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DISCLAIMER

The PVS language is quite complex. Most constructs have several variants, which may
just be alternative syntactic forms or have semantic differences.

Obviously, these slides cover only a part of the language.
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LEXICAL STRUCTURE

+: one or more; *: zero or more

> <letter>: A...Z|a...z (ASCII)

» <digit>: 0...9

» <number>: <digit>+ | <digit>+ . <digit>+

> <identifier>: <letter> | (<letter>|<digit>| |?)*

» <special symbol>: many!

» <reserved word>: <keyword> | <spelled-out operator>
> <keyword>>: <letter> | (<letter>| )+

» <spelled-out operator>: AND | ANDTHEN | FALSE | IF | IFF | IMPLIES | NOT |
o | OR | ORELSE | TRUE | WHEN | XOR

» <symbolic operator>: <special symbol>+
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NON-PARAMETRIC PVS THEORIES

A PVS specification is composed of one or more theories.

<name>: THEORY
BEGIN
<imports>
<type declarations>
<constant and variable declarations>
<formulae>
END <name>

Constructs of different classes may be interleaved (e.g., a type declaration may follow a
variable declaration), but every symbol must be declared before it is used.

Note: Datatypes are a shorthand for a special kind of theories. They may occur both
outside or inside plain theories.



Context and IMPORTING clauses

The context of a theory is the set of theories directly visible from that theory.

The default context of a theory T consists of
» the theories defined in the prelude (part of the PVS installation);
» the theories preceding T in the same file;

» the theories defined in the other PVS files in the same directory containing T's file.

IMPORTING clauses are used to make the definitions of some theories visible to the
importing theory. If an imported library belongs to the context pf the importing theory,
the clause has the form

IMPORTING <theory name>
Otherwise, the name of the library containing the imported theory must be given:
IMPORTING <library name>@<theory name>

A library is a filesystem directory containing PVS files. The environment variable
PVS_LIBRARY_PATH specifies paths to search for variables.



TYPE SYSTEM: type expressions and type declarations

A type expression defines the structure of a type.

A type expression is a type name or an expression of the forms shown in the next slides.

Type expressions occur in type, constant, and variable global declarations:

<type name>: TYPE <type expression>
<constant name>: <type expression>
<variable name>: VAR <type expression>

Type expressions also occur in local variable declarations, i.e., within formulae, e.g.,

a_theorem: THEOREM
FORALL (x: real):
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TYPE SYSTEM: base types (1)

The pre-defined base types are the Booleans (boolean, bool), the real numbers
(real), and the subtypes of the real numbers.

The Booleans are the set {FALSE, TRUE}.

The type real represents the mathematical concept of real numbers. The PVS reals
have no limitations on range and precision.

The reals can be non-zero (nonzero_real, nzreal), non-negative (nonneg_real,
nnreal), non-positive (nonpos_real, npreal), positive (posreal), or negative
(negreal).

The rationals are a subset of reals and can be non-zero (nonzero_rational,
nzrat), non-negative (nonneg_rat, nnrat), non-positive (nonpos_rat, nprat),
positive (posrat), or negative (negrat).



TYPE SYSTEM: base types (2)

The integers (integer, int) are a subset of rationals and can be non-zero
(nonzero_int, nzint), non-negative (nonneg_int), non-positive (nonpos_int),
positive (posint), or negative (negint).

The types of even and odd integers are even_int and odd_int, respectively.

The types subrange(i, j) represent the integers in the intervals [i..j], and the types
upfrom(i) and above (i) represent the integers in the intervals [i..00) and [i + 1..00),
respectively.

The natural numbers (naturalnumber, nat) coincide with the type nonneg_int. The
types upto (i) and below (i) represent the integers in the intervals [0..i/] and [0..;i — 1],
respectively.



TYPE SYSTEM: Type constructors

Enumerations: flag: TYPE = {red, black, white, green}
Tuples: triple: TYPE = [nat, flag, reall

Records: point: TYPE

[# x: real, y: real #]
Subtypes: posnat: TYPE = {x: nat | x>0}
If pis a predicate (e.g., over nat),

p_type: TYPE = {x: nat | p(x)}
is equivalent to

p_type: TYPE = (p).
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TYPE SYSTEM: function types

The type of a function is specified by its domain and range, e.g.,

int2real: TYPE = [int -> reall
intrat2real: TYPE = [int, rational -> reall
int2intint: TYPE = [int -> [int, int]]

The following two type expressions are equivalent:

[int, rational -> reall
[[int, rational] -> real]

If T is any type, the following types are the same type:

[T -> bool]
pred[T]
setof [T]
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TYPE SYSTEM: dependent types

Function, tuple, and record types may be dependent, i.e., some parts of their definition
may depend on a preceding part.

For example, the remainder operator is a function of two natural numbers (numerator
and denominator) mapped to a natural number (remainder).

The numerator can be any natural number, the denominator must be non-zero, and the
remainder must be strictly less than the denominator. These constraints can be
expressed defining the type of the remainder operator as

[nat, d: {n: nat | n /= 0} -> {r: nat | r < d}]

Note: the type of the PVS rem operator is defined in a different way.

12 /1



Variable DECLARATIONS (1)

Variables can be declared globally or locally, in binding expressions (e.g., FORALL).

x: VAR real % global declaration

thl: THEOREM
abs(x) >= 0

th2: THEOREM
FORALL (x: real): abs(x) >= 0 % local declaration

Note: the two theorems above are equivalent.
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Variable DECLARATIONS (2)

Local declarations hide global ones

x: VAR real % x is a real
th3: THEOREM
FORALL (x: nat): abs(x) >= 0 % x is a nat

Declarations in an inner scope hide those in an outer one:

x >0
x <0

p(x: nat): bool
q(x: int): bool
th4: THEOREM
FORALL (x: int):
(EXISTS (x: nat): p(x)) % x is a nat
AND
q(x) % x is an int

Note: it is better to use different variables in each scope.
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Constant DECLARATIONS

User-defined constants may be declared specifying only their type (uninterpreted
constants) or their type and value (interpreted constants).

Axioms can be used to specify properties of uninterpreted cnstants. Note that many
properties may be specified more clearly and safely by declaring the constant as
belonging to a pre-defined or user-defined subtype.
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Function constants: named functions

Named functions have this familiar syntax:

<function name>(<formal parameter declarations>): <type expression>
= <expression>

For example:

incr(n: int): int = n + 1
foo(n, m: int): int = n + 2*m

A named function can be applied to actual argumnts, i.e., the formal parameters are
replaced by the actual arguments and the resulting expression is evaluated, e.g.,

funct_appl: LEMMA
foo(l, 2) =5
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Function constants: recursive functions

Recursive fubction constants are declared as follows:

<function name>(<formal parameter declarations>):
RECURSIVE <type expression> = <expression>
MEASURE <measure expression>

The measure expression is used to check if recursion terminates. In most cases, this
expression reduces to the variable on which the function recurs, e.g.,

factorial(n: nat): RECURSIVE nat =
IF n = 0 THEN 1 ELSE n*factorial(n - 1)
MEASURE n

Note: This treatment of the concept of measure is vastly oversimplified. Please RTFM.
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LAMBDA expressions (1)
A X-expression defines an anonymous function, e.g.,
LAMBDA (x: int): x + 1

where x is the formal parameter of the function.

The following example shows the application of a A-expression:

lambda_appl: LEMMA
(LAMBDA (x: int): x + 1)(1) =2

A X-expression may contain occurrences of variables that are not formal parameters,
but such variables must be bound in some outer environment, such as the theory's top
level, a quantified expression, or another \-expression, e.g.,

FORALL (x: int):
x > 0 IMPLIES (LAMBDA (y: mat): x + y)(z) > O

LAMBDA (x: int): LAMBDA (y: int): x + y
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LAMBDA expressions (2)

A-expressions can be used to define functions having function types as domain:

bar(n: int): [int -> int] = LAMBDA (m: int) n + 2*m
curry: LEMMA
bar(1)(2) = 5

Note: Transforming an n-parameter function to n one-parameter functions is called
currying.
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Haskell Brooks Curry (1900 — 1982)
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Function variables

Function variables can be declared locally or globally:

funct_var: LEMMA
FORALL (f: [real -> nat], x: real): f(x) >= 0

Globally declared function variables can be bound to A-expressions, using an axiom:

g: [int -> [int -> int]]

g_def: AXIOM
g = LAMBDA (m: int): LAMBDA (n: int): m + n

A named function constant such as
gl(m, n: int): int =m + n
is equivalent to (but different from) g, when the latter is applied to two arguments:

funct_var_const: LEMMA
FORALL (m, n: int): g(m)(n) = gi(m, n)
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FORMULAE

As seen in various examples above, a formula declaration has the following syntax:

<formula decln> > ::= <formula name> : <formula keyword>
<boolean expression>

<formula keyword> ::= AXIOM | ASSUMPTION | OBLIGATION
| <theorem keyword>

<theorem keyword> ::= THEOREM | LEMMA | COROLLARY
|

PROPOSITION | FORMULA |

“AXIOM" declares (guess what?) axioms. Theorem keyword declare formulae that must
be proved and they are all synonims,

“"ASSUMPTION" and “OBLIGATION" will be dealt with later on.
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PARAMETRIC PVS THEORIES (1)

PVS theories can be parametric. Consider, e.g., the group theory shown in the

introductory lecture:

group : THEORY

BEGIN
G : TYPE+ % uninterpreted, nonempty
e : G % neutral element

i [G ->G] % inverse
* : [G,G -> G] 7 binary operation
x,y,z : VAR G
associative : AXIOM
(x *y) *z=x% (y * 2)
% other axioms ...
inverse_associative : THEOREM
ix) * x*xy) =y
END group
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Parametric PVS theories (2)

The group theory defines the abstract group concepts and can be used to prove its
properties, but it cannot be used to reason about a concrete group such as the integers
with addition. This can be fixed by turning G, e, i, and * into parameters:

param_group[G: TYPE+, e: G, i: [G -> G], * : [G,G -> G]]: THEORY
BEGIN
x,y,z : VAR G
associative : AXIOM
(x*xy) *z=xx* (y * z)
% other axioms ...
inverse_associative : THEQOREM
i(x) * (x *xy) =y
END param_group
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Parametric PVS theories (3)

Theory param_group can then be used as in the following example, where we prove
that the minus integer operator has the same property as the i operator in the
param_group theory.

integer_group[int, 0, -, +]: THEORY
BEGIN
IMPORTING param_group[int, 0, -, +]

x,y,z : VAR int
minus_associative: THEOREM
x+ (x+y) =y
END integer_group

Note: Obviously, we can use int, 0, -, and + without declaring them, because the are
declared in the prelude theories.
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Parametric PVS theories: assumptions

In the param_group theory, the axioms state properties of constants and operators of
type G, but there is no guarantee that the formal parameter G will not be instantiated
with an actual type that does not satisfy those axioms.

Assumptions are properties expected of the actual arguments of a parametric theory,
and must be discharged (proved) when the theory is used. For example:

param_group[G: TYPE+, e: G, i: [G -> G], * : [G,G -> G]]: THEORY
BEGIN
x,y,z : VAR G
ASSUMING
associative : ASSUMPTION
(x *y) *z=xx% (y * z)
% other assumptions ...
ENDASSUMING
inverse_associative : THEOREM
i(x) * (x *xy) =y
END param_group
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Parametric PVS theories: syntax

<name> [<formal parameters>] : THEORY
BEGIN
<assuming part>
<imports>
<type declarations>
<constant and variable declarations>
<formulae>
END <name>

<assuming part> ::= ASSUMING <declaration>* <assumption>+ ENDASSUMING
<assumption> ::= <formula name> ASSUMPTION <boolean expression>
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EXPRESSIONS
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Boolean operators

Boolean operators

name symbol spelled out priority associative overloading
quantifier FORALL 1 no no
EXISTS 1 no no
equivalence <=> IFF 2 right yes
implication => IMPLIES 3 right yes
disjunction \/ OR 4 right yes
conjunction & AND 5 right yes
negation - NOT 6 no yes

Overloading (redefinition) is allowed both for symbolic and spelled out operators, but
redefining a symbol does not redefine its matching spelled out keyword, and viceversa.
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Arithmetic, relational, and composition operators

The arithmetic operators are - (unary and binary), +, *, \, and ~ (exponentiation).
The relational operators are <, <=, >, and >=.
The equality and inequality operators are = and /=.

The function composition operator is o (lowercase letter ‘0’).
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Tuple expressions

A tuple of type [t_1, t_2, ..., t_n] has the form
(e_1, e_2, ..., e_n)
where the e's are expressions.

Each i-th expression is referred to by the projection operator ‘i.

The first character () of a projection operator is backtick, or grave accent (ASCII 96).
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Record expressions

A record of type [# a_1: t_1, a_2: t_2, ..., a_n: t_n #] hasthe form
(# a_1l :=e_1, a2 :=e_2, ..., an :=e_n #)

where the e's are expressions.

Each i-th expression is referred to by the accessor operator ‘a_i.
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Overriding

Overriding means creating a new record, tuple, or function by changing part of the
original one, which remains unchanged. In the following code, For example:

complex: TYPE = [# % record type

r: real,
i: real
#]

(#r :=1.0, 1 :=2.04%#)
x WITH [ r := -1.0 1]

x: complex

y: complex

y denotes the complex value (—1.0,2.0). Note that x is left unchanged.
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IF expressions (1)
An IF expression has the form

IF <boolean expression>
THEN <expr_1>

ELSE <expr_2>

ENDIF

where <expr_1> and <expr_2> must have the same type.

Nested IF expressions can be expressed with ELSIF clauses:

IF <boolean expression 1>
THEN <expr_1>

ELSIF <boolean expression 2>
THEN <expr_2>

ELSIF <boolean expression n>
THEN <expr_n>

ELSE <expr_(n + 1)>

ENDIF
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IF expressions (2)

The IF ternary operator is treated by the prover as if defined as follows:

if_theory[T: TYPE+]: THEORY
BEGIN
x, y: T

IF: [bool, T, T -> T]
if_def: AXIOM
IF(TRUE, x, y) = X
AND

IF(FALSE, x, y) =¥
END if_theory

Note: the definition of the IF operator is actually built into the prover.
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COND expressions

COND expressions are similar to the switch statements of imperative programming
languages:

COND

<boolean expression 1> -> <expr_1>,
<boolean expression 2> -> <expr_2>,

<boolean expression n> -> <expr_n>
ENDCOND

The disjunction of all Boolean expressions must be a tautology (coverage condition),

i.e., at least one of them can be satisfied, and they must be pairwise disjoint, i.e., only
one of them can be satisfied (disjointness condition).
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LET expressions

LET expressions are used to introduce new variables, equate them to expressions, and
accordingly expand their occurrences in the expression following the IN keyword:

LET <variable 1> = <expr_1>,
<variable 2>

<expr_2>,

<variable n> = <expr_n>

IN <expression>
For example:

LET v = x + vy,
W=X-Y
IN v*yw

Note: each expression in the LET part can refer to variables introduced the preceding
equations.
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