
Formal Methods for Secure Systems
Master of Science in Computer Engineering

Introduction to PVS (Prototype Verification System) proofs

Andrea Domenici

Department of Information Engineering

University of Pisa, Italy

April 13, 2020

Fundamental rules of sequent calculus (1)

Let us recall the fundamental inference rules. In the following, letters A and B denote
formulae, while Γ and ∆ denote possibly empty multisets of formulae. In repeated
occurrences of a same letter, the corresponding formulae are equal modulo variable
renaming, i.e., syntactically equivalent. For example, the following formulae are
syntactically equivalent:

FORALL (x: real): p(x)

FORALL (y: real): p(y)

The syntactical equivalence (
syntax
≡) of the two formulae can be expressed as

∀x∈Rp(x)
syntax
≡ ∀y∈Rp(y).

Note: the
syntax
≡ symbol belongs to the metalanguage, not to the underlying sequent

calculus language.

2 / 65

Fundamental rules of sequent calculus (2)

Axiom: Γ,A⊢A,∆axm

a sequent is proved if a formula occurs both as an antecedent and a

consequent.

Cut: Γ⊢∆,A A,Γ⊢∆
Γ⊢∆ cut

Cut allows an additional assumption to be introduced and later

proved (or discharged).

Contraction: A,A,Γ⊢∆
A,Γ⊢∆ ctr L

Γ⊢∆,A,A
Γ⊢∆,A

ctr R

Contraction allows a formula to be replicated. Useful when a lemma

is used more than once.

3 / 65

Fundamental rules of sequent calculus (3)

Negation: Γ⊢∆,A
¬A,Γ⊢∆¬L

A,Γ⊢∆
Γ⊢∆,¬A

¬R

Negating a formula produces a sequent where the formula is moved to the other
side of the turnstile. This is done automatically by the prover.

Conjunction: A,B ,Γ⊢∆
A∧B ,Γ⊢∆∧L

Γ⊢∆,A Γ⊢∆,B
Γ⊢∆,A∧B

∧R

In the antecedent, a conjunction is equivalent to the set of its conjuncts as
self-standing formulae. In the consequent, proving a conjunction requires proving
each conjunct.

Disjunction: A,Γ⊢∆ B ,Γ⊢∆
A∨B ,Γ⊢∆ ∨L

Γ⊢∆,A,B
Γ⊢∆,A∨B

∨R

A disjuncion in the antecedent means that the consequent can be proved both
from one disjunct and from the other. In the consequent, a disjunction is
equivalent to the set of its disjuncts as self-standing formulae.

4 / 65

Fundamental rules of sequent calculus (4)

Implication: Γ⊢∆,A B ,Γ⊢∆
A⇒B ,Γ⊢∆ ⇒L

A,Γ⊢∆,B
Γ⊢A⇒B ,∆⇒R

Both rules for implication can be obtained using the identity A⇒ B = ¬A ∨ B

and the rules for conjunction and negation.

Universal: A[x←t],Γ⊢∆
∀x .A,Γ⊢∆ ∀L

Γ⊢∆,A[x←a]
Γ⊢∀x .A,∆ ∀R

Existential: A[x←a],Γ⊢∆
∃x .A,Γ⊢∆ ∃L

Γ⊢∆,A[x←t]
Γ⊢∃x .A,∆ ∃R

In the quantifier rules, A[x ← t] is the formula obtained by substituting a term t

for each free occurrence of x in A, possibly renaming bound variables in A to
avoid name clashes with variables in t. Similarly, a denotes a fresh constant, i.e.,
a new constant that does not occur in the conclusion sequent of the rule.

5 / 65

Additional rules: equality

Equality:
GG ⊢a=b,∆eq

a=b, Γ[b] ⊢∆[b]
a=b, Γ[a] ⊢∆[a] repl

In the above rules, a and b are syntactically equivalent terms. In the consequent,
a true equality proves the sequent. In the antecedent, an equality allows
occurrences of b to be replaced by a throughout the sequent.

6 / 65

Additional rules: IF

IF operator:: Γ, A, B ⊢ ∆ Γ, ¬A, C ⊢ ∆
Γ, IF (A, B , C) ⊢ ∆ IFL

Γ, A, ⊢ B∆ Γ, ¬A, ⊢ C∆
Γ ⊢ IF (A, B , C), ∆ IFL

In the above rules, IF is of type [bool, bool, bool -> bool] and occurs at
top level in the sequent. The rules can be derived from the fundamental rules,
using the definition of the IF operator introduced in the lecture on the PVS
language.

An IF in the antecedent produces a subgoal to prove the consequent from A and
B and a subgoal to prove the consequent from ¬A and C . In the consequent, it
produces a subgoal to prove B from A and a subgoal to prove C from ¬A.

Lifting: Γ, IF(A, B[b], B[b) ⊢ ∆
Γ, B(IF (A, b, c) ⊢ ∆ liftingL

Γ, ⊢ IF(A, B[b], B[b) ∆
Γ, ⊢ B(IF (A, b, c) ∆ liftingR

Lifting allows an IF expression of any type, occurring as a term in a formula, to
be factored out and transformed into a top level sequent formula.

7 / 65

Backward-chaining

The inference rules of sequent calculus are divided into left- and right- introduction

rules, i.e., in each rule the consequence is a sequent obtained by introducing a
connective or quantifier in the left or right side of the turnstile, i.e., in the antecedent
or consequent side.

An introduction rule becomes an elimination rule when applied backwards.

The axiom is equivalent to an inference rule with an empty premise.

A proof can then be carried out backwards, starting from the goal and applying
elimination rules until all branches of the proof tree are closed by the empty sequent.

The prover commands available in the PVS proof environment are based on the
fundamental sequent calculus rules and on other rules (obviously consistent with the
fundamental ones) dealing with equality, introduction of lemmas and definitions, and
such.

8 / 65

Proof pragmatics

Proving a goal involves the following operations:

◮ eliminating quantifiers

◮ disassembling the goal into simpler subgoals

◮ introducing axioms and proved lemmas, possibly from other theories

◮ instantiating axioms and lemmas

◮ expanding definitions

◮ replacing terms using equality.

◮ case reasoning

◮ using induction

A proof may not need all the above operations.

Any operation may be applied several times in the proof.

Dependencies exist between operations. For example, instantiating lemmas often
amounts to quantifier elimination. Quantifier elimination is often the first step in a
proof, but not in inductive proofs.

9 / 65

Prover commands

The prover commands are based on the above rules, but they usually do not
correspondi directly to single rules, e.g., there is no command called
“ left-AND-elimination”. Many commands use different rules depending on whether they
are applied to an antecedent or consequent formula.

Prover commands are divided into primitive rules, strategies, and defined rules.
Primitive rules produce (if successful) one or more new goals in one step. Strategies
produce a new subtree rooted at the current goal. Defined rule are strategies executed
as a single step, since only the leaves of the generated subtree are displayed by the
prover.

Only a few commands will be shown, and in their simplest form. Please refer to
the PVS prover manual for full syntax and semantics.

Most commands refer to formulae by their number (fnum). Antecedents have negative
numbers, consequents positive numbers. A single ‘-’ or ‘+’ refers to all antecedents or
consequents, respectively. An asterisk (‘*’) refers to all formulae.

10 / 65

Thoralf Albert Skolem (1887 – 1963)

11 / 65

Quantifier elimination: consequent (1)

skolem! replaces universally quantified variables with prover-generated fresh constants,
e.g.,

|------- % consequent FORALL: (skolem!)

{1} FORALL (x: int): p(x)

Rule? (skolem!)

|-------

{1} p(x!1)

skosimp applies skolem! followed by flatten (see below).

skosimp* repeats skosimp.

skeep replaces universally quantified variables with constants named as the replaced
variables, e.g.,

|------- % consequent FORALL: (skeep)

{1} FORALL (x: int): p(x)

Rule? (skeep)

|-------

{1} p(x)

12 / 65

Quantifier elimination: consequent (2)

inst replaces existentially quantified variables with terms not containing free variables,
e.g.,

|------- % consequent EXISTS: (inst)

{1} EXISTS (x: int): p(x)

Rule? (inst 1 3)

|-------

{1} p(3)

13 / 65

Quantifier elimination: antecedent (1)

inst replaces universally quantified variables with terms not containing free variables,
e.g.,

{-1} FORALL (x: int): p(x)

|------- % antecedent FORALL: (inst)

{1} p(3)

Rule? (inst -1 3)

{-1} p(3)

|-------

{1} p(3)

inst? finds and applies adequate substitutions to eliminate a universal quantifier.

14 / 65

Logical operator elimination: consequent (1)

split eliminates top-level conjunctions, equivalences, and IF’s, e.g.,

|------- % consequent AND: (split)

{1} A AND B

Rule? (split)

|------- |-------

{1} A {1} B

|------- % consequent IFF: (split)

{1} A IFF B

Rule? (split)

|------- |-------

{1} A IMPLIES B {1} B IMPLIES A

15 / 65

Logical operator elimination: consequent (2)

|------- % consequent IF: (split)

{1} IF A THEN B ELSE C ENDIF

Rule?: (split)

|------- |-------

{1} A IMPLIES B {1} NOT A IMPLIES C

16 / 65

Logical operator elimination: consequent (3)

flatten eliminates top-level disjunctions and implications, e.g.,

|------- % consequent OR: (flatten)

{1} A OR B

Rule? (flatten)

|-------

{1} A

{2} B

|------- % consequent IMPLIES: (flatten)

{1} A IMPLIES B

Rule?: (flatten)

{-1} A

|-------

{1} B

17 / 65

Logical operator elimination: antecedent (1)

split eliminates top-level disjunctions, implications, and IF’s, e.g.,

{-1} (A OR B)

|------- % antecedent OR: (split)

Rule?: (split)

{-1} A {-1} B

|------- |-------

{-1} (A IMPLIES B)

|------- % antecedent IMPLIES: (split)

Rule?: (split)

{-1} B

|------- |-------

{1} A

18 / 65

Logical operator elimination: antecedent (2)

{-1} IF A THEN B ELSE C ENDIF

|------- % antecedent IF: (split)

Rule? (split)

{-1} A AND B {-1} NOT A AND C

|------- |-------

19 / 65

Logical operator elimination: antecedent (3)

flatten eliminates top-level conjunctions and equivalences, e.g.,

{-1} (A AND B)

|------- % antecedent AND: (flatten)

Rule?: (flatten)

{-1} A

{-2} B

|-------

{-1} (A IFF B)

|------- % antecedent IFF: (flatten)

Rule? (flatten)

{-1} A IMPLIES B

{-2} B IMPLIES A

|-------

20 / 65

Logical operator elimination: XOR

The exclusive OR operator is defined in the prelude as a function:

A, B: VAR bool

XOR(A, B): bool = (A /= B)

Hence, it can be eliminated using expand (see below) or introducing Lemma xor_def

from the prelude:

xor_def: LEMMA (A xor B) = IF A THEN NOT B ELSE B ENDIF

21 / 65

Logical operator elimination: IF-lifting

lift-if is not really an operator elimination, but it produces a top-level Boolean
IF-expression (i.e., a formula) from an IF-expression of any type. For example, given

A: bool; T: TYPE+; s,t: T; p, q: pred[T]; x: VAR T;

we can prove

|-------

{1} FORALL (x: T): p(IF A THEN s ELSE t ENDIF) IMPLIES q(x)

Rule? (skeep)

{-1} p(IF A THEN s ELSE t ENDIF)

|-------

{1} q(x)

Rule? (lift-if)

{-1} IF A THEN p(s) ELSE p(t) ENDIF

|-------

[1] q(x)

22 / 65

Logical operator elimination: summary table

operator consequent antecedent
AND, /\ split flatten
IFF, <=> split flatten
IF split split
OR, \/ flatten split
IMPLIES, => flatten split
XOR expand, xor_def
IF-lifting lift-if

23 / 65

Definitions and lemmas (1)

expand replaces occurrences of function applications with the function’s definition.
Expansion may take place throughout the sequent, or in selected formulae, or in
selected occurrences in a formula.

lemma introduces an axiom or theorem into the antecedent. The formula may have
been declared in the current theory, in a prelude theory, in a theory imported from the
context, or in a theory imported from a library.

Name conflicts are resolved by prepending the name of the defining theory and library
to the name of the formula.

rewrite takes the specified lemma, finds appropriate substitutions, and uses the
resulting formula to rewrite another formula.

24 / 65

Equality (1)

replace uses an antecedent equality formula to rewrite terms throughout the sequent or
in selected formulae.

beta simplifies various forms of function applications, including

◮ LET-expressions,

◮ LAMBDA-expressions,

◮ tuple member selection,

◮ record member selection,

25 / 65

Case reasoning (1)
case introduces one or more assuptions in the antecedent. This produces a new
subgoal to prove the consequent under the new assumptions, and other subgoals to
prove the consequent under the negation of each assumption. For example, given

T: TYPE+; s: T; p, q: pred[T]; x: VAR T;

we can prove

|-------

{1} FORALL (x: T): p(x) IMPLIES q(x)

Rule? (skeep)

{-1} p(x)

|-------

{1} q(x)

Rule? (case "x = s")

{-1} x = s

[-2] p(x) [-1] p(x)

|------- |-------

[1] q(x) {1} x = s

[2] q(x)

26 / 65

Case reasoning (2)

Let us consider another example. Given

x: VAR real

we can prove

case_split_1 :

|-------

{1} FORALL (x: real): x * x >= 0

Rule?: (skeep)

case_split_1 :

|-------

{1} x * x >= 0

Rule?: (case "x = 0")

this yields 2 subgoals:

27 / 65

Case reasoning (3)

case_split_1.1 :

{-1} x = 0 % case_split_1.1: assume x = 0

|-------

[1] x * x >= 0

Rule?: (replace -1 1)

[-1] x = 0

|-------

{1} 0 * 0 >= 0

Rule?: (assert)

This completes the proof of case_split_1.1.

28 / 65

Case reasoning (4)

case_split_1.2 :

|-------

{1} x = 0

[2] x * x >= 0

Rule?: (hide 1)

|-------

[1] x * x >= 0

Rule?: (case "x > 0")

this yields 2 subgoals:

29 / 65

Case reasoning (5)

case_split_1.2.1 : % case_split_1.2.1: assume x > 0

{-1} x > 0

|-------

[1] x * x >= 0

Rule?: (lemma pos_times_gt) % from the prelude

{-1} FORALL (x, y: real):

x * y > 0 IFF (0 > x AND 0 > y) OR (x > 0 AND y > 0)

[-2] x > 0

|-------

[1] x * x >= 0

Rule?: (inst?)

{-1} x * x > 0 IFF (0 > x AND 0 > x) OR (x > 0 AND x > 0)

[-2] x > 0

|-------

[1] x * x >= 0

30 / 65

Case reasoning (6)

Rule?: (flatten)

{-1} x * x > 0 IMPLIES (0 > x AND 0 > x) OR (x > 0 AND x > 0)

{-2} (0 > x AND 0 > x) OR (x > 0 AND x > 0) IMPLIES x * x > 0

[-3] x > 0

|-------

[1] x * x >= 0

Rule?: (hide -1)

[-1] (0 > x AND 0 > x) OR (x > 0 AND x > 0) IMPLIES x * x > 0

[-2] x > 0

|-------

[1] x * x >= 0

Rule?: (split)

this yields 2 subgoals:

31 / 65

Case reasoning (7)

case_split_1.2.1.1 :

{-1} x * x > 0

[-2] x > 0

|-------

[1] x * x >= 0

Rule?: (assert)

This completes the proof of case_split_1.2.1.1.

32 / 65

Case reasoning (8)

case_split_1.2.1.2 :

[-1] x > 0

|-------

{1} (0 > x AND 0 > x) OR (x > 0 AND x > 0)

[2] x * x >= 0

Rule?: (flatten)

[-1] x > 0

|-------

{1} (0 > x AND 0 > x)

{2} (x > 0 AND x > 0)

[3] x * x >= 0

Rule?: (hide 1)

[-1] x > 0

|-------

[1] (x > 0 AND x > 0)

[2] x * x >= 0

Rule?: (split)

this yields 2 subgoals:
33 / 65

Case reasoning (9)

case_split_1.2.1.2.1 :

[-1] x > 0

|-------

{1} x > 0

[2] x * x >= 0

This completes the proof of case_split_1.2.1.2.1.

case_split_1.2.1.2.2 :

[-1] x > 0

|-------

{1} x > 0

[2] x * x >= 0

This completes the proof of case_split_1.2.1.2.2

This completes the proof of case_split_1.2.1.2.

This completes the proof of case_split_1.2.1.

34 / 65

Case reasoning (11)

case_split_1.2.2 :

|-------

{1} x > 0

[2] x * x >= 0

Rule?: (case "x < 0")

this yields 2 subgoals:

35 / 65

Case reasoning (12)

case_split_1.2.2.1 : % case_split_1.2.2.1: assume x < 0

{-1} x < 0

|-------

[1] x > 0

[2] x * x >= 0

Rule?: (lemma pos_times_gt) % from the prelude

case_split_1.2.2.1 :

{-1} FORALL (x, y: real):

x * y > 0 IFF (0 > x AND 0 > y) OR (x > 0 AND y > 0)

[-2] x < 0

|-------

[1] x > 0

[2] x * x >= 0

Rule?: (inst?)

36 / 65

Case reasoning (13)

case_split_1.2.2.1 :

{-1} x * x > 0 IFF (0 > x AND 0 > x) OR (x > 0 AND x > 0)

[-2] x < 0

|-------

[1] x > 0

[2] x * x >= 0

Rule?: (flatten)

{-1} x * x > 0 IMPLIES (0 > x AND 0 > x) OR (x > 0 AND x > 0)

{-2} (0 > x AND 0 > x) OR (x > 0 AND x > 0) IMPLIES x * x > 0

[-3] x < 0

|-------

[1] x > 0

[2] x * x >= 0

Rule?: (hide -1)

37 / 65

Case reasoning (14)

[-1] (0 > x AND 0 > x) OR (x > 0 AND x > 0) IMPLIES x * x > 0

[-2] x < 0

|-------

[1] x > 0

[2] x * x >= 0

Rule?: (split)

this yields 2 subgoals:

case_split_1.2.2.1.1 :

{-1} x * x > 0

[-2] x < 0

|-------

[1] x > 0

[2] x * x >= 0

Rule?: (assert)

This completes the proof of case_split_1.2.2.1.1.

38 / 65

Case reasoning (15)

case_split_1.2.2.1.2 :

[-1] x < 0

|-------

{1} (0 > x AND 0 > x) OR (x > 0 AND x > 0)

[2] x > 0

[3] x * x >= 0

Rule?: (flatten)

[-1] x < 0

|-------

{1} (0 > x AND 0 > x)

{2} (x > 0 AND x > 0)

[3] x > 0

[4] x * x >= 0

Rule?: (hide 2)

39 / 65

Case reasoning (16)

[-1] x < 0

|-------

[1] (0 > x AND 0 > x)

[2] x > 0

[3] x * x >= 0

Rule?: (split)

this yields 2 subgoals:

case_split_1.2.2.1.2.1 :

[-1] x < 0

|-------

{1} 0 > x

[2] x > 0

[3] x * x >= 0

Rule?: (assert)

This completes the proof of case_split_1.2.2.1.2.1.

40 / 65

Case reasoning (17)

case_split_1.2.2.1.2.2 :

[-1] x < 0

|-------

{1} 0 > x

[2] x > 0

[3] x * x >= 0

Rule?: (assert)

This completes the proof of case_split_1.2.2.1.2.2

This completes the proof of case_split_1.2.2.1.2.

This completes the proof of case_split_1.2.2.1.

41 / 65

Case reasoning (18)

case_split_1.2.2.2 :

|-------

{1} x < 0

[2] x > 0

[3] x * x >= 0

Rule?: (assert)

This completes the proof of case_split_1.2.2.2

This completes the proof of case_split_1.2.2.

This completes the proof of case_split_1.2.

Q.E.D.

Note: the last 18 slides were only meant to show the use of case. Actually, the goal
can be proved in two steps: skeep and assert.

42 / 65

Case reasoning (19)

(skeep)

(case "x1 = 0")

(replace -1 1)

(assert)

(hide 1)

(case "x1 > 0")

(lemma pos_times_gt)

(inst?)

(flatten)

(hide -1)

(split)

(assert) (flatten)

(hide 1)

(split)

(propax) (propax)

(case "x1 < 0")

(lemma pos_times_gt)

(inst?)

(flatten)

(hide -1)

(split)

(assert) (flatten)

(hide 2)

(split)

(assert) (assert)

(assert)

43 / 65

Induction (1)

An induction schema is an axiom of this form:

∀p ((p(0)∧ ∀xp(x)⇒ p(s(x)))

⇒ ∀xp(x))
(1)

where x belongs to a set T on which a successor function ‘s′ is defined, ‘0’ is the
element of T that is not successor of any element, and p is a predicate over T .

The best known induction schema is the mathematical induction axiom:

∀p ((p(0)∧ ∀np(n)⇒ p((n + 1)))

⇒ ∀np(n))
(2)

where n ∈ N.

Several variants exist of the basic induction schema, e.g., structural induction on data
structures such as lists.

44 / 65

Induction (2)

induct introduces an appropriate induction schema to split a universally quantified goal
into the base case and the induction step. For example, given

sum(n): RECURSIVE nat = % sum of first n numbers

IF n = 0 THEN 0 ELSE n + sum(n-1) ENDIF

MEASURE n

we can prove:

sum_closed_form :

|-------

{1} FORALL (n: nat): sum(n) = 1 / 2 * n * (n + 1)

Rule?: (induct n)

I.e., introduce an induction schema on variable n.

45 / 65

Induction (3)

sum_closed_form.1 : % base case

|-------

{1} sum(0) = 1 / 2 * 0 * (0 + 1)

Rule?: (assert)

|-------

{1} sum(0) = 0

Rule?: (grind)

This completes the proof of sum_closed_form.1.

46 / 65

Induction (4)

sum_closed_form.2 : % induction step

|-------

{1} FORALL j:

sum(j) = 1 / 2 * j * (j + 1) IMPLIES

sum(j + 1) = (1 / 2 * (j + 1)) * (j + 1 + 1)

Rule?: (skeep)

{-1} sum(j) = 1 / 2 * j * (j + 1)

|-------

{1} sum(j + 1) = (1 / 2 * (j + 1)) * (j + 1 + 1)

Rule?: (expand sum)

{-1} IF j = 0 THEN 0 ELSE sum(j - 1) + j ENDIF = 1/2 * (j * j) + 1/2 * j

|-------

{1} sum(j) = 1/2 * (j * j) + 1/2 * j

Rule?: (expand sum)

47 / 65

Induction (5)

{-1} IF j = 0 THEN 0

ELSE IF j - 1 = 0 THEN 0 ELSE sum(j - 2) - 1 + j ENDIF + j

ENDIF

= 1/2 * (j * j) + 1/2 * j

|-------

{1} IF j = 0 THEN 0 ELSE sum(j - 1) + j ENDIF = 1/2 * (j * j) + 1/2 * j

Rule?: (lift-if)

{-1} IF j = 0 THEN 0 = 1/2 * (j * j) + 1/2 * j

ELSE IF j - 1 = 0 THEN 0 + j = 1/2 * (j * j) + 1/2 * j

ELSE sum(j - 2) - 1 + j + j = 1/2 * (j * j) + 1/2 * j

ENDIF

ENDIF

|-------

{1} IF j = 0 THEN 0 = 1/2 * (j * j) + 1/2 * j

ELSE sum(j - 1) + j = 1/2 * (j * j) + 1/2 * j

ENDIF

Rule?: (split)
48 / 65

Induction (6)

sum_closed_form.2.1 :

{-1} j = 0 AND 0 = 1/2 * (j * j) + 1/2 * j

|-------

[1] IF j = 0 THEN 0 = 1/2 * (j * j) + 1/2 * j

ELSE sum(j - 1) + j = 1/2 * (j * j) + 1/2 * j

ENDIF

Rule?: (flatten)

{-1} j = 0

{-2} 0 = 1/2 * (j * j) + 1/2 * j

|-------

[1] IF j = 0 THEN 0 = 1/2 * (j * j) + 1/2 * j

ELSE sum(j - 1) + j = 1/2 * (j * j) + 1/2 * j

ENDIF

Rule?: (hide -2)

49 / 65

Induction (7)

[-1] j = 0

|-------

[1] IF j = 0 THEN 0 = 1/2 * (j * j) + 1/2 * j

ELSE sum(j - 1) + j = 1/2 * (j * j) + 1/2 * j

ENDIF

Rule?: (replace -1 1)

[-1] j = 0

|-------

{1} 0 = 1/2 * (0 * 0) + 1/2 * 0

Rule?: (assert)

This completes the proof of sum_closed_form.2.1.

50 / 65

Induction (8)

sum_closed_form.2.2 :

{-1} NOT j = 0 AND

IF j - 1 = 0 THEN 0 + j = 1/2 * (j * j) + 1/2 * j

ELSE sum(j - 2) - 1 + j + j = 1/2 * (j * j) + 1/2 * j ENDIF

|-------

[1] IF j = 0 THEN 0 = 1/2 * (j * j) + 1/2 * j

ELSE sum(j - 1) + j = 1/2 * (j * j) + 1/2 * j ENDIF

Rule?: (split)

sum_closed_form.2.2.1 :

[-1] NOT j = 0 AND

IF j - 1 = 0 THEN 0 + j = 1/2 * (j * j) + 1/2 * j

ELSE sum(j - 2) - 1 + j + j = 1/2 * (j * j) + 1/2 * j ENDIF

|-------

{1} j = 0 IMPLIES 0 = 1/2 * (j * j) + 1/2 * j

Rule?: (flatten)

This completes the proof of sum_closed_form.2.2.1.
51 / 65

Induction (9)

sum_closed_form.2.2.2 :

[-1] NOT j = 0 AND

IF j - 1 = 0 THEN 0 + j = 1/2 * (j * j) + 1/2 * j

ELSE sum(j - 2) - 1 + j + j = 1/2 * (j * j) + 1/2 * j

ENDIF

|-------

{1} NOT j = 0 IMPLIES sum(j - 1) + j = 1/2 * (j * j) + 1/2 * j

Rule?: (flatten)

{-1} IF j - 1 = 0 THEN 0 + j = 1/2 * (j * j) + 1/2 * j

ELSE sum(j - 2) - 1 + j + j = 1/2 * (j * j) + 1/2 * j

ENDIF

|-------

{1} j = 0

{2} sum(j - 1) + j = 1/2 * (j * j) + 1/2 * j

{3} j = 0

Rule?: (hide 1 3)

52 / 65

Induction (10)

[-1] IF j - 1 = 0 THEN 0 + j = 1/2 * (j * j) + 1/2 * j

ELSE sum(j - 2) - 1 + j + j = 1/2 * (j * j) + 1/2 * j

ENDIF

|-------

[1] sum(j - 1) + j = 1/2 * (j * j) + 1/2 * j

Rule?: (split)

sum_closed_form.2.2.2.1 :

{-1} j - 1 = 0 AND 0 + j = 1/2 * (j * j) + 1/2 * j

|-------

[1] sum(j - 1) + j = 1/2 * (j * j) + 1/2 * j

Rule?: (flatten)

{-1} j - 1 = 0

{-2} 0 + j = 1/2 * (j * j) + 1/2 * j

|-------

[1] sum(j - 1) + j = 1/2 * (j * j) + 1/2 * j

Rule?: (both-sides + 1 -1)
53 / 65

Induction (11)

{-1} j - 1 + 1 = 0 + 1

[-2] 0 + j = 1/2 * (j * j) + 1/2 * j

|-------

[1] sum(j - 1) + j = 1/2 * (j * j) + 1/2 * j

Rule?: (assert)

{-1} j = 1

{-2} j = 1/2 * (j * j) + 1/2 * j

|-------

[1] sum(j - 1) + j = 1/2 * (j * j) + 1/2 * j

Rule?: (replace -1 1)

[-1] j = 1

[-2] j = 1/2 * (j * j) + 1/2 * j

|-------

{1} sum(1 - 1) + 1 = 1/2 * (1 * 1) + 1/2 * 1

Rule?: (assert)

54 / 65

Induction (12)

[-1] j = 1

[-2] j = 1/2 * (j * j) + 1/2 * j

|-------

{1} sum(0) = 0

Rule?: (hide -1 -2)

|-------

[1] sum(0) = 0

Rule?: (expand sum)

|-------

{1} TRUE

This completes the proof of sum_closed_form.2.2.2.1.

55 / 65

Induction (13)

sum_closed_form.2.2.2.2 :

{-1} NOT j - 1 = 0 AND sum(j - 2) - 1 + j + j = 1/2 * (j * j) + 1/2 * j

|-------

[1] sum(j - 1) + j = 1/2 * (j * j) + 1/2 * j

Rule?: (assert)

{-1} NOT j - 1 = 0 AND sum(j - 2) - 1 + 2 * j = 1/2 * (j * j) + 1/2 * j

|-------

[1] sum(j - 1) + j = 1/2 * (j * j) + 1/2 * j

Rule?: (flatten)

{-1} sum(j - 2) - 1 + 2 * j = 1/2 * (j * j) + 1/2 * j

|-------

{1} j - 1 = 0

[2] sum(j - 1) + j = 1/2 * (j * j) + 1/2 * j

Rule?: (expand sum 2)

56 / 65

Induction (14)

[-1] sum(j - 2) - 1 + 2 * j = 1/2 * (j * j) + 1/2 * j

|-------

[1] j - 1 = 0

{2} IF j - 1 = 0 THEN 0 ELSE sum(j - 2) - 1 + j ENDIF + j =

1/2 * (j * j) + 1/2 * j

Rule?: (hide 1)

[-1] sum(j - 2) - 1 + 2 * j = 1/2 * (j * j) + 1/2 * j

|-------

[1] IF j - 1 = 0 THEN 0 ELSE sum(j - 2) - 1 + j ENDIF + j =

1/2 * (j * j) + 1/2 * j

Rule?: (lift-if)

[-1] sum(j - 2) - 1 + 2 * j = 1/2 * (j * j) + 1/2 * j

|-------

{1} IF j - 1 = 0 THEN 0 + j = 1/2 * (j * j) + 1/2 * j

ELSE sum(j - 2) - 1 + j + j = 1/2 * (j * j) + 1/2 * j ENDIF

Rule?: (split)
57 / 65

Induction (15)

{-1} j - 1 = 0

[-2] sum(j - 2) - 1 + 2 * j = 1/2 * (j * j) + 1/2 * j

|-------

{1} 0 + j = 1/2 * (j * j) + 1/2 * j

Rule?: (both-sides + 1 -1)

{-1} j - 1 + 1 = 0 + 1

[-2] sum(j - 2) - 1 + 2 * j = 1/2 * (j * j) + 1/2 * j

|-------

[1] 0 + j = 1/2 * (j * j) + 1/2 * j

Rule?: (assert)

This completes the proof of sum_closed_form.2.2.2.2.1.

58 / 65

Induction (16)

sum_closed_form.2.2.2.2.2 :

[-1] sum(j - 2) - 1 + 2 * j = 1/2 * (j * j) + 1/2 * j

|-------

{1} NOT j - 1 = 0 IMPLIES sum(j - 2) - 1 + j + j = 1/2 * (j * j) + 1/2 * j

Rule?: (flatten)

[-1] sum(j - 2) - 1 + 2 * j = 1/2 * (j * j) + 1/2 * j

|-------

{1} j - 1 = 0

{2} sum(j - 2) - 1 + j + j = 1/2 * (j * j) + 1/2 * j

Rule?: (assert)

This completes the proof of sum_closed_form.2.2.2.2.2.

This completes the proof of sum_closed_form.2.2.2.2.

This completes the proof of sum_closed_form.2.2.2.

This completes the proof of sum_closed_form.2.2.

This completes the proof of sum_closed_form.2.

Q.E.D.

Note: try induct-and-simplify.
59 / 65

Induction (17)
(induct n)

(assert)

(grind)

(skeep)

(expand sum)

(expand sum)

(lift-if)

(split)

(flatten)

(hide -2)

(replace -1 1)

(assert)

(split)

(flatten) (flatten)

(hide 1 3)

(split)

(flatten)

(both-sides + 1 -1)

(assert)

(replace -1 1)

(assert)

(hide -1 -2)

(expand sum)

(propax)

(assert)

(flatten)

(expand sum 2)

(hide 1)

(lift-if)

(split)

(flatten)

(both-sides + 1 -1)

(assert)

(flatten)

(assert)

60 / 65

Decision procedures

Decision procedures are algorithms to simplify and possibly solve a sequent.

assert applies various simplifications to ground formulae. Sometimes it leaves a sequent
unchanged, but it still has the effect of producing internal information that facilitates
further simplifications.

in particular, assert can simplify simple arithmetic expressions.

grind repeatedly applies verious simplifications, including assert.

both-sides simplifies arithmetic expressions by applying the same operation (e.g.,
adding or subtracting a term) to both sides of an equality or inequality.

61 / 65

Copying, hiding, and proof control

copy introduces a duplicate of the specified formula. This is useful before using
commands (e.g., inst) that replace a formula with another. Some commands (e.g.,
inst-cp) incorporate copy.

hide makes the specified formulae invisible to both the user and the prover. This makes
the sequent more readable and may save execution time.

reveal reintroduces hidden formulae. The user calls a prover interface command to
display a list of hidden formulae, then he/she supplies the number of the selected
formulae to the reveal command.

undo discards one or more sequents, starting from the current one.

postpone makes the next open subgoal the current one.

quit exits from the prover environment.

Note: use the x-prove prover interface command to show a dynamic graphic display of
the proof tree. Very useful.

62 / 65

Type checking (1)

The complex PVS type system rules are enforced by the type checker component of the
prover, which generates type correctness conditions (TCC) when it cannot decide if a
formula is type-correct. For example, given

xx: real

we try to prove

tcc :

-1 FORALL (n: nat): p(n) IMPLIES q(n)

|-------

Rule? (inst -1 xx)

this yields 2 subgoals:

63 / 65

Type checking (2)

tcc.1 :

-1 p(xx) IMPLIES q(xx)

|-------

tcc.2 (TCC):

|-------

1 rational_pred(xx) AND integer_pred(xx) AND xx >= 0

If xx is declared nat, no TCC is generated.

Type checking dynamically (during the proof, as in the example above) or statically,
i.e., before a proof is started. Static type checking can be invoked by the user or by the
prover. Statically generated TCCs can be shown and discharged with prover
environment command. Usually a small number of steps are necessary, often a single
assert. If proving a TCC takes long, the theory is probably flawed.

64 / 65

