
Notes on Browsing tools for Replication

Services

A. Domenici

December 7, 2011

Abstract

These notes describe two graphical browsers used to display informa-

tion on replications services, i.e., the components of a Data Grid that

create and manage replicas of data sets. These browsers have been

developed within the European Data Grid project.

Keywords: replica management, grid computing, data grid, replica

catalog, replica location server.

1 Introduction

A key aspect of a data grid is replica management, i.e., a set of grid ser-
vices and user tools that enable applications to create and access copies of
datasets. Replica management should in general be transparent to end users:
a user should be able to submit a job by specifying just the intended com-
putation and the datasets it uses or produces (plus any requirements on the
computation environment). Such datasets should be identified abstractly by
a logical name that does not reference or imply any physical location. A
replica of each dataset would then be chosen from the available replicas, or
created anew, by the replica management service, according to such criteria
as performance, cost, or access policies. The replica management itself re-
lies on some replica catalog service that maps logical names to the locations
where replicas are stored.

However, tools that directly manipulate or expose the information main-
tained by a replica management service are needed both by the service ad-
ministrators and by end users. Administrators need tools for monitoring and
maintenance, while users may need to interact with the service, e.g., to find
what datasets are available, or to explicitly create replicas.

1



These notes report about two graphical browsers for two replica catalog
services deployed on the European Data Grid: edg-rc-gui, for the origi-
nal Replica Catalog and edg-rls-gui, for the recently developed Replica
Location Service.

2 The Replica Catalog Graphical User Inter-

face

2.1 The EDG Replica Catalog

The Replica Catalog is a service that enables other Grid middleware or ap-
plications to find the physical location of replicas of files registered in the
catalog. This service can be provided by a directory that maps the names
of files to the (possibly replicated) physical instances of the same files. The
replicas are identified by the hostnames of the storage elements holding them,
a path to locate the replicas within the storage elements, and a protocol name
and port number that specify how to retrieve the replicas.

The EDG Replica Catalog, based on the Globus Replica Catalog [6] is
implemented as an LDAP directory [1]. The entries represent logical collec-
tions of file names, physical locations of replicas, and logical file entries that
contain additional information about the files of a logical collection.

The information that identifies a location is given by its URL constructor,
whose value is a string containing the protocol, the hostname, the port, and
the path of the directory where the replicas are stored. If a storage element
keeps replicas in more than one directory, or allows them to be retrieved
through more than one protocol, that storage element will be registered in
the catalog under multiple location entries, one for each directory and/or
protocol. Note, however, that the definition of the URL constructor might
change in the future, allowing for a more general and flexible mapping from
logical names to replicas. Finally, each name of a file whose replica is in the
location is a value of the location’s filename attribute, and is equal to a
name occurring in a logical collection.

Logical file entries have attributes for a file’s size, for the file’s creator
and most recent modifier (both identified by their DN), and for creation and
modification times. These last four attributes are admitted also in the other
entries.

2



Grid applications can access the catalog through the Globus Replica Cat-
alog C API, and a command line interface for end users is provided, the
globus-replica-catalog command.

2.2 Requirements of the User Interface

This program allows browsing and searching of a Replica Catalog. By
“browsing” we mean a top-down exploration aimed at finding the physi-
cal file names (PFN’s) associated with logical file names (LFN’s). LFN’s are
grouped into logical collections within a Replica Catalog. Browsing also in-
volves finding such information as a file’s size and modification times, stored
in logical file entries. Sections 2.2.2-2.2.3 below refer to browsing operations.

By “searching” we mean the possibility of finding the logical collections
or the Storage Elements containing files whose name match a given pattern;
e.g., a user may type “*MuonHits*” in an input field and find the collections
(or the locations) listing file names that contain the string “MuonHits”. Sec-
tion 2.2.4 below refers to search operations.

2.2.1 Selecting a Replica Catalog

A user selects the Replica Catalog to browse by entering the following contact
information through a dialog window (Fig. 1):

• host nick: a user-supplied string used to refer to the RC;
• host name: name of the node hosting the RC, e.g., testbed008.cern.ch;
• LDAP port: port number of the LDAP server, e.g., 2010;
• RC dn: distinguished name of the RC, e.g.,

rc=TESTRC, dc=testbed008, dc=cern, dc=ch

A user can insert the contact information for a Replica Catalog into a
private database. That Replica Catalog can afterwards be selected by sup-
plying its nickname to the User Interface. Fig. 2 shows a simple interface to
the database of Replica Catalog contact information, with a list of Replica
Catalogs, and buttons to add new information and to connect to a selected
Replica Catalog.

3



Figure 1: Entering Replica Catalog contact information.

Figure 2: Managing stored contact information.

2.2.2 Displaying Logical and Physical File Names

After connection to a Replica Catalog is established, the available logical
connections are listed by the User Interface (Fig. 3). The user can then
select a collection and display the list of its Logical File Names (Fig. 4).

A user can select a Logical File Name and display the list of its associated
Physical File Names (Fig. 5).

4



Figure 3: Listing logical collections.

2.2.3 Displaying Logical File attributes

A user can select a Logical File Name and display the attributes of its Logical
File entry (Fig. 6).

2.2.4 Search operations

A user can enter a file name pattern and obtain a list of Collections or Storage
Elements holding file names that match the pattern. A file name pattern is
a string that may contain occurrences of the wildcard character ‘*’. Fig. 7
shows a search on Collections and Storage Elements.

2.3 Design of the User Interface

The User Interface for the EDG Replica Catalog has been designed under
the following main constraints:

• The interface design should be flexible, so as to allow for new user
requirements and new Replica Catalog schemas.

• The design should allow for easy replacement of the Replica Catalog
implementation: for example, migrating from an LDAP directory to a
relational database should need as little redesign of the User Interface
as possible.

• The interface is to use the Java Swing graphical library.

5



Figure 4: Listing Logical File Names.

Accordingly, the overall architecture can be summarized by the package
diagram in Fig. 8, where Java and OpenLDAP stand for the Java libraries
(including Swing) and the OpenLDAP client library, respectively.

Package EDGRepCat contains a single C++ class providing a set of op-
erations tailored to the logical view of the EDG Replica Catalog. Package
RCAdapter contains the Java class RCAdapter, which is similar to EDGRep-

Cat but more oriented towards the functionality of the User Interface: for
instance, instead of one query operation for each kind of Logical File at-
tribute, as we have in EDGRepCat, RCAdapter offers a single operation
that extracts the attributes from a Logical File entry and formats them so
that they can be easily displayed by the User Interface. Finally, package
RCGUI is the Graphical User Interface.

The coupling between the Java and the C++ components relies on the Java
Native Interface (JNI). Package RCAdapter (Fig. 9) contains a JNI module
where the native methods of the Java class RCAdapter are defined. The
architecture therefore hinges on a simple variation of the well-known Adapter
pattern [5], with the added constraint of allowing for classes implemented in
different languages to be matched.

The highest-level components of the GUI package are shown in Fig. 10,
together with their relationships with the Java Swing clases: most of them

6



Figure 5: Listing Physical File Names.

are visible elements of the interface, such as the toolbar, the panes used
to browse the catalog, and the dialog windows SelnDialog and HostDialog,
used respectively to select a Replica Catalog from the database and to enter a
new Replica Catalog. Further, DefaultListModel is a data structure shared
among other components, HostDB manages the local database of known
Replica catalogs, and RCAdapter is shown here since it is instantiated in
the main application class, RCInterface.

A simplified view of the classes involved in browsing operations is shown
in Fig. 11. Four instances of the JPanel class allow the user to display lists of
Replica Catalog entries or attributes and to operate on their items, and the
data displayed by each list is stored in an instance of the DefaultListModel

class. User actions are processed by instances of classes derived from the
abstract classes ActionListenerImpl, ListSelectionListenerImpl, and MouseLis-

tenerImpl, which use RCAdapter to access the Replica Catalog. We note
that in the actual code the abstract classes have been optimized away in
favor of a set of concrete classes that implement the respective interfaces
directly.

7



Figure 6: Listing Logical File attributes.

Figure 7: Searching for file names against a pattern.

3 The Replica Location Service Graphical User

Interface

3.1 The EDG Replica Location Service

The Replica Location Service (RLS) [2] is a component of the Replica Man-
agement Service [4] that has the same purpose of the Replica Catalog, but
has a flexible structure that better addresses the requirements of scalability
and performance posed by a Grid environment, and is therefore expected to
replace the Replica Catalog. Its main components are Local Replica Catalogs

8



RCGUI

RCAdapter

EDGRepCat

OpenLDAPJava

Figure 8: Architecture of the EDG Replica Catalog GUI.

(LRC) and Replica Location Indices (RLI): a LRC maps LFN’s to the PFN’s
held at a single storage site, while a RLI maps a set of LFN’s to a set of
other RLS components, each being either a RLI or a LRC. Thus, a LRC has
complete and up to date information on the replicas kept at the respective
site, while a single RLI, in general, has information on a set of replica sites
holding replicas for a set of the existing Logical File Names, perhaps indi-
rectly, i.e., through other RLI’s. Further, the information kept in a RLI may
not be always up to date: a RLI receives periodical updates from the nodes
it refers, and discards entries if they are not updated within a given timeout
period. This mode of operation is referred to as soft state. As illustrated
in [2], it is possible to obtain several RLS architectures by varying the num-
ber of RLI’s, their mutual interconnections, and the partitioning criteria for
LFN’s and replica sites among indices and catalogs. Each architecture offers
different tradeoffs between such requirements as performance, scalabilty, and
reliability.

9



RCAdapter

«utility»
JNIRCAdapter

Figure 9: Package RCAdapter

3.2 Requirements of the User Interface

The Replica Location Service can be represented as a network of nodes, where
each node is either Replica Location Index (RLI) or a Local Replica Catalogs
(LRC), and the links between nodes represent references between indices and
catalogs. A User Interface displays a hierarchical view of such a network. By
selecting nodes of the network the user can browse the node’s contents and
limit the scope of search operations.

3.2.1 Selecting a Replica Location Service

A user selects a Replica Location Service by entering its URL in an input
field. The URL has the form rls://hostname[:port].

3.2.2 Displaying service topology

A user can graphically display the topology of the network supporting a
Replica Location service. The topology should be displayed as a set of tree
structures.

Since the RLS architecture allows for several kinds of interconnection
graphs to be established, in general a given topology can be represented by
different sets of trees, according to which nodes are chosen as roots. The
user can choose to display the topology from an LRC-centered view, where
the LRC’s are taken as tree roots, or from an RLI-centered view, where the
RLI’s are taken as roots.

The topology of a RLS can change dynamically, as nodes can be added or
removed at any time. The user can therefore request the browser to update

10



JTextArea

JDialog

SelnDialog

HostDialog

JScrollPane JList

JPanel

JToolBar JButton

RCInterface JFrame

DefaultListModel

HostDB

RCAdapter

Figure 10: High-level classes of the GUI

the currently displayed topology.

3.2.3 Displaying node information

A user can display information about each node, including at least its type,
i.e., whether it is a RLI or a LRC, and its URL.

3.2.4 Displaying node contents

A user can select a node and display the list of LFN’s it maps.

3.2.5 Search operations

A user can enter a file name, specify whether it is a LFN or a PFN, and display
the PFN’s or LFN’s, respectively, paired with that name in the mapping

11



JPanel

JScrollPane JButton

JList

RCInterface

RCAdapter

DefaultListModel

ActionListenerImpl

ListSelectionListenerImpl

ActionListener

MouseListenerImpl

MouseListener

ListSelectionListener

Figure 11: RC GUI classes for browsing operations.

maintained by the selected node.

3.3 Design of the User Interface

The main constraints on the design of User Interface for the Replica Location
Service are similar to those on the Replica Catalog User Interface. Here,
design flexibility and implemetation replaceability are particularly relevant,
given that both the conceptual framework of the RLS and its programatic
interface are in a state of constant evolution. The currently adopted interface
to the service is the Globus RLS Client API, which is witten in C.

The overall architecture (Fig. 12) is therefore similar to the one adopted
in the Replica Catalog User Interface: package RLSClient is a set of Java
classes and interfaces that collectively act as an adapter towards the Globus
RLS Client API.

Package RLSClient is more complex than RCAdapter (Sec. 2.3), given the
more complex functionality and structure of the Replica Location Service.
Figure 13 shows a simplified view of the package, omitting a few classes and

12



GUI

RLSClient

GlobusRLSClientJava

Figure 12: Architecture of the EDG Replica Location Service GUI.

listing only the operations currently used by the User Interface.

Interfaces ReplicaLocationServer, ReplicaLocationIndex, and Local-

ReplicaCatalog describe the corresponding entities in the Replica Location
Service, and their implementations communicate with the service through a
JNI module. An application instantiates a ReplicaLocationServerFactory,
supplying it with the URL of the service, and creates a ReplicaLocation-

Server object through a factory operation. From this object it can obtain
the service topology.

Interface ServerTopology defines operations that allow a client to ex-
plore the topology of a RLS. An implementation of this interface, such as
ServerTopologyImpl, maintains a graph of nodes, each of them being a RLI
or a LRC. The interface has operations that return LocalReplicaCatalog or
ReplicaLocationIndex objects, or ServerTopologyNode’s: these are simpli-
fied representations of LRC and RLI nodes, holding summary information,
such as node type and URL, that can be compactly displayed in a browser.
The interface also has an operation that queries the service to update the
topology.

Figure 14 shows the main classes from packages RLSGUI and RLSClient in-
volved in browsing operations: classesTopologyTreeBuilder and SearchTree-

Builder access the RLSClient classes to obtain information that is then con-
verted into the format required by the Java swing library for display.

13



LocalReplicaCatalogImpl

«interface»
ServerTopology

getAllLRC()
getAllRLI()
getLRCNodes()
getRLINodes()
update() ServerTopologyNode

ServerTopologyImplImpl

«interface»
ReplicaLocationIndex

getLRC()

«interface»
LocalReplicaCatalog

getLFN(pfn)
getPFN(lfn)

«interface»
ReplicaLocationServer

getServerTopology() ReplicaLocationServerImpl

ReplicaLocationServerFactory

ReplicaLocationIndexImpl
«utility»

JNIGlobusRLSClient

Figure 13: Package RLSClient.

4 Future directions

As mentioned before, the RLS browser is in a state of evolution, and tracks
changes in the Globus RLS implementation. Three major additions, which
will be added shortly are:

• An interface to the Metacomputing Directory Service (MDS) [3] in the
System Topology object to find the set of RLS servers from an infor-
mation server, as well as traversing the topology. The MDS provides
Grid applications, as well other Grid services, with information on the
structure and state of available resources.

• Detailed statistics information on each RLS, which can be published
to the MDS, or obtained directly. This includes information such as
number of mappings and attributes in the catalog, server statistics such
as uptime and number of queries/inserts.

• A graphical browser, as well as the hierarchical browsers for Local
Replica Catalog and Replica Location Indices.

14



JPanel

JScrollPane JButton

JTree

RlsGui

ReplicaLocationServerImpl ServerTopologyImpl

TopologyTreeBuilder

SearchTreeBuilder

HostTreeHandler

DefaultTreeModel

LocalReplicaCatalogImpl

ButtonHandler

TreeSelectionListener

ActionListener

Figure 14: RLS GUI classes for browsing operations.

5 Acknowledgments

The work described in these notes is part of an international effort, the
European Data Grid. The main developers of the browsers here described
were Livio Salconi (currently at the European Gravitational Observatory)
and the author. Marćin Kania and Arnaud Lacroix, contributed to the code
for the RLS browser during their time at CERN, as a Technical Student and
a Stageur, respectively.

References

[1] A. Domenici. Notes on the usage of an experimental Replica Catalog for
the CERN DataGrid Testbed. Technical report, DataGrid WP2, 2001.

[2] A. Chervenak et al. Giggle: A framework for constructing scalable replica
location services. In Proceedings of the Int’l. IEEE/ACM Supercomputing
Conference (SC 2002), Baltimore, USA, 2002.

[3] K. Czajkowski et al. Grid information services for distributed resource
sharing. In Proceedings of the Tenth IEEE International Symposium on
High-Performance Distributed Computing (HPDC-10). IEEE Press, 2001.

[4] L. Guy et al. Replica management in data grids. Working draft, Global
Grid Forum (GGF4), Toronto, Canada, 2002.

15



[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns –
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[6] The Globus Project. Getting started with the Globus Replica Catalog.
http://www.globus.org/datagrid/deliverables/.

16


