � .:

 � = �2 � � 6
� � 3� � 36
� �
89
2 � �

TURLs

>� a countable set of symbols
Handle requests

.@? a countable set of symbols

Handles

A � >� � < � .?

 �9 � 	� � 3� � 376
� �
89
2 � �

A. Domenici, F. Donno ISGC07 21/30

File

SURLs

�� a countable set of symbols
File Types

B � CD EF � GD H "

Creation Time

>;I ��

Storage Types

� � J K EL MD EF � GN HL O EF � P F HQ L R F R M "

File Locality

B	 K R ED R F � K R ED R F
_

R F L H ED R F � R F L H ED R F �N R L J L D EL O EF � E KS M "

Files

T � �� � B � � ��� � >I � � � � ��� � B	

 2 9 � 	� 5 � ��
� 2 3 �
� � � 376
� 2 � ��
� 2 � 	�� 2 2 � 	 � � � 	 3 � � �

A. Domenici, F. Donno ISGC07 22/30

Functions

n Start time of a space, copy, or handle:

2 � 36
U V � W � X Y ��
n Remaining (pin) lifetime at time

(

:

	 	
 5 �U Z V � W � X [� �� Y ��

n Set of files resident on a space:

�
2 \	
2 U � Y] T

n The space holding a file’s master copy:
6 2 � � �
 U T Y V

A. Domenici, F. Donno ISGC07 23/30

Constraints on files

A file must reside in one space:

#_^ & ` acb / & d e � �
2 \	
2 Z�f [
File retention policy must match space retention policy:

#_^ & ` 5 � 2 � 	� 2 2 � �
 �� �	 � 6 2 � � �
 Z 5 [� � � �� 2 � 2 � 	� 2 2 � �
 �� �	

Space latency must satisfy file latency requirement:

#_^ & ` 5 � 2 � 	�� 2 2 � 	� �
� � � g 6 2 � � �
 Z 5 [� � � �� 2 � 2 � 	� 2 2 � 	�� �
� � �

A file cannot outlive its space:

# ^ & `ih $j k l monp qr s t * 	 	
 5 � Z 5� � [* u u�v e (Z�w f �xy v Z e [� ([

A. Domenici, F. Donno ISGC07 24/30

Validation of existing SRM implementations

When defining a protocol, it is very important to validate it on specific
implementations.

In particular, since SRM focuses on providing an interface to Mass
Storage Systems, it was extremely critical to test its implementations
on several MSS back-ends.

Therefore a testbed with 5 MSS systems supporting SRM 2.2 has
been established.

A. Domenici, F. Donno ISGC07 25/30

The SRM testbed

CASTOR developed at CERN and used by many other labs to serve
data on automatic tape libraries and on disk servers used mainly
as a front-end cache. The SRM 2.2 implementation for CASTOR
has been made by RAL (UK).

dCache developed at DESY (Germany), used by many sites with
multiple MSS backends, both custom and proprietary. dCache
can be used also as a disk-only MSS. The SRM 2.2
implementation for dCache has been made by FNAL.

DPM developed at CERN. This is a disk-only based MSS. The SRM
2.2 implementation has been made at CERN.

DRM/BeStMan is the LBNL disk-based storage system. LBNL has
been the first promoter of SRM. This storage system was the first
prototype on which SRM has been tested.

StoRM is a disk-based system. It offers an SRM 2.2 interface to
parallel file systems such as GPFS or PVFS. The SRM 2.2
implementation has been made at CNAF.

A. Domenici, F. Donno ISGC07 26/30

Test case families

Using various techniques of black-box testing, 5 families of test
cases have been designed:

Availability to check the availability in time of the SRM service
end-points.

Basic to verify basic functionality of the implemented SRM APIs.

Use Cases to check boundary conditions, use cases derived by real
usage, function interactions, exceptions, etc.

Exhaustion to exhaust all possible values of input and output
arguments such as length of filenames, SURL format, optional
arguments, strings, etc.

Stress tests to stress the systems, identify race conditions, study the
behavior of the system when critical concurrent operations are
performed, etc.

A. Domenici, F. Donno ISGC07 27/30

Summary of Basic test suite

A. Domenici, F. Donno ISGC07 28/30

Summary of Use Cases test suite

A. Domenici, F. Donno ISGC07 29/30

Conclusions

n A comprehensive model of the SRM is being developed to support
the development and verification of SRM implementations.

n The first draft of the model is available, and feedback from its users
is awaited.

n Developing the model has helped in identifying unanticipated
behaviors and interactions.

n The analysis of the model has helped design a few families of tests
for the validation of the protocol.

n The testing campaign itself has motivated the developers to
reconsider many of the initial assumptions and decisions, leading
to solutions that seem to better satisfy the needs of the users.

n Both testing and specification are still ongoing. WLCG is expected
to include the SRM interface in its production environment most
probably by July 2007.

A. Domenici, F. Donno ISGC07 30/30

Thank you

	Outline
	Introduction
	Storage Elements
	The Storage Resource Manager
	The Storage Resource Manager interface
	Some space management functions
	Some data transfer functions
	Modeling the SRM
	Spaces, files, and their properties
	SURLs and TURLs
	The static model (1)
	The static model (2)
	The dynamic model (1)
	The dynamic model (2)
	The dynamic model (3)
	A more formal static model
	Common properties
	Space
	Copy and handle
	File
	Functions
	Constraints on files
	Validation of existing SRM implementations
	The SRM testbed
	Test case families
	Summary of Basic test suite
	Summary of Use Cases test suite
	Conclusions
	Thank you

