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INTRODUCTORY CONCEPTS
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Formal logic

Sound reasoning and precise language are obviously two
indispensable requirements for any scientific and technical activity.

Formal logic is the conceptual framework that explicitly sets out the
rules of sound reasoning. Formal logic enables us to make sure that
a given line of reasoning (e.g., the demonstration of a theorem) is
correct, i.e., the conclusions indeed follow from the premises.

Mathematics and the physical sciences are the classical fields of
application for logic, but logic has become an important tool in
technical applications, particularly in computer engineering.
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Families of logics and formal systems

While the term logic refers in general to the science of formal
reasoning, we speak of a logic or another to refer in particular to
some particular way of using the general concepts of logic (just as
we have different geometries, Euclidean, Riemannian, etc., within
the field of geometry).

There exist several families of logics, with different purposes and
expressiveness.

Within each logic, formal systems (or theories) are defined. Formal
systems will be introduced later.
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Languages

Wovon man nicht sprechen kann, darüber muß man schweigen.
(Whereof one cannot speak, thereof one must be silent).

L. Wittgenstein, Tractatus, Satz No. 7

A logic language defines what we want to talk about (the domain),
the expressions that we use to say what we mean (the syntax), and
how expression are given a meaning (the semantics).
■ Domain: the individual entities we talk about, and their reciprocal

relationships.
◆ E.g., the set of natural numbers, operations, ordering, equality.

■ Syntax : the symbols denoting entities and relationships, and the
well-formedness rules that say how correct expressions can be
formed out of symbols. An expression that can be true or false is a
(declarative) sentence, or formula.
◆ E.g., the symbols 1, 2, 3, . . . , +, −, . . . , <, >, =, . . . . “1 + 1” is

correct, “1 +−2” is not. “1 < 3” and “1 > 3” are sentences.
■ Semantics: the rules that relate symbols to entities and

relationships, and that decide which sentences are true.
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Formal Systems (1)

Given a language and its semantics, we can interpret any sentence
of the language to see if it is true or false.

E.g., given the sentence “1 + 1 = 2”, the semantics of the arithmetics
language tell us that the symbols “1” and “2” correspond to the
concepts of number one and number two, “+” corresponds to sum,
and “=” corresponds to equality.

We can then verify (perhaps by counting on our fingers) that the
sentence is true.

Things get more complicated when sentences refer to infinite sets,
e.g., “all primes greater than two are odd”. . .
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Formal Systems (2)

A formal system (or theory ) is a “machine” that we use to prove the
truth or falsehood of sentences by deductions, i.e., by showing that a
sentence follows through a series of reasoning steps from some
other sentences that are known (or assumed) to be true.

A formal system consists of:

■ A language;
■ a set of axioms, selected sentences taken as truea.
■ a set of inference rules, saying that a sentence of a given structure

can be deduced from sentences of the appropriate structure,
independently of the meaning (semantics) of the sentences.
◆ E.g., if A and B stand for any two sentences, a well-known

inference rule says that from A and “A implies B” we can
deduce B.

aOr, more precisely, valid.
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Formal Systems (3)

More precisely, an inference rule is a relationship between a set of
(one or more) formulae called the rule’s premises, and a formula
called the (direct) consequence of the premises.

E.g., the rule mentioned in the previous slide (the modus ponens) is
usually written as:

A A ⇒ B

B
or

A

A ⇒ B

B

Note that this inference rule is a template that is matched by any pair
of formulae, since A and B are placeholders for any formula.
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Formal Systems (4)

We have a formal system F with axioms A and inference rules R

We want to prove that a formula S follows from a set H of
hypotheses.

A deduction of S from H within F is a sequence of formulae such
that S is the last one and each other formula either:

1. Belongs to A; or
2. belongs to H; or
3. is a direct consequence of some preceding formula in the

sequence by some rule belonging to R.

The application of an inference rule is a basic step in a formal line of
reasoning (or argument).
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First-Order Logic (1)

A First-order logic (FOL) is based on a language consisting of:

■ A countable set C of constant symbols, denoting individual entities
of the domain;

■ a countable set F of function symbols, denoting functions in the
domain;

■ a countable set V of variable symbols, i.e., placeholders that stand
for unspecified individual entities;

■ a countable set P of predicate symbols, denoting relationships in
the domain.

■ a finite set of logical connectives, e.g. ¬,∧,∨,⇒, . . .;
■ a finite set of quantifiers, e.g. ∀, ∃.

This is the language we are familiar with from the study of
mathematics.
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First-Order Logic (2)

A term is a constant, a variable, or a function symbol applied,
recursively, to an n-tuple of terms.

A term is an expression that denotes an individual entity.

An atomic formula (or atom) is a predicate symbol applied to an
n-tuple of terms.

An atom is an expression whose semantics is true iff the entities
denoted by its terms satisfy the relationships denoted by the
predicate symbol.

A formula is an atom, or an expression obtained, recursively, by
combining formulae with quantifiers and connectives.

The semantics of quantifiers and logical connectives are (at least
informally) well known, and will not be discussed here.
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A Simple First-Order Formal System

■ A first-order language with just two connectives (¬ and ⇒) and one
quantifier (∀);

■ The following axiom schemata:

A ⇒ (B ⇒ A)(1)

(A ⇒ (B ⇒ C)) ⇒ ((A ⇒ B) ⇒ (A ⇒ C))(2)

(¬B ⇒ ¬A) ⇒ ((¬B ⇒ A) ⇒ B)(3)

∀xA(x) ⇒ A(t)(4)

∀x(A ⇒ B) ⇒ (A ⇒ ∀xB)(5)

■ The following rules of inference:

A A ⇒ B

B

A

∀xA

In the second rule (generalization), there are constraints on x.
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Higher-Order Logic

In a FOL, variables may range only over individual entities.

In a FOL, we may say “For all x’s such that x is a real number,
x2 = x · x”.

We cannot say “For all f ’s such that f is a function over real
numbers, f2(x) = f(x) · f(x)”.

In higher-order logics, variables may range over functions and
predicates.

In higher-order logics, we can make statements about predicates:
e.g., we may say “if x and y are real numbers and x = y, then for all
P ’s such that P is a predicate, P (x) = P (y)”.
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LOGIC AS A SPECIFICATION LANGUAGE
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Applying logic to technical problems

Formal logic is used in mathematics to investigate properties of
abstract concepts, such as geometrical shapes, numbers,
functions. . .

However, it can be used to describe and reason about technical
systems, such as computer programs, electronic circuits, industrial
control systems. . .

A formal system enables developers to:

■ Describe system characteristics and requirements with great rigor
and accurateness;

■ formally prove system properties.

A great number of formal systems have been devised for
requirements specification and system verification.
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Formal languages (1)

■ A formal language identifies some basic attributes that are simple
and general enough to describe a large class of systems in an
abstract way.
◆ E.g., the behavior of many systems can be described in terms of

sets of states and sequences of actions.
■ The possible values of these attributes form the domain of the

language (just like numbers form the domain of algebra).
■ The language defines operations that act on the elements of the

domain, such as forming sets and sequences, and combining
them in various ways.
◆ E.g., we may define operations for parallel and sequential

composition to describe the interaction of two processes.
■ We can then describe systems with formulae whose meaning can

be understood in terms of mathematical concepts, such as sets
and functions.
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Formal languages (2)

Some families of logic-based specification languages:

■ Predicate logics. Based on predicate logic and set theory, very
general applicability.

■ Temporal logics. Used to specify properties related to
synchronization.

■ Process algebras. A large class of languages that describe
concurrent processes by means of operators on elementary
actions. Often used in conjunction with temporal logics.

■ . . .
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A few modeling languages

■ Z (/zεd/). Based on predicate logic and Zermelo-Fränkel set
theory.

■ Vienna Development Method (VDM). Well-known predicate logic
formalism.

■ Prototype Verification System (PVS). More about this later on. . .
■ Calculus of Communicating Systems (CCS). A process algebra.
■ Communicating Sequential Processes (CSP). Another process

algebra.
■ Language of Temporal Ordering Specification (LOTOS). Yet

another process algebra.
■ . . .
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Can Properties Be Verified Mechanically?

No. Well, sometimes yes.

In a previous slide, we described a formal system as a “machine” to
prove truth or falsehood of sentences by the process of deduction.

However, such a machine does not run by itself. Proving a formula is
much like a game where one must choose the right moves (inference
steps) and do them in the right order.

Many proof strategies exist to guide deduction, such as proof by
induction or proof by contradiction.

In general, no proof strategy may be guaranteed to prove or disprove
an arbitrary formula in a given formal system (problem of
decidability).

However, there are classes of formulae that are decidable. In such
cases, it is possible to use a mechanical procedure.
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Theorem Proving and Model Checking

Two main aproaches exist to automatic verification of system
properties:

■ Theorem proving: A theorem prover is a computer program that
implements a formal system. It takes as input a formal definition of
the system that must be verified and of the properties that must be
proved, and tries to construct a proof by application of inference
rules, according to a built-in strategy.

■ Model checking: A model checker is a computer program that
extracts a model of the system to be verified from its formal
description. The model is a graph whose nodes are the states of
the system, connected by transitions. The model checker
examines each state and checks if the desired properties hold in
that state.

Theorem proving may be fully automatic, or interactive.
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THE PROTOTYPE VERIFICATION SYSTEM
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Prototype Verification System

The PVS is an interactive theorem prover developed at Computer
Science Laboratory, SRI International, Menlo Park (California), by S.
Owre, N. Shankar, J. Rushby, and others.

The formal system of PVS consists of a higher-order language and
the sequent calculus axioms and inference rules.

PVS has many applications, including formal verification of
hardware, algorithms, real-time and safety-critical systems.
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Using the PVS

■ EMACS-based user interface.
■ The user writes definitions and formulae.
■ The user selects a formula and enters the prover environment.
■ Prover commands apply single inference rules or pre-packaged

sequences of rules (strategies), transforming formulae or
producing new formulae.

■ The user examines the formulae resulting of each prover
command, and decides what to do next.

■ The prover finds out when a proof has been successfully
completed.
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The PVS Specification Language

■ Logical connectives: NOT, AND, OR, IMPLIES, . . .
■ Quantifiers: EXISTS, FORALL.
■ Complex operators: IF-THEN-ELSE, COND.
■ Notation for records, tuples, lists. . .
■ Notation for definitions, abbreviations. . .
■ Rich higher-order type system. Each variable is defined to range

over a type, including function and predicate types (predicates are
functions that return a Boolean value).

■ Theories: named collections of definitions and formulae. A theory
may be imported (and referred to) by another theory.

■ A large number of pre-defined theories is available in the prelude
library.
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Typed Logic

■ Every variable or constant belongs to a type, i.e., denotes
elements of a given set.

■ Pre-defined base types: bool, nat, real. . .
■ Uninterpreted types: we just say that a type with a given name

exists, e.g., perfectsw: TYPE.
■ Interpreted types: we define a type in terms of other types, or by

explicit enumeration of its members.
◆ Enumerations: flag: TYPE = {red, black, white, green}
◆ Tuples: triple: TYPE = [nat, flag, real]
◆ Records: point: TYPE = [# x: real, y: real #]
◆ Subtypes: posnat: TYPE = {x: nat | x>0}
◆ Functions: int2int: TYPE = [int -> int]
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Declarations

■ Constants:
◆ n0: nat (uninterpreted constant)
◆ lucky: nat = 13
◆ a_triple: flag = (lucky, red, 3.14)
◆ origin: point = (# x := 0.0, y:= 0.0 #)
◆ inc: int2int = (lambda (x: int): x + 1)
◆ inc: [int -> int] = (lambda (x: int): x + 1)
◆ inc(x: int): int = x + 1

■ Variables: add VAR to type expression: m: VAR nat

■ Formulae:
◆ plus_commutativity: AXIOM forall(x, y: nat): x + y

= y + x
◆ a_theorem: THEOREM forall(n: nat): n < n + 1

Keyword lambda introduces the parameters of a function.

Instead of THEOREM we may use LEMMA, CONJECTURE. . .

An AXIOM is assumed to be proved.
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Example

group : THEORY
BEGIN

G : TYPE+ % uninterpreted, nonempty
e : G % neutral element
i : [G -> G] % inverse

* : [G,G -> G] % binary operation
x,y,z : VAR G
associative : AXIOM

(x * y) * z = x * (y * z)
id_left : AXIOM

e * x = x
inverse_left : AXIOM

i(x) * x = e
inverse_associative : THEOREM

i(x) * (x * y) = y
END group
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Sequent calculus (1)

The sequent calculus works on formulae of a special form, called
sequents, such as:

A1, A2, . . . , An ⊢ B1, B2, . . . , Bm

where the Ai’s are the antecedents and the Bi’s are the
consequents.

Each antecedent or consequent, in turn, is a formula of any form (it
may contain subformulae with quantifiers and connectives, but not
“sub-sequents”).

The symbol in the middle (⊢) is called a turnstile and may be read as
“yields”.

Informally, a sequent can be seen as another notation for

A1 ∧A2 ∧ . . . ∧An ⇒ B1 ∨B2 ∨ . . . ∨Bm



A. Domenici 30/64

Sequent calculus (2)

A sequent is true if:

■ Any formula occurs both as an antecedent and as a consequent; or
■ any antecedent is false; or
■ any consequent is true.

In the PVS prover interface, a sequent is represented as:
{-1} A1
...

[-n] An
|-------

{1} B1
...

[m] Bm
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Sequent calculus (3)

The Sequent calculus has one axiom: Γ, A ⊢ A,∆ where Γ and ∆
are (multi)sets of formulae.

Inference rules:

Γ,A⊢A,∆axm
Γ⊢∆,A A,Γ⊢∆

Γ⊢∆ cut
A,A,Γ⊢∆
A,Γ⊢∆ ctr L

Γ⊢∆,A,A
Γ⊢∆,A

ctr R

Γ⊢∆,A
¬A,Γ⊢∆¬L

A,Γ⊢∆
Γ⊢∆,¬A

¬R
A,B,Γ⊢∆
A∧B,Γ⊢∆∧L

Γ⊢∆,A Γ⊢∆,B
Γ⊢∆,A∧B

∧R

A,Γ⊢∆ B,Γ⊢∆
A∨B,Γ⊢∆ ∨L

Γ⊢∆,A,B
Γ⊢∆,A∨B

∨R
Γ⊢∆,A B,Γ⊢∆
A⇒B,Γ⊢∆ ⇒L

A,Γ⊢∆,B
Γ⊢A⇒B,∆⇒R

A[x←t],Γ⊢∆
∀x.A,Γ⊢∆ ∀L

Γ⊢∆,A[x←y]
Γ⊢∀x.A,∆ ∀R

A[x←y],Γ⊢∆
∃x.A,Γ⊢∆ ∃L

Γ⊢∆,A[x←t]
Γ⊢∃x.A,∆ ∃R

axm: the axiom
cut : the cut rule
ctr : the contraction rules

The quantifier rules have caveats on the quantified variable.
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Proofs

Proofs are constructed backwards from the goal sequent, that in
PVS has the form ⊢ F , where F is the formula we want to prove.

Inference rules are applied backwards, i.e., given a formula, we find
a rule whose consequence matches the formula, and the premises
become the new subgoals.

Since a rule may have two premises, proving a goal produces a tree
of sequents, rooted in the goal, called the proof tree.

The proof is completed when (and if!) all branches terminate with an
instance of the axiom.
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Proof Example

Suppose we want to prove that ¬A ∨ ¬B ⇒ ¬(A ∧B).

A,B ⊢ A
axm

¬A,A,B ⊢
¬L

A,B ⊢ B
axm

¬B,A,B ⊢
¬L

(¬A ∨ ¬B), A,B ⊢
∨L

(¬A ∨ ¬B), (A ∧B) ⊢
∧L

(¬A ∨ ¬B) ⊢ ¬(A ∧B)
¬R

⊢ (¬A ∨ ¬B) ⇒ ¬(A ∧B)
⇒R

The root goal is at the bottom.

At the top we have two branches that end with empty formulae by the
axiom rule.

The goal has then been proved.



A. Domenici 34/64

Prover Commands

The PVS prover has a large number of commands (also called rules):

■ Control rules to control proof execution and proof tree exploration.
■ Structural rules implement the contraction rules and hide unused

formulae in the sequent.
■ Propositional rules implement the inference rules for connectives,

for complex operators, and for the cut . They also apply various
simplification laws.

■ Quantifier rules implement the inference rules for quantifiers.
■ Equality rules implement various inference rules in addition to the

basic sequent calculus, including rules for equality, records, tuples,
and function definitions.

■ Definition and lemma handling rules invoke and apply lemmas and
definitions.

■ Strategies apply pre-defined sequences of rules.
■ . . . and more.
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Prover Commands: flatten

flatten implements the ∧ L, ∨ R, and ⇒ R rules:

{-1} A AND B
|------

{1} C OR D
{2} E => F

Rule? (flatten)

{-1} A
{-2} B
{-3} E

|------
{1} C
{2} D
{3} F
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Prover Commands: split

split implements the ∧ R, ∨ L, and ⇒ L rules:

|------
{1} A AND B

Rule? (split)

|------ |------
{1} A {1} B

The split command produced two subgoals, i.e., a branching point
in the proof tree.
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Prover Commands: skolem

skolem implements the ∀ R and ∃ L rules:

{-1} EXISTS (x:T): P(x)
|------ |------

{1} FORALL (x:T): P(x) {1} A

Rule? (skolem 1 "c") Rule? (skolem -1 "c")

{-1} P(c)
|------ |------

{1} P(c) {1} A
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Prover Commands: skosimp*

skosimp* is a strategy that applies skolemization and flatten:

|------
{1} FORALL (x:T): P(x) => FORALL (y:S): Q(y) OR R(y)

Rule? (skosimp*)

{-1} P(x!1)
|------

{1} Q(y!1)
{2} R(y!1)

Often the first step in a proof.
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Example: group theory

Remember this theory?

group : THEORY
BEGIN

G : TYPE+ % uninterpreted, nonempty
e : G % neutral element
i : [G -> G] % inverse

* : [G,G -> G] % binary operation
x,y,z : VAR G
associative : AXIOM

(x * y) * z = x * (y * z)
id_left : AXIOM

e * x = x
inverse_left : AXIOM

i(x) * x = e
inverse_associative : THEOREM

i(x) * (x * y) = y
END group
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Example: group theory

inverse_associative :

|-------
{1} FORALL (x, y: G): i(x) * (x * y) = y

Rule? (lemma "associative")
Applying associative
this simplifies to:
inverse_associative :

{-1} FORALL (x, y, z: G): (x * y) * z = x * (y * z)
|-------

[1] FORALL (x, y: G): i(x) * (x * y) = y

Rule? (lemma "inverse_left")
...

Rule? (lemma "id_left")
...
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Example: group theory

{-1} FORALL (x: G): e * x = x
[-2] FORALL (x: G): i(x) * x = e
[-3] FORALL (x, y, z: G): (x * y) * z = x * (y * z)

|-------
[1] FORALL (x, y: G): i(x) * (x * y) = y

Rule? (skosimp*)
Repeatedly Skolemizing and flattening,
this simplifies to:
inverse_associative :

[-1] FORALL (x: G): e * x = x
[-2] FORALL (x: G): i(x) * x = e
[-3] FORALL (x, y, z: G): (x * y) * z = x * (y * z)

|-------
{1} i(x!1) * (x!1 * y!1) = y!1
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Example: group theory

[-1] FORALL (x: G): e * x = x
[-2] FORALL (x: G): i(x) * x = e
[-3] FORALL (x, y, z: G): (x * y) * z = x * (y * z)

|-------
{1} i(x!1) * (x!1 * y!1) = y!1

Rule? (inst -3 "i(x!1)" "x!1" "y!1")
Instantiating the top quantifier in -3 with the terms:
i(x!1), x!1, y!1,

this simplifies to:
inverse_associative :

[-1] FORALL (x: G): e * x = x
[-2] FORALL (x: G): i(x) * x = e
{-3} (i(x!1) * x!1) * y!1 = i(x!1) * (x!1 * y!1)

|-------
[1] i(x!1) * (x!1 * y!1) = y!1
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Example: group theory

[-1] FORALL (x: G): e * x = x
[-2] FORALL (x: G): i(x) * x = e
{-3} (i(x!1) * x!1) * y!1 = i(x!1) * (x!1 * y!1)

|-------
[1] i(x!1) * (x!1 * y!1) = y!1

Rule? (inst -2 "x!1")
Instantiating the top quantifier in -2 with the terms:
x!1,

this simplifies to:
inverse_associative :

[-1] FORALL (x: G): e * x = x
{-2} i(x!1) * x!1 = e
[-3] (i(x!1) * x!1) * y!1 = i(x!1) * (x!1 * y!1)

|-------
[1] i(x!1) * (x!1 * y!1) = y!1
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Example: group theory

[-1] FORALL (x: G): e * x = x
{-2} i(x!1) * x!1 = e
[-3] (i(x!1) * x!1) * y!1 = i(x!1) * (x!1 * y!1)

|-------
[1] i(x!1) * (x!1 * y!1) = y!1

Rule? (inst -1 "x!1")
Instantiating the top quantifier in -1 with the terms:
x!1,

this simplifies to:
inverse_associative :

{-1} e * x!1 = x!1
[-2] i(x!1) * x!1 = e
[-3] (i(x!1) * x!1) * y!1 = i(x!1) * (x!1 * y!1)

|-------
[1] i(x!1) * (x!1 * y!1) = y!1
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Example: group theory

[-1] e * x!1 = x!1
[-2] i(x!1) * x!1 = e
[-3] (i(x!1) * x!1) * y!1 = i(x!1) * (x!1 * y!1)

|-------
[1] i(x!1) * (x!1 * y!1) = y!1

Rule? (grind)
Trying repeated skolemization, instantiation, and if-lifting,
this simplifies to:
inverse_associative :

[-1] e * x!1 = x!1
[-2] i(x!1) * x!1 = e
{-3} e * y!1 = i(x!1) * (x!1 * y!1)

|-------
[1] i(x!1) * (x!1 * y!1) = y!1
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Example: group theory

[-1] e * x!1 = x!1
[-2] i(x!1) * x!1 = e
{-3} e * y!1 = i(x!1) * (x!1 * y!1)

|-------
[1] i(x!1) * (x!1 * y!1) = y!1

Rule? (replace -3 :dir RL)
Replacing using formula -3,
this simplifies to:
inverse_associative :

[-1] e * x!1 = x!1
[-2] i(x!1) * x!1 = e
[-3] e * y!1 = i(x!1) * (x!1 * y!1)

|-------
{1} e * y!1 = y!1
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Example: group theory

[-1] e * x!1 = x!1
[-2] i(x!1) * x!1 = e
[-3] e * y!1 = i(x!1) * (x!1 * y!1)

|-------
{1} e * y!1 = y!1

Rule? (lemma "id_left")
Applying id_left
this simplifies to:
inverse_associative :

{-1} FORALL (x: G): e * x = x
[-2] e * x!1 = x!1
[-3] i(x!1) * x!1 = e
[-4] e * y!1 = i(x!1) * (x!1 * y!1)

|-------
[1] e * y!1 = y!1
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Example: group theory

{-1} FORALL (x: G): e * x = x
[-2] e * x!1 = x!1
[-3] i(x!1) * x!1 = e
[-4] e * y!1 = i(x!1) * (x!1 * y!1)

|-------
[1] e * y!1 = y!1

Rule? (inst -1 "y!1")
Instantiating the top quantifier in -1 with the terms:
y!1,

Q.E.D.

. . . wow, we made it!
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HARDWARE VERIFICATION
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Example: a Full Adder

+------+ x | y | cin | carry | sum
x --| |-- carry ---+---+-----+-------+-----

| FA | 0 | 0 | 0 | 0 | 0
y --| |-- sum 0 | 0 | 1 | 0 | 1
cin --| | 0 | 1 | 0 | 0 | 1

+------+ 0 | 1 | 1 | 1 | 0
1 | 0 | 0 | 0 | 1
1 | 0 | 1 | 1 | 0
1 | 1 | 0 | 1 | 0
1 | 1 | 1 | 1 | 1

x

y

carry

sumcin
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Example: a Full Adder

FullAdder : THEORY

BEGIN

x,y,cin : VAR bool

FA(x,y,cin) : [bool, bool] =
((x AND y) OR ((x XOR y) AND cin), % carry
(x XOR y) XOR cin) % sum

bool2nat(x) : nat = IF x THEN 1 ELSE 0 ENDIF

FA_corr : THEOREM
LET (carry, sum) = FA(x, y, cin) IN
bool2nat(sum) + 2 * bool2nat(carry)

= bool2nat(x) + bool2nat(y) + bool2nat(cin)

END FullAdder
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Example: a Full Adder

We want to verify the correctness of the implementation (in terms of
logic gates) wrt the mathematical definition of binary two-digit
addition with carry.
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Example: a Full Adder

FA_corr :

|-------
{1} FORALL (cin, x, y: bool):

LET (carry, sum) = FA(x, y, cin) IN
bool2nat(sum) + 2 * bool2nat(carry) =
bool2nat(x) + bool2nat(y) + bool2nat(cin)

Rule? (skolem!)
Skolemizing,
this simplifies to:
FA_corr :

|-------
{1} LET (carry, sum) = FA(x!1, y!1, cin!1) IN

bool2nat(sum) + 2 * bool2nat(carry) =
bool2nat(x!1) + bool2nat(y!1) + bool2nat(cin!1)
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Example: a Full Adder

Rule? (beta)
Applying beta-reduction, ...
FA_corr :

|-------
{1} bool2nat(FA(x!1, y!1, cin!1)‘2)

+ 2 * bool2nat(FA(x!1, y!1, cin!1)‘1)
= bool2nat(x!1) + bool2nat(y!1)

+ bool2nat(cin!1)

Rule? (expand "bool2nat")
Expanding the definition of bool2nat, ...
FA_corr :

|-------
{1} IF FA(x!1, y!1, cin!1)‘2 THEN 1 ELSE 0 ENDIF +

2 * IF FA(x!1, y!1, cin!1)‘1
THEN 1 ELSE 0 ENDIF

= IF x!1 THEN 1 ELSE 0 ENDIF
+ IF y!1 THEN 1 ELSE 0 ENDIF
+ IF cin!1 THEN 1 ELSE 0 ENDIF
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Example: a Full Adder

Rule? (expand "FA")
Expanding the definition of FA,
this simplifies to:
FA_corr :

|-------
{1} IF (x!1 XOR y!1) XOR cin!1

THEN 1 ELSE 0 ENDIF
+ 2 * IF (x!1 AND y!1)

OR ((x!1 XOR y!1) AND cin!1)
THEN 1 ELSE 0 ENDIF

=
IF x!1 THEN 1 ELSE 0 ENDIF
+ IF y!1 THEN 1 ELSE 0 ENDIF
+ IF cin!1 THEN 1 ELSE 0 ENDIF
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Example: a Full Adder

Rule? (lift-if)
Lifting IF-conditions to the top level, ...
FA_corr :

|-------
{1} IF (x!1 XOR y!1) XOR cin!1

THEN 1 + 2 *
IF (x!1 AND y!1) OR ((x!1 XOR y!1) AND cin!1)
THEN 1 ELSE 0 ENDIF

=
IF x!1 THEN 1 ELSE 0 ENDIF
+ IF y!1 THEN 1 ELSE 0 ENDIF
+ IF cin!1 THEN 1 ELSE 0 ENDIF

ELSE 0 + 2 *
IF (x!1 AND y!1) OR ((x!1 XOR y!1) AND cin!1)
THEN 1 ELSE 0 ENDIF

=
IF x!1 THEN 1 ELSE 0 ENDIF
+ IF y!1 THEN 1 ELSE 0 ENDIF
+ IF cin!1 THEN 1 ELSE 0 ENDIF

ENDIF
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Example: a Full Adder

Rule? (prop)
Applying propositional simplification,
this yields 2 subgoals:
FA_corr.1 :

{-1} (x!1 XOR y!1) XOR cin!1
|-------

{1} 1 + 2 *
IF (x!1 AND y!1) OR ((x!1 XOR y!1) AND cin!1)

THEN 1 ELSE 0 ENDIF
=
IF x!1 THEN 1 ELSE 0 ENDIF + IF y!1

THEN 1 ELSE 0 ENDIF
+ IF cin!1 THEN 1 ELSE 0 ENDIF

We prove this subgoal with a long series of lift-if, prop, and
grind, that produce further subgoals in the process. . .
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Example: a Full Adder

Rule? (grind)
XOR rewrites (FALSE XOR FALSE) to FALSE
Trying repeated skolemization, instantiation,

and if-lifting,
This completes the proof of FA_corr.1.6.2.
This completes the proof of FA_corr.1.6.
This completes the proof of FA_corr.1.

FA_corr.2 :

|-------
{1} (x!1 XOR y!1) XOR cin!1
{2} 0 + 2 *

IF (x!1 AND y!1) OR ((x!1 XOR y!1) AND cin!1)
THEN 1 ELSE 0 ENDIF

=
IF x!1 THEN 1 ELSE 0 ENDIF
+ IF y!1 THEN 1 ELSE 0 ENDIF
+ IF cin!1 THEN 1 ELSE 0 ENDIF
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Example: a Full Adder

We tackle the second main branch with the same approach, and
finally:

Rule? (grind)
Trying repeated skolemization, instantiation,

and if-lifting,
This completes the proof of FA_corr.2.6.2.
This completes the proof of FA_corr.2.6.
This completes the proof of FA_corr.2.

Q.E.D.

Run time = 1.84 secs.
Real time = 6.43 secs.
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Conclusions

We have taken a first look at an interesting tool for the formal
verification and validation of specifications and designs.

We have (almost) totally ignored the theoretical aspects.

The focus was on giving an idea of the tool’s features and
possibilities.

The philosophy behind this tool might be expressed in this way:

Assisting human insight with the power and reliability of
mechanical theorem proving.

Of course there is a lot more to it: please go through the references,
and Google be with you! You will find lots of interesting stuff.
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