
Towards Stochastic FMI Co-simulations: Implementation of

an FMU for a Stochastic Activity Networks Simulator

C. Bernardeschi1 A. Domenici1 M. Palmieri2 1

1Department of Information Engineering
University of Pisa, Italy

2DINFO, University of Florence, Italy

2nd Workshop on Formal Co-Simulation of Cyber-Physical Systems
A satellite event of SEFM 2018, co-located with STAF 2018

June 26, 2018, Toulouse, France



A naïve question

Can I plug a new simulator into an existing multi-model?

◮ an almost trivial solution.

A not-so-naïve question:

Can I ‘plug’ a nondeterministic/stochastic simulation into a deterministic

multi-model?

◮ yet to be found not-so-trivial solutions (see last slide).

2 / 17



Stochastic Activity Networks (1)

The Stochastic Activity Networks (SAN) are a wide-ranging and complex

extension to Petri Nets.

Petri Net = places + marking + transitions + enabling conditions + firing rules.

Stochastic Petri Net = PN + stochastic transition delay.

Stochastic Activity Network = SPN + stochastic transition outcome + user-defined

enabling conditions + user-defined firing rules + . . .

William H. Sanders and John F. Meyer, “Stochastic Activity Networks: formal definitions

and concepts”, in Lectures on formal methods and performance analysis: first EEF/Euro

summer school on trends in computer science, 2002.

3 / 17



Stochastic Activity Networks (2)

Activities may be timed or instantaneous (or immediate).

Enabling conditions: activities are enabled by user-defined input predicates

associated with input gates.

An input predicate is a Boolean function of the net marking.

Firing rules: user defined functions specifying the next marking can be associated

with input gates (input functions) and output gates (output functions).

Stochastic transition outcome: Alternative results of an activity can be specified as

mutually exclusive cases associated with the activity.

Each case has a probability defined by a function of the marking (it may be a

constant).

4 / 17



The Möbius tool

The Möbius environment provides:

◮ Graphical editor to make (atomic) SAN models.

◮ Hierarchical composition of models.

◮ Reward models to define and compute performance variables, i.e.,

quantitative properties related to system performance or dependability.

◮ Numerical solution of Markov chain equations, if certain constraints on the

model are satisfied.

◮ System simulation satisfying user-defined statistical parameters, such as

confidence level and confidence interval.

G. Clark et al., “The Möbius modeling tool”, in 9th Int. Workshop on Petri Nets and

Performance Models, 2001.

The Möbius Manual, Version 2.4 Rev. 1,

https://www.mobius.illinois.edu/docs/MobiusManual.pdf

5 / 17

https://www.mobius.illinois.edu/docs/MobiusManual.pdf


The Möbius analysis process

atomic model atomic model atomic model

composed model composed model

composed model
system behavior

performance var
& reward fctn

performance var
& reward fctn

performance var
& reward fctn

reward model

experiment experiment experiment

study

numerical solver

state space generation

numerical solution

simulation solver

simulation

6 / 17



The INTO-CPS Water Tank Example

feed
level sensor

valveplant (Modelica)

controller

(VDM−RT)

level

valve control

inflow

outflow

constant inflow, outflow depends on current volume

valvecontrol = if level >= maxlevel then 1.0 (fully open)

else if level < minlevel then 0.0 (fully closed)

else valvecontrol unchanged;

7 / 17



The SAN Model

place

extended placeoutput gate

activity

input gate

Physical behavior:

variable feed flow (inflow)

valve opens gradually

drain flow (outflow) depends on valve area

8 / 17



The SAN Model: synchronization (1)

Input gate ig1 predicate:

synch->Mark() == 1

Output gate input function:

// wait for input from controller

cin >> x;

if (x == 1) {

valve_control.Set(1);

} else if(x == -1) {

valve_control.Set(-1);

} else if (x == 0) {

valve_control.Set(0);

}

synch->Mark() = 0; // reset synch

// implicitly set enable place

place

extended placeoutput gate

activity

input gate

9 / 17



The SAN Model: synchronization (2)

With the FMI protocol, each simulator executes one simulation step when it

receives an fmi2DoStep request from the master algorithm. The rate at which the

master algorithm issues fmi2DoStep requests establishes a common time base for

the simulators.

To synchronize the Möbius simulation, time has been simulated explicitly as a

variable that, at each step, is incremented by a fixed amount equal to interval

between fmi2DoStep requests.

10 / 17



The SAN Model: synchronization (3)

Output gate timer function:

time->Mark() += dt;

if (time->Mark() > maxtime)

exit(0);

place

extended placeoutput gate

activity

input gate

11 / 17



The SAN Model: valve actuation

Output gate valve_actuator function:

if (valve_control == 0) {

valve->Mark() -= dt;

if (valve->Mark() < 0)

valve->Mark() = 0;

} else if (valve_control == 1) {

valve->Mark() += dt;

if (valve->Mark() > 1)

valve->Mark() = 1;

}

outflow->Mark() = C*valve->Mark();

place

extended placeoutput gate

activity

input gate

12 / 17



The SAN Model: tank behavior

Output gate tank_fctn function:

double netfl =

inflow->Mark() - outflow->Mark();

level_out->Mark() =

level_out->Mark() + netfl*dt;

if (level_out->Mark() < 0)

level_out->Mark() = 0;

level.Set(level_out->Mark());

// set synch and enable step

synch->Mark() = 1;

// send level to controller

cout << level_out->Mark();

place

extended placeoutput gate

activity

input gate

13 / 17



The FMU

Implement fmi2Instantiate:

create pipes to redirect stdin and stdout;

spawn process running the Möbius-generated executable;

connect pipes.

Implement fmi2DoStep:

send control signal to Möbius process;

receive and parse level value from Möbius process;

send back level value to COE.

14 / 17



Co-simulation

INTO-CPS distribution

Möbius tool

15 / 17



Further work

Initial work towards integration of statistical simulation techniques

. . . but statistics not yet used!

Much work needed to deal with important issues:

◮ A more modular approach is needed.
◮ Reduce to a minimum the changes to fit a self-standing model into an existing

multi-model;
◮ how much knowledge on the model is needed (white/black/gray box)?
◮ Möbius is a rather closed environment.

◮ A smarter synchronization mechanism is needed if statistical parameters are

to be computed.

◮ A deeper understanding of the interaction between deterministic and

non-deterministic models is needed.

Lawrence, D.P.Y., Gomes, C., Denil, J., Vangheluwe, H., Buchs, D.: Coupling Petri nets

with deterministic formalisms using co-simulation. In: Proceedings of the Symposium on

Theory of Modeling & Simulation. pp. 6:1–6:8. TMS-DEVS ’16, Society for Computer

Simulation International, San Diego, CA, USA (2016)

16 / 17



Thank you

Merci

17 / 17


