
Formal Methods for Secure Systems
Master of Science in Computer Engineering

Introduction to PVS (Prototype Verification System) and logic specifications

Andrea Domenici

Department of Information Engineering

University of Pisa, Italy

April 13, 2020

Outline

◮ INTRODUCTORY CONCEPTS
◮ Formal Logic
◮ Languages
◮ Formal Systems
◮ First-Order Logic
◮ Higher-Order Logic

◮ LOGIC AS A SPECIFICATION LANGUAGE
◮ Applying Logic to Technical Problems
◮ Formal Languages
◮ Theorem Proving

◮ THE PROTOTYPE VERIFICATION SYSTEM
◮ The PVS Specification Language
◮ Sequent Calculus and Proofs
◮ Prover Commands

◮ AN EXAMPLE
◮ An Example: a Half Adder

2 / 62

INTRODUCTORY CONCEPTS

3 / 62

Raimundus Lullus, doctor illuminatus

Ramon Llull (1232–1315), Ars magna.

4 / 62

Formal logic

Sound reasoning and precise language are obviously two indispensable requirements for
any scientific and technical activity.

Formal logic is the conceptual framework that explicitly sets out the rules of sound
reasoning. Formal logic enables us to make sure that a given line of reasoning (e.g., the
demonstration of a theorem) is correct, i.e., the conclusions indeed follow from the
premises.

Mathematics and the physical sciences are the classical fields of application for logic,
but logic has become an important tool in technical applications, particularly in
computer engineering.

5 / 62

Families of logics and formal systems

While the term logic refers in general to the science of formal reasoning, we speak of a

logic or another to refer in particular to some particular way of using the general
concepts of logic (just as we have different geometries, Euclidean, Riemannian, etc.,
within the field of geometry).

There exist several families of logics, with different purposes and expressiveness.

Within each logic, formal systems (or theories) are defined. Formal systems will be
introduced later.

6 / 62

Languages

Wovon man nicht sprechen kann, darüber muß man schweigen.
(Whereof one cannot speak, thereof one must be silent).

L. Wittgenstein, Tractatus, Satz No. 7

A logic language defines what we want to talk about (the domain), the expressions that
we use to say what we mean (the syntax), and how expression are given a meaning (the
semantics).

◮ Domain: the individual entities we talk about, and their reciprocal relationships.
◮ E.g., the set of natural numbers, operations, ordering, equality.

◮ Syntax: the symbols denoting entities and relationships, and the well-formedness
rules that say how correct expressions can be formed out of symbols. An
expression that can be true or false is a (declarative) sentence, or formula.

◮ E.g., the symbols 1, 2, 3, . . . , +, −, . . . , <, >, =, “1+ 1” is correct, “1+−2”
is not. “1 < 3” and “1 > 3” are sentences.

◮ Semantics: the rules that relate symbols to entities and relationships, and that
decide which sentences are true.

7 / 62

Formal Systems (1)

Given a language and its semantics, we can interpret any sentence of the language to
see if it is true or false.

E.g., given the sentence “1 + 1 = 2”, the semantics of the arithmetics language tell us
that the symbols “1” and “2” correspond to the concepts of number one and number

two, “+” corresponds to sum, and “=” corresponds to equality.

We can then verify (perhaps by counting on our fingers) that the sentence is true.

Things get more complicated when sentences refer to infinite sets, e.g., “all primes

greater than two are odd”. . .

8 / 62

Formal Systems (2)

A formal system (or theory) is a “machine” that we use to prove the truth or falsehood
of sentences by deductions, i.e., by showing that a sentence follows through a series of
reasoning steps from some other sentences that are known (or assumed) to be valid1.

A formal system consists of:

◮ A language;

◮ a set of axioms, selected sentences taken as valid.

◮ a set of inference rules, saying that a sentence of a given structure can be deduced
from sentences of the appropriate structure, independently of the meaning
(semantics) of the sentences.

◮ E.g., if A and B stand for any two sentences, a well-known inference rule says that
from A and “A implies B” we can deduce B .

1A sentence is valid if and only if it is true for all interpretations
9 / 62

Formal Systems (3)

More precisely, an inference rule is a (meta-)relationship between a set of one or more
formulae called the rule’s premises, and a formula called the (direct) consequence of the
premises.

E.g., the rule mentioned in the previous frame (the modus ponens) is usually written as:

A A ⇒ B

B

or

A

A ⇒ B

B

Note that this inference rule is a template that is matched by any pair of formulae,
since A and B are placeholders for any formula.

10 / 62

Formal Systems (4)

We have a formal system F with axioms A and inference rules R

We want to prove that a formula S follows from a set H of hypotheses.

A deduction of S from H within F is a sequence of formulae such that S is the last one
and each other formula either:

1. Belongs to A; or

2. belongs to H; or

3. is a direct consequence of some preceding formula in the sequence by some rule
belonging to R.

The application of an inference rule is a basic step in a formal line of reasoning (or
argument).

11 / 62

First-Order Logic (1)

A First-order logic (FOL) is based on a language consisting of:

◮ A countable set C of constant symbols, denoting individual entities of the domain;

◮ a countable set F of function symbols, denoting functions in the domain;

◮ a countable set V of variable symbols, i.e., placeholders that stand for unspecified
individual entities;

◮ a countable set P of predicate symbols, denoting relationships in the domain.

◮ a finite set of logical connectives, e.g. ¬,∧,∨,⇒, . . .;

◮ a finite set of quantifiers, e.g. ∀, ∃.

This is the language we are familiar with from the study of mathematics.

12 / 62

First-Order Logic (2)

A term is a constant, a variable, or a function symbol applied, recursively, to an n-tuple
of terms.

A term is an expression that denotes an individual entity.

An atomic formula (or atom) is a predicate symbol applied to an n-tuple of terms.

An atom is an expression whose semantics is true iff the entities denoted by its terms
satisfy the relationships denoted by the predicate symbol.

A formula is an atom, or an expression obtained by combining atoms with quantifiers
and connectives.

The semantics of quantifiers and logical connectives are (at least informally) well
known, and will not be discussed here.

13 / 62

A Simple First-Order Formal System

◮ A first-order language with just two connectives (¬ and ⇒) and one quantifier (∀);

◮ The following axiom schemata:

A ⇒ (B ⇒ A) (1)

(A ⇒ (B ⇒ C)) ⇒ ((A ⇒ B) ⇒ (A ⇒ C)) (2)

(¬B ⇒ ¬A) ⇒ ((¬B ⇒ A) ⇒ B) (3)

∀xA(x) ⇒ A(t) (4)

∀x(A ⇒ B) ⇒ (A ⇒ ∀xB) (5)

◮ The following rules of inference:

A A ⇒ B

B

A

∀xA

In the second rule (generalization), there are constraints on x .

14 / 62

Higher-Order Logic

In a FOL, variables may range only over individual entities.

In a FOL, we may say “For all x ’s such that x is a real number, x2 = x · x”.

We cannot say “For all f ’s such that f is a function over real numbers,

f 2(x) = f (x) · f (x)”.

In higher-order logics, variables may range over functions and predicates.

In higher-order logics, we can make statements about predicates: e.g., we may say “ if x
and y are real numbers and x = y , then for all P ’s such that P is a predicate,

P(x) = P(y)”.

15 / 62

LOGIC AS A SPECIFICATION LANGUAGE

16 / 62

Applying logic to technical problems

Formal logic is used in mathematics to investigate properties of abstract concepts, such
as geometrical shapes, numbers, functions. . .

However, it can be used to describe and reason about technical systems, such as
computer programs, electronic circuits, industrial control systems. . .

A formal system enables developers to:

◮ Describe system characteristics and requirements with great rigor and accurateness;

◮ formally prove system properties.

A great number of formal systems have been devised for requirements specification and
system verification.

17 / 62

Formal languages (1)

◮ A formal language identifies some basic attributes that are simple and general
enough to describe a large class of systems in an abstract way.

◮ E.g., the behavior of many systems can be described in terms of sets of states and
sequences of actions.

◮ The possible values of these attributes form the domain of the language (just like
numbers form the domain of algebra).

◮ The language defines operations that act on the elements of the domain, such as
forming sets and sequences, and combining them in various ways.

◮ E.g., we may define operations for parallel and sequential composition to describe
the interaction of two processes.

◮ We can then describe systems with formulae whose meaning can be understood in
terms of mathematical concepts, such as sets and functions.

18 / 62

Formal languages (2)

Some families of logic-based specification languages:

◮ Predicate logics. Based on predicate logic and set theory, very general applicability.

◮ Temporal logics. Used to specify properties related to synchronization.

◮ Process algebras. A large class of languages that describe concurrent processes by
means of operators on elementary actions. Often used in conjunction with
temporal logics.

◮ . . .

19 / 62

A few modeling languages

◮ Z (/zεd/). Based on predicate logic and Zermelo-Fränkel set theory.

◮ Vienna Development Method (VDM). Well-known predicate logic formalism.

◮ Prototype Verification System (PVS). More about this later on. . .

◮ Calculus of Communicating Systems (CCS). A process algebra.

◮ Communicating Sequential Processes (CSP). Another process algebra.

◮ Language of Temporal Ordering Specification (LOTOS). Yet another process
algebra.

◮ . . .

20 / 62

Can Properties Be Verified Mechanically?

No. Well, sometimes yes.

In a previous frame, we described a formal system as a “machine” to prove truth or
falsehood of sentences by the process of deduction.

However, such a machine does not run by itself. Proving a formula is much like a game
where one must choose the right moves (inference steps) and do them in the right order.

Many proof strategies exist to guide deduction, such as proof by induction or proof by

contradiction.

In general, no proof strategy may be guaranteed to prove or disprove an arbitrary

formula in a given formal system (problem of decidability).

However, there are classes of formulae that are decidable. In such cases, it is possible to

use a mechanical procedure.

21 / 62

Theorem Proving and Model Checking

Two main aproaches exist to automatic verification of system properties:

◮ Theorem proving: A theorem prover is a computer program that implements a
formal system. It takes as input a formal definition of the system that must be
verified and of the properties that must be proved, and tries to construct a proof
by application of inference rules, according to a built-in strategy.

◮ Model checking: A model checker is a computer program that extracts a model of
the system to be verified from its formal description. The model is a graph whose
nodes are the states of the system, connected by transitions. The model checker
examines each state and checks if the desired properties hold in that state.

Theorem proving may be fully automatic, or interactive.

22 / 62

THE PROTOTYPE VERIFICATION SYSTEM

23 / 62

Prototype Verification System

The PVS is an interactive theorem prover developed at Computer Science Laboratory,
SRI International, Menlo Park (California), by S. Owre, N. Shankar, J. Rushby, and
others.

The formal system of PVS consists of a higher-order language and the sequent calculus

axioms and inference rules.

PVS has many applications, including formal verification of hardware, algorithms,
real-time and safety-critical systems.

24 / 62

Using the PVS

◮ EMACS-based user interface.

◮ The user writes definitions and formulae.

◮ The user selects a formula and enters the prover environment.

◮ Prover commands apply single inference rules or pre-packaged sequences of rules
(strategies), transforming formulae or producing new formulae.

◮ The user examines the formulae resulting for each prover command, and decides
what to do next.

◮ The prover finds out when a proof has been successfully completed.

25 / 62

The PVS Specification Language

◮ Logical connectives: NOT, AND, OR, IMPLIES, . . .

◮ Quantifiers: EXISTS, FORALL.

◮ Complex operators: IF-THEN-ELSE, COND.

◮ Notation for records, tuples, lists. . .

◮ Notation for definitions, abbreviations. . .

◮ Rich higher-order type system. Each variable is defined to range over a type,
including function and predicate types (predicates are functions that return a
Boolean value).

◮ Theories: named collections of definitions and formulae. A theory may be imported

(and referred to) by another theory.

◮ A large number of pre-defined theories is available in the prelude library.

26 / 62

Typed Logic

◮ Every variable or constant belongs to a type, i.e., denotes elements of a given set.

◮ Pre-defined base types: bool, nat, real. . .

◮ Uninterpreted types: we just say that a type with a given name exists, e.g.,
perfectsw: TYPE.

◮ Interpreted types: we define a type in terms of other types, or by explicit
enumeration of its members.

◮ Enumerations: flag: TYPE = {red, black, white, green}
◮ Tuples: triple: TYPE = [nat, flag, real]
◮ Records: point: TYPE = [# x: real, y: real #]
◮ Subtypes: posnat: TYPE = {x: nat | x>0}
◮ Functions: int2int: TYPE = [int -> int]

27 / 62

Declarations

◮ Constants:
◮ n0: nat (uninterpreted constant)
◮ lucky: nat = 13
◮ a_triple: triple = (lucky, red, 3.14)
◮ origin: point = (# x := 0.0, y:= 0.0 #)
◮ inc: int2int = (lambda (x: int): x + 1)
◮ inc: [int -> int] = (lambda (x: int): x + 1)
◮ inc(x: int): int = x + 1

◮ Variables: add VAR to type expression: m: VAR nat

◮ Formulae:
◮ plus_commutativity: AXIOM forall(x, y: nat): x + y = y + x
◮ a_theorem: THEOREM forall(n: nat): n < n + 1

Keyword lambda introduces the parameters of a function.

Instead of THEOREM we may use LEMMA, CONJECTURE. . .

An AXIOM is assumed to be proved.

28 / 62

Example: Groups

group : THEORY

BEGIN

G : TYPE+ % uninterpreted, nonempty

e : G % neutral element

i : [G -> G] % inverse

* : [G,G -> G] % binary operation

x,y,z : VAR G

associative : AXIOM

(x * y) * z = x * (y * z)

id_left : AXIOM

e * x = x

inverse_left : AXIOM

i(x) * x = e

inverse_associative : THEOREM

i(x) * (x * y) = y

END group

29 / 62

Sequent calculus (1)

Gerhard Gentzen (1909, 1945).

30 / 62

Sequent calculus (2)
The sequent calculus works on (meta-)assertions called sequents, of this form:

A1,A2, . . . ,An ⊢ B1,B2, . . . ,Bm

where the A’s and B ’s are the antecedents and the consequents, respectively. We also
use “antecedent” and “consequent” to denote the multisets of the A’s and B ’s,
respectively.

Each antecedent or consequent is a formula of the language underlying the formal
system (e.g., a FOL or a HOL).

The symbol in the middle (⊢) is called a turnstile and may be read as “yields”.

A sequent asserts that the disjunction of the B ’s is derivable from the conjunction of

the A’s.

A sequent can then be seen informally as another notation for

A1 ∧ A2 ∧ . . . ∧ An ⇒ B1 ∨ B2 ∨ . . . ∨ Bm

31 / 62

Sequent calculus (3)

A sequent is proved if:

◮ Any formula occurs both as an antecedent and as a consequent; or

◮ any antecedent is false; or

◮ any consequent is true.

In the PVS prover interface, a sequent is represented as:

{-1} A1

...

[-n] An

|-------

[1] B1

...

[m] Bm

32 / 62

Sequent calculus (4)

The Sequent calculus has one axiom: Γ,A ⊢ A,∆ where Γ and ∆ are (multi)sets of
formulae.

Inference rules:

Γ,A⊢A,∆axm
Γ⊢∆,A A,Γ⊢∆

Γ⊢∆ cut
A,A,Γ⊢∆
A,Γ⊢∆ ctr L

Γ⊢∆,A,A

Γ⊢∆,A
ctr R

Γ⊢∆,A

¬A,Γ⊢∆¬L
A,Γ⊢∆
Γ⊢∆,¬A

¬R
A,B,Γ⊢∆
A∧B,Γ⊢∆∧L

Γ⊢∆,A Γ⊢∆,B

Γ⊢∆,A∧B
∧R

A,Γ⊢∆ B,Γ⊢∆
A∨B,Γ⊢∆ ∨L Γ⊢∆,A,B

Γ⊢∆,A∨B
∨R Γ⊢∆,A B,Γ⊢∆

A⇒B,Γ⊢∆ ⇒L
A,Γ⊢∆,B

Γ⊢A⇒B,∆⇒R

A[x←t],Γ⊢∆
∀x .A,Γ⊢∆ ∀L Γ⊢∆,A[x←a]

Γ⊢∀x .A,∆ ∀R A[x←a],Γ⊢∆
∃x .A,Γ⊢∆ ∃L Γ⊢∆,A[x←t]

Γ⊢∃x .A,∆ ∃R

axm: the axiom
cut: the cut rule
ctr: the contraction rules

The quantifier rules have caveats on the quantified variable.

Note: the SQ inference rules are relationships among sequents, not formulae.

33 / 62

Proofs

Proofs are constructed backwards from the goal sequent, that in PVS has the form
⊢ F , where F is the formula we want to prove.

Inference rules are applied backwards, i.e., given a formula, we find a rule whose
consequence matches the formula, and the premises become the new subgoals.

Since a rule may have two premises, proving a goal produces a tree of sequents, rooted
in the goal, called the proof tree.

The proof is completed when (and if!) all branches terminate with an instance of the
axiom.

34 / 62

Proof Example

Suppose we want to prove that ¬A ∨ ¬B ⇒ ¬(A ∧ B).

A,B ⊢ A
axm

¬A,A,B ⊢
¬L

A,B ⊢ B
axm

¬B ,A,B ⊢
¬L

(¬A ∨ ¬B),A,B ⊢
∨L

(¬A ∨ ¬B), (A ∧ B) ⊢
∧L

(¬A ∨ ¬B) ⊢ ¬(A ∧ B)
¬R

⊢ (¬A ∨ ¬B) ⇒ ¬(A ∧ B)
⇒R

The root goal is at the bottom.

At the top we have two branches that end with empty formulae by the axiom rule.

The goal has then been proved.

35 / 62

Prover Commands

The PVS prover has a large number of commands (also called rules):

◮ Control rules to control proof execution and proof tree exploration.

◮ Structural rules to implement the contraction rules and to hide unused formulae in
the sequent.

◮ Propositional rules implement the inference rules for connectives, for complex
operators, and for the cut. They also apply various simplification laws.

◮ Quantifier rules implement the inference rules for quantifiers.

◮ Equality rules implement various inference rules, including rules for equality,
records, tuples, and function definitions.

◮ Definition and lemma handling rules invoke and apply lemmas and definitions.

◮ Strategies apply pre-defined sequences of rules.

◮ . . . and more.

36 / 62

Examples of Prover Commands: skolem and friends

skolem implements the backwards ∀ R and ∃ L rules:

consequent antecedent

| {-1} EXISTS (x:T): P(x)

|------ | |------

{1} FORALL (x:T): P(x) | {1} A

|

Rule? (skolem 1 "c") | Rule? (skolem -1 "c")

|

| {-1} P(c)

|------ | |------

{1} P(c) | {1} A

37 / 62

Examples of Prover Commands: flatten

flatten implements the backwards ∧ L, ∨ R , and ⇒R rules:

consequent antecedent

| {-1} A AND B

|------ | |------

{1} A IMPLIES B |

|

Rule? (flatten) | Rule? (flatten)

|

{-1} A | {-1} A

|------ | {-2} B

{1} B | |------

|

38 / 62

Examples of Prover Commands: split

split implements the backwards ∧ R , ∨ L, and ⇒ L rules:

consequent antecedent

| {-1} A IMPLIES B

|------ | |------

{1} A AND B |

|

Rule? (split) | Rule? (split)

|

|------ |------ | {1} B

{1} A {1} B | |------

| {1} A

the split command produced two subgoals, i.e., a branching point in the proof tree,
from a conjunctive consequent formula.

39 / 62

AN EXAMPLE

40 / 62

Example: a Half Adder

Specification:

x y carry sum

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

x carry

y sumHA

Is the implementation

correct?
An implementation:

carry

x

y
sum

41 / 62

A mathematical specification

A half adder is a device whose input is the 1-digit binary encoding of two natural
numbers, and whose output is the 2-digit binary encoding of their sum.

A half adder must correctly execute the sums 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and
1 + 1 = 2.

In PVS, the property of correctness for the half adder can be expressed as:

2*b2n(carry) + b2n(sum)

= b2n(x) + b2n(y)

where b2n is a function that translates a Boolean value into a natural number in {0, 1}.

42 / 62

Half Adder Theory

HA : THEORY

BEGIN

x,y : VAR bool

HA(x,y) : [bool, bool] =

((x AND y) AND (NOT (x XOR y)), % carry

(x XOR y)) % sum

% convert Boolean to natural

b2n(x) : nat = IF x THEN 1 ELSE 0 ENDIF

HA_corr : THEOREM % correctness

LET (carry, sum) = HA(x, y) IN

b2n(sum) + 2*b2n(carry)

= b2n(x) + b2n(y)

END HA

43 / 62

A Proof (1)
Initial goal:

HA_corr :

|-------

{1} FORALL (x, y: bool):

LET (carry, sum) = HA(x, y) IN

b2n(sum) + 2 * b2n(carry)

= b2n(x) + b2n(y)

Get rid of quantifiers:

Rule? (skolem*)

HA_corr :

|-------

{1} LET (carry, sum) = HA(x!1, y!1) IN

b2n(sum) + 2 * b2n(carry)

= b2n(x!1) + b2n(y!1)

44 / 62

A Proof (2)
Get rid of let-expressions:

Rule? (beta)

HA_corr :

|-------

{1} b2n(HA(x!1, y!1)‘2) + 2 * b2n(HA(x!1, y!1)‘1) =

b2n(x!1) + b2n(y!1)

Expand definition of b2n:

Rule? (expand "b2n")

HA_corr :

|-------

{1} IF HA(x!1, y!1)‘2 THEN 1 ELSE 0 ENDIF +

2 * IF HA(x!1, y!1)‘1 THEN 1 ELSE 0 ENDIF

= IF x!1 THEN 1 ELSE 0 ENDIF

+ IF y!1 THEN 1 ELSE 0 ENDIF

45 / 62

A Proof (3)

Factor out conditionals:

Rule? (lift-if)

HA_corr :

|-------

{1} IF HA(x!1, y!1)‘2

THEN 1

+ 2 * IF HA(x!1, y!1)‘1 THEN 1 ELSE 0 ENDIF

= IF x!1 THEN 1 ELSE 0 ENDIF

+ IF y!1 THEN 1 ELSE 0 ENDIF

ELSE 0

+ 2 * IF HA(x!1, y!1)‘1 THEN 1 ELSE 0 ENDIF

= IF x!1 THEN 1 ELSE 0 ENDIF

+ IF y!1 THEN 1 ELSE 0 ENDIF

ENDIF

46 / 62

A Proof (4)

After many lift-if’s, expand HA:

Rule? (expand "HA")

HA_corr :

|-------

{1} IF (x!1 XOR y!1)

THEN IF x!1 THEN IF y!1 THEN FALSE ELSE TRUE ENDIF

ELSE IF y!1 THEN TRUE ELSE FALSE ENDIF

ENDIF

ELSE IF (x!1 AND y!1) THEN TRUE

ELSE IF x!1 THEN FALSE

ELSE IF y!1 THEN FALSE ELSE TRUE ENDIF

ENDIF

ENDIF

ENDIF

47 / 62

A Proof (5)

Boring Boolean algebra:

Rule? (prop)

this yields 4 subgoals:

HA_corr.1 :

{-1} y!1

{-2} x!1

{-3} (x!1 XOR y!1)

|-------

The goal branches into four subgoals, HA_corr.1 through HA_corr.4.

48 / 62

A Proof (6)

Grind:

Rule? (grind)

Trying repeated skolemization,

instantiation, and if-lifting,

This completes the proof of HA_corr.1.

And so on until:

Rule? (grind)

Trying repeated skolemization,

instantiation, and if-lifting,

This completes the proof of HA_corr.4.

Q.E.D.

49 / 62

Another implementation

sum

carryx

y

HA2(x,y) : [bool, bool] =

((x AND y), % carry

(x XOR y)) % sum

50 / 62

Another implementation

The correctness theorem has the same form as before, only the half adder function
changes:

HA2_corr : THEOREM % correctness

LET (carry, sum) = HA2(x, y) IN

bool2nat(sum) + 2*bool2nat(carry)

= bool2nat(x) + bool2nat(y)

We can also prove that the two implementations are equivalent:

HA_HA2_equiv: THEOREM % equivalence

HA(x, y) = HA2(x, y)

51 / 62

Reusing a Proof (1)

To prove correctness for the new implementation (HA2), we reuse the proof for HA,
using the install-proof prover command.

The old proof is rerun automatically until the commands are exhausted or no longer
applicable, then the user is prompted:

HA2_corr.5 :

{-1} y!1

{-2} x!1

{-3} HA2(x!1, y!1)‘2

|-------

{1} 1 + 2 * 0 = 1 + 1

{2} HA2(x!1, y!1)‘1

Rule?

52 / 62

A Proof (2)

We expand HA2 and we complete the proof with a few applications of grind.

Proving the equivalence of HA and HA2 is trivial:

HA_HA2_equiv :

|-------

1 FORALL (x, y: bool): HA(x, y) = HA2(x, y)

Rule? (grind)

...

Trying repeated skolemization, instantiation, and if-lifting,

Q.E.D.

Actually, all these proofs can be done with a single grind step. But. . .

53 / 62

Do not overestimate the power of Grind

→

In any realistic problem, the proof requires an intelligent choice of axioms and inference
steps.

The grind strategy is useful in the last steps.

Using grind too early may produce a large and messy amount of hard-to-read subgoals,
and even make the proof impossible.

54 / 62

Example: a Full Adder

x y cin carry sum

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

x carry

y

cin
FA sum

An implementation:

y

cin

x

carry

sum

c1

s1HA

55 / 62

Reusing a Theory
FA2 : THEORY

BEGIN

importing HA % theory composition

% 2-to-1 multiplexer

mux2(x: bool, y: bool, s: bool): bool =

if s then y else x endif

FA2(x: bool, y: bool, cin: bool) : [bool, bool] =

LET (c1, s1) = HA2(y, cin) IN

(mux2(y and cin, y or cin, x), % carry

mux2(s1, not s1, x)) % sum

FA2_corr : THEOREM % correctness

LET (carry, sum) = FA2(x, y, cin) IN

b2n(sum) + 2 * b2n(carry)

= b2n(x) + b2n(y) + b2n(cin)

END FA2

56 / 62

Acknowledgements

Warm thanks to Cinzia Bernardeschi (University of Pisa), Paolo Masci (National
Institute of Aerospace, Hampton, VA), and Holger Pfeifer (fortiss, Munich), who
introduced me to the PVS.

I am particularly indebted to the latter, as most of the material in this seminar is based
on his seminars, part of which I have shamelessly copied.

57 / 62

Some References

[1] S. Owre, J. Rushby, N. Shankar, and F. von Henke, “Formal Verification for
Fault-Tolerant Architectures: Prolegomena to the Design of PVS,” IEEE Trans. on
Software Engineering, vol. 21, no. 2, pp. 107–125, 1995.

[2] S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas, “PVS: combining
specification, proof checking, and model checking,” in Computer-Aided Verification,
CAV ’96, ser. LNCS, R. Alur and T. Henzinger, Eds. Springer-Verlag, 1996, no. 1102,
pp. 411–414.

[3] S. Owre, J. Rushby, N. Shankar, and M. Srivas, “A tutorial on using PVS for
hardware verification,” in Theorem Provers in Circuit Design (TPCD ’94), ser. LNCS,
R. Kumar and T. Kropf, Eds. Springer-Verlag, 1997, no. 901, pp. 258–279.

[4] M. Srivas, H. Rueß, and D. Cyrluk, “Hardware verification using PVS,” in Formal
Hardware Verification: Methods and Systems in Comparison, ser. LNCS, T. Kropf, Ed.
Springer-Verlag, 1997, no. 1287, pp. 156–205.

58 / 62

Some References

[5] S. Owre, J. Rushby, N. Shankar, and D. Stringer-Calvert, “PVS: an experience
report,” in Applied Formal Methods, ser. LNCS. Springer-Verlag, 1998, no. 531, pp.
338–345.

[6] J. Crow, S. Owre, J. Rushby, N. Shankar, and D. Stringer-Calvert, “Eval-uating,
testing, and animating PVS specifications,” Computer Science Laboratory, SRI
International, Tech. Rep., 2001.

[7] C. Muñoz, “Rapid prototyping in PVS,” National Institute of Aerospace, Hampton,
VA, USA, Tech. Rep. NIA 2003-03, NASA/CR-2003-212418, 2003.

59 / 62

