
Dependable and Secure Systems –
Dependability

Master of Science in Embedded Computing Systems

Quantitative Dependability Analysis with

Stochastic Activity Networks: the Möbius Tool

April 2016

Andrea Domenici

DII, Università di Pisa

Andrea.Domenici@iet.unipi.it



Domenici 2/59

Outline

■ Stochastic Activity Networks

■ The Möbius tool: Modeling

■ The Möbius tool: Solving models

■ An example

■ A case study



Domenici 3/59

STOCHASTIC ACTIVITY NETWORKS



Domenici 4/59

Stochastic Activity Networks (1)

The Stochastic Activity Networks (SAN) are a wide-ranging and
complex extension to Petri Nets.

Petri Net = places + marking + transitions + enabling conditions +
firing rules.

Stochastic Petri Net = PN + stochastic transition delay.

Stochastic Activity Network = SPN + stochastic transition outcome +
user-defined enabling conditions + user-defined firing rules + . . .

William H. Sanders and John F. Meyer, “Stochastic Activity Networks: formal

definitions and concepts”, in Lectures on formal methods and performance

analysis: first EEF/Euro summer school on trends in computer science,

2002.



Domenici 5/59

Stochastic Activity Networks (2)

NOTE: SAN’s have activities instead of PN transitions. The terms
activity, transition, and action will be used interchangeably.

Activities may be timed or instantaneous (or immediate).

Enabling conditions: activities are enabled by user-defined input
predicates associated with input gates.

An input predicate is a Boolean function of the net marking.

Firing rules: user defined functions specifying the next marking can
be associated with input gates (input functions) and output gates
(output functions).

Stochastic transition outcome: Alternative results of an activity can
be specified as mutually exclusive cases associated with the activity.

Each case has a probability defined by a function of the marking (it
may be a constant).



Domenici 6/59

THE MÖBIUS TOOL: MODELING

August Ferdinand Möbius
(1790, 1868).



Domenici 7/59

The Möbius analysis process

atomic model atomic model atomic model

composed model composed model

composed model
system behavior

performance var
& reward fctn

performance var
& reward fctn

performance var
& reward fctn

reward model

experiment experiment experiment

study

numerical solver

state space generation

numerical solution

simulation solver

simulation



Domenici 8/59

The Möbius tool

The Möbius environment provides:

■ Graphical editor to make (atomic) SAN models.

■ Hierarchical composition of models.

■ Reward models to define and compute performance variables,
i.e., quantitative properties related to system performance or
dependability.

■ Numerical solution of Markov chain equations, if certain
constraints on the model are satisfied.

■ System simulation satisfying user-defined statistical parameters,
such as confidence level and confidence interval (not covered in this

seminar).

G. Clark et al., “The Möbius modeling tool”, in 9th Int. Workshop on Petri

Nets and Performance Models, 2001.

The Möbius Manual, Version 2.4 Rev. 1,

https://www.mobius.illinois.edu/docs/MobiusManual.pdf

https://www.mobius.illinois.edu/docs/MobiusManual.pdf


Domenici 9/59

Creating a project (1)

By default, projects are stored in a MobiusProject directory (you
may change it with [Project → Preferences]).

1. Start Möbius, e.g., with mobius &

2. [Project → New]



Domenici 10/59

Creating a project (2)

1. Type in project name.

2. The Project Editor pops up.



Domenici 11/59

Creating an atomic model (1)

1. [Project Editor → Atomic →
New], w/ right button.

2. Select “SAN Model” and
enter name.

3. The SAN Editor pops up.



Domenici 12/59

Creating an atomic model (2)

■ Use [Elements] menu or toolbar to create SAN elements:
Places: Blue circles.

Timed activities: Thick bars.

Instantaneous activities: Thin bars.

Input gates: Left-pointing red triangles.

Output gates: Right-pointing black triangles.

Extended Places: Orange circles, we are not using them in this
seminar.

■ Connect elements with segments, or connected segments, or
splines.

■ To draw a connection, left-click on source element, left-click at
intermediate points (if any), left-click on target element.

■ Respect the order: place to input gate, input gate to activity,
activity to output gate, output gate to place.

■ Left-click and drag to move. Use cursor to group elements.

■ [Right-click → Edit] to edit an element.



Domenici 13/59

Creating an atomic model (3)

Time distribution rates, case probabilities, input and output functions,
input predicates, and reward functions, are specified with C++
expressions or sequences of statements.

C++ code may refer to constants, global variables, and state
variables.

Global variables are system parameters (e.g., failure rates, number
of components, physical properties, . . . ). They can be accessed
from any submodel, but they must be declared in each submodel that
refers to them, with [SAN Editor → Edit → Edit Global Variables].
The global variables are initialized in the Study model.

State variables are the places, and the value of a state variable is the
place marking. If Place is the name of a place, its marking can be
accessed, both for reading or writing, with Place->Mark().



Domenici 14/59

Timed activities

■ Choose Time distribution function: Use Exponential.
■ Specify the Rate of the time distribution function.

■ Enter Case quantity: number of alternative cases.

■ For each case, specify its probability.



Domenici 15/59

Input gates

■ Specify the Input predicate.

■ Specify the Input function.

If no input function is required, type a single semicolon character.



Domenici 16/59

Output gates

■ Specify the Output function.

If no output function is required, type a single semicolon character.



Domenici 17/59

Creating a composed model (1)

Atomic models can be aggregated into composed models, which in
turn can be aggregated, so that a Möbius model is a tree of
submodels, whose leaves are atomic SAN models (actually, atomic
models can be built also with other formalisms, see the Möbius
documentation).

Submodels interact through shared state variables, i.e., shared
places. When two or more submodels are composed, the user
specifies which places are shared among them.

Submodels are composed by means of the Join and Rep operators.

The Join operator is used to compose different models.

The Rep (replication) operator is used to compose copies of a same
model.



Domenici 18/59

Creating a composed model (2)

1. [Project Editor → Composed
→ New], w/ right button.

2. Select “Rep/Join” and enter
name.

3. The Rep/Join Editor pops up.



Domenici 19/59

Creating a composed model (3)

■ Use [Elements] menu or toolbar to compose model nodes:
Rep nodes: Red bars.

Join nodes: Blue bars.

Submodel nodes: Black bars.

■ Connect nodes with segments, or connected segments, or splines.

■ To draw a connection, left-click on source element, left-click at
intermediate points (if any), left-click on target element.

■ Respect the order: Composed node to component node.

■ Rep nodes have only one child.

■ Left-click and drag to move. Use cursor to group elements.

■ [Right-click → Edit] to edit an element.



Domenici 20/59

Submodel node

■ Select the SAN model from the drop-down list.

■ Enter the name of the node.



Domenici 21/59

Join node (1)

Easy way: Click Share All Similar state variable (sic):

All state variables (places) with the same name, type and initial value
in the children of the join node are shared.



Domenici 22/59

Join node (2)

If places with different names must be shared:

■ Click Create New Shared state variable.

■ In the Define Shared state variable dialog, select from each child
one variable name (there is one tab for each child, with the list of
available variables).

■ Enter a name for the shared variable, equivalent to the selected
child variables.



Domenici 23/59

Rep node

1. Enter node name and
number of replicas.

2. In the new dialog window,
select from the left-side list
the variables to be shared
among the replicas.



Domenici 24/59

Creating a reward model (1)

A reward model is a set of performance variables that describe
system properties.

A performance variable (PV) is computed by performing certain
operations (e.g., averaging) on the set of values returned by an
associated reward function (RF) in the course of simulation or
numerical solution.

A rate reward is a RF that is evaluated at an instant of time, used to
measure properties related to the time during which the system
remains in some state.

An impulse reward is a RF that is evaluated when an activity
completes, used to measure properties related to the number of
times that some activity completes.

The values of the RF for a PV can be evaluated at specified times
(Instant of time PV’s), accumulated over a specified interval of time
(Interval of time PV’s), averaged over a specified interval of time
(Time averaged interval of time PV’s), or evaluated when the
system has reached a steady state (Steady state PV’s).



Domenici 25/59

Creating a reward model (2)

Variable class:
■ rate reward: depend on state variables;

■ impulse reward: depend on actions.

Variable type (set in the Time tab):
■ instant of time: evaluated at specific points in time;

■ interval of time: sum of the values of the RF over a time interval,
each value weighted by the length of time it is returned by the RF.
E.g., if a rate reward PV v of type instant of time is defined by a RF
f returning 10 for 3 s and 20 for 2 s, then
v = 10 · 3/5 + 20 · 2/5 = 14.

■ time averaged: interval of time result, divided by the length of time
for the interval. With w a time averaged PV and f as in the
example above, w = 14/5.

■ steady state: evaluated after transient phase (or, as t → inf).



Domenici 26/59

Creating a reward model (3)

1. [Project Editor → Reward → New], w/ right button.

2. Enter reward model name.

3. In the Select Reward Child dialog, choose the relevant submodel
(usually the top-level one).

4. In the Performance Variable Editor, enter name of PV, click Add
Variable.



Domenici 27/59

Creating a reward model (4)

For each submodel on which a rate reward PV is computed:

1. Select the submodel in the Submodel tab.

2. In the Rate Rewards tab, enter the Reward Function.

Similar procedure for an impulse reward PV.



Domenici 28/59

Creating a study (1)

A study defines sets of values that will be assigned to each global
variable.

An experiment is one possible assignment of values from a study.
E.g., if we have two global variables x and y and a study specifies
two values for x (say, {1, 2}) and three for y (say, {0, 0.5, 1}), then six
experiments are possible.

In a range study, experiments are generated for all possible
combinations of variable values, while in a set study only
user-defined combinations are used.

In a range study, for each variable the user may specify a single fixed
value, or different kinds of value ranges (see the documentation).



Domenici 29/59

Creating a study (2)

1. [Project Editor → Study → New], w/ right button.

2. Select study type and enter name.

3. In the Select Study Child dialog, choose a reward model.

4. In the Range Study Editor, for each variable enter a value or
select range. Enter range parameters in pop-up dialogs.



Domenici 30/59

THE MÖBIUS TOOL: SOLVING MODELS

Andrej Andreevič Markov (1856, 1922).



Domenici 31/59

Numerical solution of Möbius models

Any Möbius model can be simulated, but it is possible to compute its
performance variables in closed form, if the model can be
transformed into a continuous time Markov chain (CTMC).

Transformation into a CTMC is possible if:

1.(a) All timed actions are exponential (λe−λt), or
(b) All timed actions are deterministic or exponentially distributed,

at most one deterministic action is enabled at any time, and the
delay of deterministic actions does not depend on the state.

2. The model must begin in a stable state, with no immediate actions.

In order to solve a model, its state space must be generated by a
transformer.

Two types of transformers are available: (flat) state space generator
and symbolic state space generator (see documentation).



Domenici 32/59

State space generation

1. [Project Editor → Transformer → New], w/ right button.

2. Select transformer type and enter name.

3. In the Select Transformer Child dialog, choose a study.

4. In the State Space Generator window, change parameters as
needed (see documentation) and click Start State Space
Generation.



Domenici 33/59

Numerical solver generation (1)

Finally, a solver must be generated.

Several different types of solvers are available.

Two main classes are transient and steady-state solvers.

Transient solvers compute solutions related to specified times or
periods.

Steady-state solvers compute limit solutions as time approaches
infinity.



Domenici 34/59

Numerical solver generation (2)

1. [Project Editor → Solver → New], w/ right button.

2. Select solver type and enter name.

3. In the Select Solver Child dialog, choose a state space.

4. In the Solver window, change parameters as needed (see
documentation) and click Solve.



Domenici 35/59

AN EXAMPLE



Domenici 36/59

A simple computer system

■ A computer is idle, busy, or failed ;

■ jobs arrive at a rate α;

■ jobs are completed at a rate β;

■ the computer fails at rate λi when idle;

■ the computer fails at rate λb when busy.

We want to calculate the reliability after twenty-four hours of
operation.

idle

1

2
busy

3
failed

β
λi

λw

α



Domenici 37/59

The atomic model (1)

A composed model is not needed.



Domenici 38/59

The atomic model (2)

The initial marking is 1 for idle, 0 for the other places.

All activities have exponential time distribution.

activity gate predicate function

arrival I_arr idle->Mark() == 1 idle->Mark() = 0;

O_arr busy->Mark() = 1;

idle_fail I_idle_fail idle->Mark() == 1 idle->Mark() = 0;

O_idle_fail failed->Mark() = 1;

completed I_comp busy->Mark() == 1 busy->Mark() = 0;

O_comp idle->Mark() = 1;

busy_fail I_busy_fail busy->Mark() == 1 busy->Mark() = 0;

O_busy_fail failed->Mark() = 1;



Domenici 39/59

The reward and study models

We define a PV reliability of type instant of time, with the following
rate reward function:

if (computer->failed->Mark() == 0)

return 1;

In the Time tab, we set a Start Time of 24.0.

In the study, we let λb vary from 1× 10−6 to 5× 10−6.

NOTE: These values are just an example and are not meant to be
realistic.



Domenici 40/59

Results

After generating the state space and the solver, we run the five
experiments.

The results are written in files stored in
<project_name>/Solver/<solver_name>/.

λb reliability

mean variance

1.0000000000000000× 10−6 9.999956× 10−6 4.363599× 10−6

2.0000000000000000× 10−6 9.999935× 10−6 6.545373× 10−6

3.0000000000000000× 10−6 9.999913× 10−6 8.727125× 10−6

4.0000000000000000× 10−6 9.999891× 10−6 1.090887× 10−5

4.9999999999999996× 10−6 9.999869× 10−6 1.309061× 10−5



Domenici 41/59

A CASE STUDY



Domenici 42/59

A fault-tolerant multiprocessor system (1)

From the Möbius Manual, Version 2.4 Rev. 1,
https://www.mobius.illinois.edu/docs/MobiusManual.pdf
(Please don’t cheat: Try to do it yourself before reading the solution in the

manual).

A system is made of N computers.

A computer is made of:
■ 2 + 1 CPU’s (2 in service, 1 spare);

■ 2 + 1 memory modules;

■ 1 + 1 I/O ports;

■ 2 error-handling chips.

A CPU is made of 6 chips.

A memory module is made of:
■ 39 + 2 RAM chips;

■ 2 interface chips.

An I/O port is made of 6 chips.

https://www.mobius.illinois.edu/docs/MobiusManual.pdf


Domenici 43/59

A fault-tolerant multiprocessor system (2)

The system is operational if at least 1 computer is operational.

A computer is operational if at least
■ 2 CPU’s,

■ 2 memory modules,

■ 1 I/O port,

■ 2 error-handling chips
are operational.

A memory module is operational if at least
■ 39 RAM chips,

■ 2 interface chips
are operational.



Domenici 44/59

A fault-tolerant multiprocessor system (3)

1 spare

2 spares

2
1 spare 1 spare

system

computer

intfc chip ram chip

memory error

io port

io chipcpu chip

cpu

412

3 2

3

6 6

N

{ 2 out of 3 }

{ 39 out of 41 }

{ 2 out of 2 }

{ 2 out of 3 } { 1 out of 2 }

{ 2 out of 2 }

{ 6 out of 6 }

{ 1 out of N }



Domenici 45/59

Fault coverage and failure rate

If a spare is available, a failed component may be replaced with a
given fault coverage probability.

The fault coverage probabilities for each type of component are:
■ chips (chip_cvg): 0.998

■ memory modules (mem_cvg): 0.950

■ CPU’s (cpu_cvg): 0.995

■ I/O ports (io_cvg): 0.990

■ computers (comp_cvg): 0.950

The failure rate for chips (lambda_chip) is 0.0008766 failures per
year.



Domenici 46/59

Summary

component subcomponents

number type needed coverage

parameter value

system N computer 1 comp_cvg 0.950

computer 3 CPU 2 cpu_cvg 0.995

3 memory 2 mem_cvg 0.950

2 I/O port 1 io_cvg 0.990

2 EH chip 2

CPU 6 cpu chip 6 chip_cvg 0.998

memory 41 ram chip 39 chip_cvg 0.998

2 intf chip 2

I/O port 6 I/O chip 6



Domenici 47/59

Modeling strategy

A possible modeling strategy:

■ The system is the composition (by rep) of N computers;

■ a computer is the composition (by join) of three atomic models and
a replication submodel;

■ the three atomic models represent the behavior wrt failures of
CPU’s, memories, I/O, and error handlers, respectively;

■ The replication submodel groups three atomic models, one for
each memory module.



Domenici 48/59

Atomic models’ structure

All submodels have a similar structure:

■ A timed activity whose completion represents the failure of one
component of the respective class;

■ the timed activity is assumed to have an exponential time
distribution;

■ the timed activity is enabled if the computer hosting the component
is (as yet) operational and at least one computer is operational;

■ the timed activity has a number of cases representing possible
outcomes of the failure;

■ the case probabilities depend on the availability of spares and on
fault coverage probabilities;

■ some place markings represent the number of operational
components, others represent the number of failed memory
modules within a computer, and the number of failed computers in
the system.

The submodel for memory modules has two failure transitions.



Domenici 49/59

State lumping

A failed computer could have many different configurations: e.g., it
could have two failed CPU’s and the other modules operational, or
two failed memory modules and the other modules operational, or
have failed CPU’s and failed memories, and so on.

Each of these configuration produces different states, but all these
states are equivalent as they all result in a failed computer.

The number of states can be reduced by lumping equivalent states,
by assuming that all components of a computer are failed if the
computer is not operational.

For example, if a computer fails because two of its CPU’s have failed,
we set to zero the number of operational memories, I/O ports, and
error handlers.



Domenici 50/59

Shared places

■ cpus: number of operational CPU’s.

■ errorhandlers: number of operational errorhandlers.

■ ioports: number of operational I/O ports.

■ computer_failed: number of failed computers.

■ memory_failed: number of failed memory modules.



Domenici 51/59

The CPU module submodel

The failure activity (cpu_failure) is enabled if the following conditions
hold:
■ At least 2 CPU’s are operational;

■ At least 2 memory modules are operational;

■ At least 1 computer is operational.

The CPU failure rate is the chip failure rate times the number of chips
times the number of operational CPU’s (place cpus) (The CPU has
six non-redundant chips).

The possible outcomes are:
1. The CPU can be replaced: decrease the number of operational

CPU’s.

2. The CPU cannot be replaced, but the computer can: increase the
number of failed computers, set to zero the number of operational
components.

3. No replacement is possible: set the number of failed computers to
N , set to zero the number of operational components.



Domenici 52/59

Case probabilities

case probability

spare available spare unavailable

CPU replaced cpu_cvg 0

computer replaced (1 - cpu_cvg) · comp_cvg comp_cvg

no replacement (1 - cpu_cvg 1 - comp_cvg

- (1 - cpu_cvg) · comp_cvg)

sum of probabilities 1 1



Domenici 53/59

The memory module submodel (1)

This submodel is more complex because a memory module has two
sets of chips, one with spare chips and one without. So, it has two
failure activities.
The (interface_chip_failure) activity is enabled if the following
conditions hold:
■ At least 2 chips are operational;

■ At least 2 memory modules are operational;

■ At least 1 computer is operational.

The failure rate is the chip failure rate times the number of interface
chips.

The possible outcomes are:
1. Module replacement: increase the number of failed MM’s; if 2

MM’s are failed, increase the number of failed computers.

2. Computer replacement: if one MM has already failed and at least
one computer is operational, set the number of failed computers
to N , otherwise increase the number of failed computers.

3. No replacement: set the number of failed computers to N .



Domenici 54/59

Case probabilities of interface_chip_failure

case probability

memory module replaced mem_cvg

computer replaced (1 - mem_cvg) · comp_cvg

no replacement (1 - mem_cvg) · (1 - comp_cvg)



Domenici 55/59

The memory module submodel (2)

The (memory_chip_failure) activity is enabled if the following
conditions hold:
■ At least 39 chips are operational;

■ At least 2 memory modules are operational;

■ At least 1 computer is operational.

The failure rate is the chip failure rate times the number of RAM
chips.

The possible outcomes are:
1. Chip replacement: if spares are available, decrease the number of

RAM chips.

2. Module replacement: increase the number of failed MM’s; if one
MM has already failed, increase the number of failed computers.

3. Computer replacement: if one MM has already failed and at least
one computer is operational, set the number of failed computers
to N , otherwise increase the number of failed computers.

4. No replacement: set the number of failed computers to N .



Domenici 56/59

Case probabilities of memory_chip_failure

case probability

spare available spare unavailable

1 ram_cvg 0

2 (1 - ram_cvg) · mem_cvg mem_cvg

3 ((1 - ram_cvg) (1 - mem_cvg) · comp_cvg

· (1 - mem_cvg) · comp_cvg)

4 ((1 - ram_cvg) (1 - mem_cvg) · (1 - comp_cvg)

· (1 - mem_cvg) · (1 - comp_cvg))

Case 1: Chip replaced. Case 2: Memory module replaced. Case 3:
Computer replaced. Case 4: No replacement.



Domenici 57/59

The composed model

The memory subsystem is the replication of three memory module
submodels, sharing the numbers of failed computers and failed
memories.

The computer subsystem is the join of the memory subsystem, and
the CPU module, error handlers, and I/O port submodules, sharing
all the places.

The multiprocessor system is the replication of N computer
subsystems, sharing the number of failed computers.



Domenici 58/59

The reward model, studies and experiments

We compute the unreliability of the multiprocessor at a given time
(namely, after 20 years of operation).

The unreliabillity is a performance variable of type instant of time,
whose reward function returns 1 when all computers have failed.

More precisely, the function returns 1/N , since it is computed once
for each computer.

In this case, we observe the mean value of the unreliability as the
number of computer varies, using a transient solver.



Domenici 59/59

Conclusions

This seminar is a (hopefully) user-friendly introduction to the
Stochastic Activity Networks and their application to the quantitative
analysis of dependability, using the Möbius environment.

Clearly, there is much more to say about these topics, both from the
theoretical and the practical point of view. For example, the use of
Möbius as a simulator has been ignored.

Readers are encouraged to explore the tool and the literature. The
best starting point is the Möbius site:

https://www.mobius.illinois.edu/

https://www.mobius.illinois.edu/

