
Integrated simulation and formal verification of a simple

autonomous vehicle

A. Domenici1 A. Fagiolini2 M. Palmieri3 1

1Department of Information Engineering
University of Pisa, Italy

2Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici (DEIM), University of Palermo,
Italy

3DINFO, University of Florence, Italy

1st Workshop on Formal Co-Simulation of Cyber-Physical Systems
A satellite event of SEFM2017

September 5, 2017, Trento, Italy

Verification

knowledge
ideal

requirements

formalization formal
model

proof verdict

The verdict is valid under all circumstances.

But what if

◮ knowledge is not complete and accurate?

◮ requirements are fuzzy?

◮ formalization is incorrect?

◮ proof is faulty?

2 / 19

Simulation

knowledge
ideal

modeling
executable
model

verdict

test
cases

requirements

simulation

expectations oracle

The verdict is valid for each test case.

But what if

◮ knowledge is not complete and accurate?

◮ requirements are fuzzy?

◮ expected results are incorrect?

◮ the test cases do not cover all possible circumstances?

3 / 19

Integrated co-simulation and verification

Simulation and verification complement each other.

Verification provides results of general validity, if assumptions and inferences are

correct.

Simulation validates assumptions under given scenarios, and also shows

explicitly system behaviors that are only implied by formal models.

Co-simulation makes it possible to combine formal (declarative) models with

executable ones.

Note:

◮ a formal model is expressed in a language oriented to verification, e.g.,

higher-order logic, temporal logic, dynamic logic, process algebras . . .

◮ an executable model is usually expressed in a block-based graphical

language, such as Simulink, Modelica, 20-Sim . . .

4 / 19

An approach to control system verification (1)

Most systems are composed of a plant subsystem and a control subsystem.

The approach proposed in this work assumes that

◮ the plant subsystem’s behavior is given;

◮ developers of the control subsystem must verify that it performs its tasks

correctly;

◮ both the plant and the control are defined by mathematical equations;

◮ the plant’s equations have been implemented as an executable model.

5 / 19

An approach to control system verification (2)

requirements
relationships

kinematic
equations

executable
plant model

control
law interface

simulation
modelmodelmathematical

PVS
theorems

PVS
definitions

PVS
control law

PVS
executable
control law

logic model

simulation

animation

proof

6 / 19

An approach to control system verification (3)

Mathematical model: differential/algebraic equations from control theory.

Logic model: the mathematical model expressed in the higher-order logic PVS

language (see below).

Simulation model: executable model of the plant’s kinematics, plus an interface

mechanism enabling co-simulation of logic models.

Animation: execution (simulation) of a logic model, using the PVSio ground

evaluator (see below).

7 / 19

Background: The Prototype Verification System

Proving:

The PVS is an interactive theorem prover environment based on:

◮ A typed higher-order logic language

◮ a sequent calculus deduction system.

A PVS theory is a collection of definitions and statements, including axioms.

A PVS model is a collection of theories describing a system.

System requirements are expressed as theorems to be proved wrt the theory.

Animating:

The PVSio extension is a ground evaluator that translates PVS function

definitions into LISP code.

A PVS function definition may contain applications of extra-logical functions,

providing, e.g., input and output.

A PVS model can then be animated, i.e., simulated.

8 / 19

A workflow

Design Ctrl

PVS Xec Ctrl

PVS Plant + Reqmts

Plant+Ctrl |− Reqmts
Prove

Xlate

Xec Plant

Build Xec Plant Design Test Cases
Check

[ko]

[ok]
Oops!

Co−Simulate

Xlate

Math Plant

Math Reqmts

Math Ctrl

PVS Control

v
e
ri
fi
c
a
ti
o
n

c
o
−

s
im

u
la

ti
o
n

[not satisfied]

[satisfied]

9 / 19

Example: a simple autonomous vehicle

cart

target line

p

ψ

y = (tanψc)x + y0

ψc

d

p0

σ pc

kinematics:

σ =| pc − p0 |
θ = ψ − ψc

d =| p − pc |

σ̇ = V cos θ

ḋ = V sin θ

θ̇ = ψ̇ = ω

control law:

ω = −dv sinc θ−kθ

Requirement: reach and follow the target line without oscillations.

10 / 19

From math model to logic (1)

Partial derivatives of the generating functions:

∂fσ

∂σ
= 0 · · · ∂fσ

∂θ
= −V sin θ · · · ∂fθ

∂θ
= −Vd(

θ cos θ − sin θ

θ2
)− k

t: VAR nnreal

V, k: posreal

sigma(t), d(t), theta(t): real

dfsigma_dsigma(sigma, d, theta, t): real = 0

...

dfsigma_dtheta(sigma, d, theta, t): real = -V*sin(theta(t))

...

dftheta_dtheta(sigma, d, theta, t): real =

-V*d(t)*(cos(theta(t))/theta(t) - sin(theta(t))/(theta(t))^2)

- k

11 / 19

From math model to logic (2)

Jacobian, characteristic polynomial, and eigenvalues:

J0 =

0 0 0

0 0 V

0 −V −k

 P(λ) = −λ3 − kλ2 − V 2λ

λ1 =−
√

k2−4V 2+k
2

λ2 =

√
k2−4V 2−k

2
λ3 = 0

J_0(sigma, d, theta, t) : bool =

J(1, 1, sigma, d, theta, t) = 0 and

... and J(3, 3, sigma, d, theta, t) = -k

char_J(lam: real) : real = -lam^3 - k*lam^2 - (V^2)*lam

lam_1: real = - (sqrt(k^2 - 4*V^2) + k)/2

lam_2: real = (sqrt(k^2 - 4*V^2) - k)/2

lam_3: real = 0

12 / 19

From math model to logic (3)

Requirement: reach and follow the target line without oscillations, i.e.,

the eigenvalues are real and nonpositive

P(λ1) = P(λ2) = P(λ3) = 0 λ1, λ2, λ3 ∈ IR

ℜ(λ1) ≤ 0 ℜ(λ2) ≤ 0 ℜ(λ3) ≤ 0

eigenvals: LEMMA

k > 2*V implies

char_J(lam_1) = 0 and char_J(lam_2) = 0 and char_J(lam_3) = 0

local_stability: THEOREM

k > 2*V implies

char_J(lam_1) = 0 and char_J(lam_2) = 0 and char_J(lam_3) = 0

and lam_1 < 0 and lam_2 < 0

13 / 19

A (very) simple proof

|-------

{1} k > 2*V IMPLIES lam_1 < 0

Rerunning step: (flatten)

{-1} k > 2*V

|-------

{1} lam_1 < 0

Rerunning step: (expand "lam_1")

[-1] k > 2*V

|-------

{1} -(sqrt(k^2 - 4*V^2) + k)/2 < 0

Rerunning step: (assert)

Q.E.D.

14 / 19

Animating the controller theory

To simulate and visualize the logic model of the controller:

◮ transform the control law to the fixed reference frame:

ω = −((y − y0) cosψc − x sinψc)v sinc θ − kθ

◮ define a simple state machine, with the transformed control law as its

transition (step) function:

State : TYPE = [# y, x, psi: real, % inputs

y_0, psi_c: real, % target line

k, v: real, % parameters

omega: real #] % output

theta(s:State): real = psi(s) - psi_c(s)

step(s:State): State = s WITH [

omega := -((y(s) - y_0(s))*COS(psi_c(s))

- x(s)*SIN(psi_c(s))))

*v(s)*SINC(theta(s)) - k(s)*theta(s)]

15 / 19

Co-simulation

Plant model

Interface block

PVSio solver

Matlab

Xec Controller

�simulink model�

�s-funtion�

�proess�

�environment�

�interpret�

�spawn�

�exeute�

�PVS�

16 / 19

Conclusions

A general approach to integrated simulation and verification of control systems

has been presented, using higher-order logic to model and verify both plant and

controller subsystems, and co-simulation of plant and controller with different

modeling languages for validation and visualization.

◮ Using the same controller model for verification and simulation avoids the

effort both of producing two models of the same controller and of proving their

equivalence;

◮ having different plant models for verification and simulation makes it possible

to cross-check the two models;

◮ dfferent co-simulation frameworks can be used, e.g., the INTO-CPS tool

(based on the FMI) or the PVSio-web framework.

17 / 19

Thank you

Grazie

18 / 19

Appendix: coordinate transformation

ψc

p0

y′p = d
p

pc

y′

y

x

x′

[

x ′

y ′

]

=
[

x y
]

[

cosψc − sinψc

sinψc cosψc

]

+

[

0

−y0 cosψc

]

19 / 19

