Extending a user interface prototyping tool with automatic
MISRA C code generation

Gioacchino Mauro
Department of Information Engineering, University of RiBésa, Italy

g.mauro@unipi.it

Harold Thimbleby
Swansea University — Prifysgol Abertawe, Swariééartawe, UK
harold@thimbleby.net

Andrea Domenici Cinzia Bernardeschi
Department of Information Engineering, University of RiBésa, Italy

{c.bernardeschi,a.domenici}@unipi.it

We are concerned with systems, particularly safety-aliggstems, that involve interaction between
users and devices, such as the user interface of medicakdeWe therefore developed a MISRA C
code generator for formal models expressed in the PVSiopwetntyping toolkit. PVSio-web al-
lows developers to rapidly generate realistic interagbiraotypes for verifying usability and safety
requirements in human-machine interfaces. The visualappee of the prototypes is based on a
picture of a physical device, and the behaviour of the pyp®is defined by an executable formal
model. Our approach transforms the PVSio-web prototypiad into a model-based engineering
toolkit that, starting from a formally verified user intectadesign model, will produce MISRA C
code that can be compiled and linked into a final product. Atiainvalidation of our tool is pre-
sented for the data entry system of an actual medical device.

1 Introduction

Formal methods are important for developing and undersigrshfe and secure systems. The PVSio-
web framework([20, 21, 22, 26] allows developers to use fomethods in a friendly and appealing way
as it provides realistic animations and is integrated witraphical editor for the Emucharts language
[23]. (Emucharts is a state machine formalism with guardbamtions associated with transitions; it is
explained further in Sedt. 3.4 below.)

PVSio-web uses the formal modelling language of the Prpttyerification System (PVS)_[27],
including the PVSio extension [24]. PVS is an industriaésgth theorem proving system that allows
formal verification of safety and reliability propertieshardware and software systems [5, 31]. Although
PVS itself is very &ective, it is not widely used for model-based developmermt amnalysis of user
interfaces, as the tool has a steep learning curve. PVSlosaiens this learning curve, making the tool
more user-friendly and accessible, providing developetis avgraphical modelling environment, and a
toolbox for developing realistic visual prototypes of usderfaces.

The applications of embedded software in safety-critiggdligations increase continuously. Taking
this into account, together with the requirements to redime and overall production costs, automatic
code generation plays an essential role. Automatic coderggon guarantees a smooth conversion

EPTCS ??, 20??, pp.[1314, doi:10.4HPTCS.??.2?

http://dx.doi.org/10.4204/EPTCS.??.??

2 MISRA C code generation

| PVSenvionment
PVSio-web | _ ! @ | Proof I\
T :‘ = :
! Theorem | -
NN | Prover | .
Developer -7 - A N N ! i
oo - N ! !
Emucharts PVS Model Editor } Simulation
Editor generator |
Ground !
\ Evaluator |
Pvstheoryy .~ _— [DN ~
HB Templates
Emucharts I\ C Code h
Model -
- C Code
Generator

Figure 1: C code generation in the PVSio-web developmerdgz

from model to code and reduces the debugging and testingreedior source code, provided that the
correctness of code generation and of the high-level maled been verified.

We therefore present an extension to PVSio-web that gerse€atode. Specifically, our extension
generates MISRA C[1], a safety-oriented subset of C deeeldyy the Motor Industry Software Re-
liability Association (MISRA). MISRA C is commonly used imfety-critical subsystems, such as car
braking in automotive systems.

With this new extension, formal PVS specifications generfitem Emucharts diagrams are auto-
matically converted to C, significantly shortening projdevvelopment time. Because of the approach,
the semantics of generated C code is equivalent to the fomodels, and therefore the code retains the
reliability and safety properties formally verified for tR&¥S model.

In summary, our main contribution is an approach to softwdeclopment that integrates logic-
and state machine-based formal modelling, validation byktion, and automatic implementation by
generating production code to be run on the actual systedwlaae, all based on an industrial-strength
formal methods toolkit.

2 Related work

Model-based approaches are commonly used in the field of mwm@puter interaction, for example
[13]. Most approaches are focused on describing user auesfand their implementations at various
levels of abstraction. Developers of user interfaces ftaractive systems also have to address hetero-
geneity and adaptation to the context of use. For examp]29jna model-based declarative language for
the design of interactive applications based on Web seniicebiquitous environments was presented.
In contrast to these familiar approaches, the present wangkgses a framework enabling a formal veri-
fication of user interaction. The framework is meant for safmalysis of safety-critical devices and not
with user interface design issues as discussed in [29],

Similarly to our approach, formal models were used.in [6]ésaibe functionality and component
interactions, where they were combined with user interfaodels in order to get the entire model of the

G. Mauro, H. Thimbleby, A. Domeni& C. Bernardschi 3

system. Moreover, an Android emulator application was geed, using Java and XML technologies.
Presentation models and presentation interaction modsis wsed in [9] to model interactive software
systems; these models were shown to be usable with a forreeaifisption of the system functionality.

In [7] the same formalisms were used to model user manual®odahmedical devices, proving that the
user manual may be not always consistent with actual deebauiour.

In [17], model checking was used to model and prove propexifespecifications of interactive
systems so that possibly unexpected consequences ofargariode changes can be checked early in
the design process. In_[19], the complementary role of matletking and theorem proving in the
analysis of interactive devices was considered. Recenk {ild@] explored the paths that a user will
take in interacting with medical devices for the analysipmfperties of the behaviour of safety-critical
devices. A model-checking approach has also been usedlisameardware behaviour|[4].

A discussion of production code generation in model-bassdldpment can be found in[11]. Many
papers deal with specific code generators, for example flanye[3]. Code generators specifically
designed for medical systems are describedlin [2] and [28].

3 PVS, model-driven development and Emucharts

This section provides background information on the P8édy framework and its relationship to
model-driven development.

3.1 PVS, the Prototype Verification System

The PVS s an interactive theorem prover for a typed highdeiologic language, providing an extensive
set of inference rules based on the sequent calculus [39]P\Sio extension is a ground evaluator
that can compute the results of ground function applicatidhat is PVS expressions consisting of a
function name applied to variable-free arguments. PVStians are purely declarative definitions of
mathematical mappings, without any procedural inforrmatbo how to compute them, but the PVSio
package can derive and execute an algorithm to evaluateuadyfanction application, turning it into a
procedure call. The PVSio package also provides functiatis side dfects, such as input and output,
which do not interfere with the semantics of a theory.

A system is modelled in PVS astheory, a collection of logical statements and definitions about
the structural and behavioural aspects of the system. Tétersis required properties are expressed
as theorems to be verified with the PVS theorem prover. If #teabioural aspects are expressed as
functions, the system can also be simulated with the PVS&nsion. The same logical model can then
be used both for verification and simulation.

3.2 Model-driven development

Model-driven development (MDD) is based on creating an ebedate system model by assembling func-
tional blocks. An executable model makes it possible bothirtmulate the system and to generate pro-
duction software to control it. Together with the naturakef the graphic language of functional blocks,
these features make MDD very attractive to developers. Mewehis approach has two limits: first,
functional blocks lend themselves to building design medelt not specification ones; and secondly,
formal verification of a block-based model is tedious, anthat it is uncommon in industrial practice.

A formal approach can be used to create both specificationl@sign models and intrinsically lends
itself to rigorous verification of system properties. Intmarar, logic specification languages, such as

4 MISRA C code generation

PVS, are supported by automatic or interactive theoremepsoused by developers to check if system
requirements, expressed as logical formulas, are implyea $ystem’s description expressed in a logic
theory. However, formal methods require expertise in laggs and methods that are not widely known
in the wider developer community. Further, most formal lzexges abstract from the familiar procedure-
oriented computation model of popular programming langsagaking it harder to generate executable
software.

It is then desirable to have tools and methods providing Idpees with the features of both ap-
proaches. The present work is part of a reseaffdrteaimed at this goal. With the PVSio-web frame-
work, a developer can build a model in a graphical state-imadanguage or a logic language, or both
(Sect[B). The graphical model is translated into the lagiglage automatically, and the resulting trans-
lation is both verifiable and executable using the PVSio gdoevaluator, which acts as an interpreter
for the PVS language. The PVSio-web framework thus providaetures of the formal approach: A
formal specification language and a verification tool, araduiees of MDD, thus providing a full graph-
ical modelling language and a simulation engine. A transliibom Emucharts to C makes it possible
to generate code from a state machine-based model that calideted by simulation and verified by
theorem proving. The other important feature of MDD — getieraof production code capable to be
run on the actual system hardware — is a key contributionisfgaper.

3.3 PVSio-web

The PVSio-web framework is a set of tools, co-ordinated byea-Wwased interface, for prototyping and
simulation of interactive devices. Its main components hesides PVS with its PVSio extension) (
the Prototype Builder, a graphical tool used to choose a picture of an existing ticipated device’s
front panel and to associate PVS functions with active acddbe picture representing device inputs
(e.g., buttons or keys) and outputs (e.g., alphanumerjdadis or lights); if) the Model Editor, a tex-
tual interface to write PVS codeiji() the Emucharts Editor, a graphical tool to draw Emucharts state
machine diagramsjyv) a Simulation Environment; and {) Code Generatorsfor PVS and other for-
mal languages (currently Presentation Interaction MofjlsModal Action Logic [15], and Vienna
Development Method [12]) — and for MISRA C, as presented is plaper.

PVSio-web can be used to prototype a new device interfade, @eate a reverse-engineered model
of an existing one. In either case, a developer creates falesariptions of the device’s responses to user
actions, using the model and Emucharts editors, and assedtl@ese descriptions with the active areas
of the simulated interface, using the prototype builderthinsimulation environment, the developer, or
a domain expert or a potential user, interacts with the pyptoclicking on the input widgets. These
actions are translated to PVS function calls executed byP¥gio interpreter.

3.4 Emucharts

An Emucharts diagram is the representation of an extendsd stachine in the form of a directed
graph composed of labellagbdesand transitions Transitions are labelled with triples of the form
trigger[guard]{action}, wheretrigger is the name of an everguardis an enabling Boolean expression,
andactionis a set of assignments to typed variables declared in thesi@chine’scontext The default
guard is thdrue value and the default action is a no-operation. $taeof the machine is defined by
the current node and the current values of the context yagab

The code generator for PVS produces a theory containingiimscthat define the state machine
behaviour on the occurrence of trigger events. Since an Bantgcdiagram usually represents a device

G. Mauro, H. Thimbleby, A. Domeni& C. Bernardschi 5

.
MedtronicMinimed530G ¥« B NewProject @OpenProject M SaveProject M SaveAs.. [dChange Picture WebServer v PVSio-web 2.0

© Prototype Builder

display: display Bullder View Simulator View
button: UP

button: DOWN

© EmuCharts Editor

STATES TRANSITIONS CONTEXT ‘CODE GENERATORS ZOOM
A ! Name Initial Value +
PIM Model
MAL Model display 0 x 7
VDM Model

click_UP [display = 10] { display := 10}

click_UP [display < 10 { display = display + 0.1;}

“B

click DOWN [display = 0] {display =0}

L

click_DOWN [display >0] { display := display - 0.1; }

Figure 2: The PVSio-web user interface with the Prototypédguand Emucharts Editor frames.

response to user actions, such events represent usersastich as pressing a button on a control panel.
During simulation on a PC, a user click on an active area ofithéce picture causes the simulator to
generate a function application expression that is passtietPVSio ground evaluator.

4 From Emucharts to safe C

The aim of programming code generation in the PVSio-web é®mark is producing a module that
implements the user interface of a device, which can be demhpgind linked into the device software
without any particular assumptions on its architecturethis way, the user interface module can be
used without forcing design choices on the rest of the seéiwhn our approach, the generated module
contains a set of C functions. The main ones are, for each Bantsctrigger: i) a permissionfunction,

to check if the trigger event igermitted i.e., whether it is associated with any transition fromdbheent
state, andii) atransitionfunction that, according to the current state, updatesadyiged that the guard
condition of an outgoing transition holds. The code inchiltggically redundant testagsertmacros) to
improve robustness.

To generate production-quality code fit for safety-critigpplications we adopt MISRA guidelines.
The MISRA guidelines for the C language, originally coneeivfor the automotive industry, enforce
programming practices to improve maintainability and gbiltty and, above all, to reduce the risk of
malfunction due to implementation- or platform-dependesgects of the C language. For instance, there
are rules that bar the use of constructs suclioas, and rules requiring that numeric literals befisted
to indicate their type explicitly. The generated code auttyecomplies with the first version of the 1998
MISRA C guidelines.

6 MISRA C code generation

(headerfile) ::= (preprocessor_directives
[(constant_definition$]
(typedef_definition$
(state_labels_enurmn
(state_structure
(utility_functions)
(init_function)
{ permission_functions
(transition_functions

Table 1: Structure of a header file. Non-terminal symbolseai®@osed between angle brackets; square
brackets enclose optional symbols.

4.1 Code generation

Our MISRA C code generator was implemented in JavaScripgusandlebars [14], a macro-expansion
tool for web applications. A Handlebars template is a pie€dest containing “Handlebar ex-
pressions,” which refer to elements of the surrounding exinttypically an HTML document. A
Handlebars expression specifies a character string as Hofuraf context elements, which is com-
piled into a JavaScript function that returns the template with the substitutions computed by the
Handlebars expressions. For example, a template fragnoers C preprocesso#include direc-
tive is#include "{{filename}}.h", where the Handlebars expressipfifilename}} contains the
filename parameter that will be replaced by the actual name of thedibetincluded.

The code generator produces a header file, an implementdgpa makefile, a simple test driver
file, and a documentation manual.

The structure of the header file is defined by the grammar iteTlhbT he header file contains, among
other items, the declarationtypedef definitiongn the grammar) for types with explicit representation
of size and sign, e.gyC_8, for eight-bit unsigned charthe declaration state_labels_enupfor an
enumeration type defining the node labels, and the dedar&tate structurgfor the statestructure
type representing the state of the Emucharts model. Thistate contains oneontextfield for each
variable defined in the Emucharts context, and two more fi@ds_nodeandprev_nodg contain the
labels of the current and the previous node.

The declarations are followed by the function prototypetheftwo utility functionsenterandleave
theinit function, and, for each trigger, one permission and onesitian function. The functions receive
a pointer to a structure of typgatepassed by a calling program. Thaterandleavefunctions, called
by theinit and transition functions, update tearr_nodeandprev_nodefields, respectively, with the
target and source node label of the executed transition.|eBtvefunction has been introduced to allow
future versions to implement checkpointing algorithms.eTrit function initialises the state’s context
fields with the values of the context variables specified @BmMmucharts diagram, and tberr_nodefield
with the label of the initial node. As mentioned above, eaetmpssion function checks if the current
node has a transition labelled by the respective event. ,Tthermatching transition function chooses
among the transitions triggered by that event, accorditiggaespective guards (assumed to be mutually
exclusive).

The implementation file contains the function definitionsor Example, consider the Emucharts
diagram of the data entry system of the Medtronic MiniMed G3Bystem shown in Figurlg 3. The
diagram has a context variabtisplay of type doublerepresented on 64 bits, which holds the value

G. Mauro, H. Thimbleby, A. Domeni& C. Bernardschi 7

click UP [display = 10] { display =10}

click_UP [display = 10] { display := display + 0.1; }

click DOWRN [display =0 1] { display =0}

click_ DOWN [display =0] { display .= display - 0.1; }

Figure 3:Emucharts diagram for the Medtronic MiniMed 530G data entry system.
shown on the device’s display. The node labels andthgetype are defined as

typedef enum { off, on } node_label;
typedef struct {
D_64 display;
node_label curr_node;
node_label prev_node; } state;

The code for the permission function associated withctlo UP trigger is

UC_8 per_click_UP(const state* st) {
if (st->current_state == on) {
return true;
}
return false;

}

where the return type UC_8 (eight-bit unsigned charactetsed to represent the Boolean type. The
transition function is

state click_UP(state* st) {

assert(st->current_state == on);

assert(st->display < 10 || st->display == 10);

if (st->display < 10 && st->current_state == on) {
leave(on, st);
st->display = st->display + 0.1f;
enter(on, st);
assert(st->current_state == on);
return *st;

}

if (st->display == 10 && st->current_state == on) {
leave(on, st);

8 MISRA C code generation

st->display = 10.0f;
enter(on, st);
assert(st->current_state == on);
return *st;

}

return *st;

A proof of the correctness of this translation schema is shimAppendixA.

5 Case study

The Alaris GP, made by Becton Dickinson and Company, was aselcase study for the MISRA C
code generator.

This volumetric infusion pump is a medical device used fantoulled automatic delivery of fluid
medication or blood transfusion to patients, with an infagiate range between 1 fmland 1200 njh. It
has a monochrome dot matrix display with three significagitsliand has 14 buttons for operating the
device (see Figulel 4). The pump has a rather complex usefaicee with diferent modes of operation
and ways of entering data, including the possibility of cding from a list of preloaded treatments. For
simplicity, in this paper only the essential part of the datéry interface, concerning numerical input
and display, is considered.

Numerical input is done through the chevrons buttons: ugwead downward chevrons increase and
decrease, respectively, the displayed value. The amounthiigh the value is increased or decreased
depends on whether a single or double chevron is pressedyratite current displayed value. More
precisely, the displayed value is changed as follovijslf the displayed value is below 100, the value
changes by @ units for a single chevron, and steps up or down to the nesddefor a double chevron
(e.g., from 91 to 1Q0); (ii) if the displayed value is between 100 an@Q0, the value changes by 1 unit
for a single chevron, and steps up or down to a value equaktodit hundred plus the decade of the
displayed value for a double chevron (e.g., from 310 or 31&11); (ii) if the displayed value is,D00
or above, the value changes by 10 units for a single chevramhstps up or down to a value equal to the
next hundred for a double chevron (e.g., frord110 or 1080 to 1100).

The Emucharts diagram for the numeric data entry is showngri3- Triggersclick alaris_upand
click_alaris_dnrepresent clicks on the upward and downward single-chebutions, respectively, and
triggersclick_alaris_ UPandclick_alaris_DN represent clicks on the double-chevron ones. For each
event, combinations of guards and actions specify the ddssribed above.

The PVS code generator translates the diagram into an eds#eubgic theory, and the C code
generator produces permission and transition functionsdoh trigger, as explained previously.

5.1 Mobile applications

The PVSio-web framework uses a standard web interface égriate its tools: this approaclifers a
uniform interface that a developer can access with any welvgaer.

Our framework has been extended by providing the possilbditun simulations on a mobile device.
Smartphones and tablets improve usability and help makeinteeaction similar to actual device oper-
ation. For example, mobile devices could be used in a hdspitaronment to train medical personnel
and patients.

G. Mauro, H. Thimbleby, A. Domeni& C. Bernardschi 9

-
Cardinal

ON HOLD - SET RATE

RATE: 0, Ornlfh

VTBI: D,Oml

WOLUME: D OI"I"I'
’

Vol VTBI

A ~ L X

Figure 4. Front panel of the Alaris GP infusion pump.

An interactive device can be simulated using the C source podduced by the PVSio-web gen-
erator, compiled and linked with a mobile device-specifiplmation. For example, the code for the
user interface of the Alaris infusion pump has been porteithécAndroid [10] platform using the An-
droid NDK [25] toolset, which can embed C code in a Java ptpjetying on the Java Native Interface
(JINI) [18].

6 Conclusions

We presented the implementation of our MISRA C code genefatthe PVSio-web prototyping toolkit.
Automatic code generation significantly reduces projegelbpment time. Our approach eliminates a
human-performed step in the development process: usefaiceesoftware engineers no longer need to
convert the design specifications into executable targg.co

Our tool improves the development of safe and dependableinisefaces, as it greatly facilitates
using formal methods easily and reliably with real Uls, whice demonstrated with the medical device
examples in this paper.

Current and future directions include improving this wliintegration with other features of C, still
conformant to MISRA C under the most recent 2012 rules. Wa pdadevelop code generators for
programming languages such as-€ Java and ADA.

10 MISRA C code generation

click_alaris_up [Infusionrate >= MAX | { infusionrate := MAX }

‘ click_alaris_up [infusionrate < 100] {Floor := ((infusionrate * ...
-\ click_alaris_up [infusionrate >= 100 && Infusionsate < 1000) {FI...

\ click_alar's_up [Infusionrate >= 1000 && infusionrate < MAX] {F!...
click_alaris_UP [infusionrate >= MAX | { infusionrate := MAX }

TN

click_alaris_UP [infusionrate < 100] {Floor := (Infusionrate) - ...

| “;”“:::x S
o - _ ////
F =
Yam ot ' \\\

ick_alaris_dn [infusionrate >= 1000] {Cell := (infusionrate /...
click_alaris_dn [infusionrate >= 100 && infusionrate < 1000] {C...
click_alaris_dn [infusionrate > MIN && infusionrate < 100] (Celil...

click_alaris_dn [infusionrate <= MIN] { infusionrate := MIN }

Figure 5: Emucharts diagram for numeric data entry.
Acknowledgements

This work was partially supported by the PRA 2016 projectéhirsis of Sensory Data: from Traditional
Sensors to Social Sensors” funded by the University of Pisa.

References

[1] Motor Industry Software Reliability Association (199&uidelines for the Use of the C Language in Vehicle
Based SoftwareMotor Industry Research Association.

[2] Ayan Banerjee & Sandeep K. S. Gupta (201¥odel Based Code Generation for Medical Cyber Physical
Systemsin: 1st Workshop on Mobile Medical Applications (MMA '14pp. 22—-27, doit®.1145/2676431.
2676646.

[3] M. Beine, R. Otterbach & M. Jungmann (2004)evelopment of safety-critical software using automatic
code generationTechnical Report, SAE Technical Papers, ti®i4271/2004-01-0708.

[4] C. Bernardeschi, L. Cassano, A. Domenici & L. Sterpor@l®): Unexcitability Analysis of SEUsf#&cting
the Routing Structure of SRAM-based FPGIas Proc. of the 23rd ACM Great Lakes Symposium on VLS
GLSVLSI 13, pp. 7-12, doit®.1145/2483028.2483050.

http://dx.doi.org/10.1145/2676431.2676646
http://dx.doi.org/10.1145/2676431.2676646
http://dx.doi.org/10.4271/2004-01-0708
http://dx.doi.org/10.1145/2483028.2483050

G. Mauro, H. Thimbleby, A. Domeni& C. Bernardschi 11

[5] Cinzia Bernardeschi, Paolo Masci & Holger Pfeifer (2DO0&arly Prototyping of Wireless Sensor Net-
work Algorithms in PVSpp. 346-359. Springer Berlin Heidelberg, Berlin, Heideth doi10.1007/
978-3-540-87698-4_209.

[6] J. Bowen & A. Hinze (2011)Supporting Mobile Application Development with Modelagm Emulation
In: Formal Methods for Interactive Systems 20&fectr. Comm. EASSH5, doi10.14279/tuj.eceasst.
45.634.

[7] J. Bowen & S. Reeves (2012Modelling User Manuals of Modal Medical Devices and Leagfrom the
Experience In: 4th ACM SIGCHI Symposium on Engineering Interactive ConpgiSystems (EICS '12)
pp. 121-130, doi®.1145/2305484.2305505.

[8] J. Bowen & S. Reeves (2015pPesign Patterns for Models of Interactive Systents: 24th Australasian
Software Engineering Conference (ASWEEBEE, pp. 223-232, ddif.1109/ASWEC.2015. 30.

[9] A. Cerone, P. Curzon, J. Bowen & S. Reeves (2066ymal Models for Informal GUI DesignsElectronic
Notes in Theoretical Computer Scierk®3, pp. 57-72, doi®.1016/j.entcs.2007.01.061.

[10] Guiran Chang, Chunguang Tan, Guanhua Li & Chuan Zhu@@eveloping Mobile Applications on the
Android Platform In: Mobile Multimedia Processingp. 264—286, doi:®.1007/978-3-642-12349-8_
15.

[11] T. Erkkinen & M. Conrad (2007)Safety-critical software development using automaticdpation code
generation Technical Report, SAE Technical Papers, tii4271/2007-01-1493.

[12] J.Fitzgerald, P. G. Larsen, P. Mukherjee, N. Plat & Mrhdef (2005) Validated Designs For Object-oriented
SystemsSpringer-Verlag TELOS, Santa Clara, CA, USA.

[13] J. D. Foley & P. Noi Sukaviriya (1994)History, Results, and Bibliography of the User Interfacesiga
Environment (UIDE), an Early Model-based System for Usaerface Design and Implementationin:
Proceedings of Design, Verification and Specification oérattive Systems (DSVIS’'94pp. 3—14, doit®.
1007/978-3-642-87115-3_1.

[14] (2016):Handlebars Semantic Templat&vailable athttp://handlebarsjs.com.

[15] M. D. Harrison, J. C. Campos & P. Masci (201Reusing models and properties in the analysis of similar
interactive devices Innovations in Systems and Software Engineefia?), pp. 95-111, daif.1007/
s11334-013-0201-3.

[16] MD. Harrison, JC. Campos, R. Rimvydas & P. Curzon (2018ddelling information resources and their
salience in medical device design: 8th ACM SIGCHI Symposium on Engineering Interactive Conipgit
Systems (EICS '16H0i:10.1145/2933242.2933250.

[17] Campos JC & Harrison MD (2001Model checking interactor specificatiang\utomated Software Engi-
neering8(3-4), pp. 5275-310, ddi®. 16023 /A:1011265604021.

[18] (2016):Java Native Interfacehttp://docs.oracle.com/javase/8/docs/technotes/guides/jni/.

[19] P. Masci, A. Ayoud, P. Curzon, MD. Harrison, |. Lee & H. ififbleby (2013): Verification of interactive
software for medical devices: PCA infusion pumps and FDAlagn as an examplén: 5th ACM SIGCHI
Symposium on Engineering Interactive Computing SysteEi€;$ '13) doi;10.1145/2494603.2480302.

[20] P. Masci, P. Mallozzi, F. L. De Angelis, G. Di Marzo Seamglo & P. Curzon (2015)Using PVSio-web
and SAPERE for rapid prototyping of user interfaces in Indégd Clinical Environmentsin: Verisure2015,
Workshop on Verification and Assurance, co-located with 28Ya

[21] P. Masci, P. Oladimeji, P. Curzon & H. Thimbleby (2014)pol demo: Using PVSio-web to demonstrate
software issues in medical user interfacés: 4th International Symposium on Foundations of Healthcare
Information Engineering and Systems (FHIES2014)

[22] P. Masci, P. Oladimeji, P. Curzon & H. Thimbleby (201B)/Sio-web 2.0: Joining PVS to Human-Computer
Interaction In: 27th International Conference on Computer Aided Verif@ma{iCAvV2015) Springer, doit®.
1007/978-3-319-21690-4_30. Tool and application examples available at Htgpvw.pvsioweb.org.

http://dx.doi.org/10.1007/978-3-540-87698-4_29
http://dx.doi.org/10.1007/978-3-540-87698-4_29
http://dx.doi.org/10.14279/tuj.eceasst.45.634
http://dx.doi.org/10.14279/tuj.eceasst.45.634
http://dx.doi.org/10.1145/2305484.2305505
http://dx.doi.org/10.1109/ASWEC.2015.30
http://dx.doi.org/10.1016/j.entcs.2007.01.061
http://dx.doi.org/10.1007/978-3-642-12349-8_15
http://dx.doi.org/10.1007/978-3-642-12349-8_15
http://dx.doi.org/10.4271/2007-01-1493
http://dx.doi.org/10.1007/978-3-642-87115-3_1
http://dx.doi.org/10.1007/978-3-642-87115-3_1
http://handlebarsjs.com
http://dx.doi.org/10.1007/s11334-013-0201-3
http://dx.doi.org/10.1007/s11334-013-0201-3
http://dx.doi.org/10.1145/2933242.2933250
http://dx.doi.org/10.1023/A:1011265604021
http://docs.oracle.com/javase/8/docs/technotes/guides/jni/
http://dx.doi.org/10.1145/2494603.2480302
http://dx.doi.org/10.1007/978-3-319-21690-4_30
http://dx.doi.org/10.1007/978-3-319-21690-4_30

12 MISRA C code generation

[23] P. Masci, Yi Zhang, P. Jones, P. Oladimeji, E. D’'UrsoBernardeschi, P. Curzon & H. Thimbleby (2014):
Combining PVSio with Stateflown: 6th NASA Formal Methods Symposium (NFM2014pi:10.1007/
978-3-319-06200-6_16.

[24] C. Mufoz (2003):Rapid prototyping in PVS Technical Report NIA 2003-03, NASER-2003-212418,
National Institute of Aerospace, Hampton, VA, USA.

[25] (2016):NDK. Available athttp://developer.android.com/ndk.

[26] P. Oladimeji, P. Masci, P. Curzon & H. Thimbleby (2013)VSio-web: a tool for rapid prototyping de-
vice user interfaces in PVSn: FMIS2013, 5th International Workshop on Formal Methodslfieractive
Systemsdoi:10.14279/tuj.eceasst.69.963.

[27] S. Owre, J. M. Rushby & N. Shankar (1992PVS: A Prototype Verification Systemin: Automated
Deduction—CADE-11: 11th International Conference on Augbed Deductiopp. 748—752, doi0. 16007/
3-540-55602-8_217.

[28] M. Pajic, Zhihao Jiang, Insup Lee, O. Sokolsky & R. Maagdm (2014):Safety-critical Medical Device
Development Using the UPP2SF Model Translation TOBCM Trans. Embed. Comput. Sy4t3(4s), pp.
127:1-127:26,d010.1145/2584651.

[29] F. Paterno, C. Santoro & L. D. Spano (200MARIA: A Universal, Declarative, Multiple Abstractionviel
Language for Service-oriented Applications in Ubiquit@mvironments ACM Trans. Comput.-Hum. Inter-
act.16(4), pp. 19:1-19:30, ddi®.1145/1614390.1614394.

[30] Raymond Merrill Smullyan (1995¥irst-order logic Dover publications, New York.

[31] Mandayam Srivas, Harald Ruef3 & David Cyrluk (199Rardware Verification Using PV.SIn Thomas
Kropf, editor: Formal Hardware Verification: Methods and Systems in ConspgrLecture Notes in Com-
puter Scienc@287, Springer-Verlag, pp. 156—205, ddi: 1007/3-540-63475-4_4.

A Correctness of code generation

In order to assess the correctness of the generated codemtineharts diagram is taken as the reference
model, and a correspondence is established between theiemadf the model and that of the executed
code.

A.1 Transition system for an Emucharts diagram

As discussed above (sectibh 4), an Emucharts diagram ispha gfenodes and labelled transitions, ex-
tended with a set of typed context variables, each one witihidal value. Its semantics is given by a
transition system. Let the following be defined:

e AsetN ={ng,...,n;j} of nodes;

e asetX = {xy,...,Xj} of context variables (for simplicity, assumed to be typg)es
e asetV of values;

e asetk = {e,..., &} of events;

e asetG={gi,...,q} of guards, i.e., Boolean expressions involving varialdesstants front,
arithmetic and relational operators;

e a denumerable s&t of valuations i.e., functions fromX to V;

e asetA={ay,...,a} of arcs, i.e., 5-tuples of the forns.¢, e g,v), wheres,t € N are the arc’s
source and target nodeg E, g € G, andv e V is the valuation defined by the action labelling the

http://dx.doi.org/10.1007/978-3-319-06200-6_16
http://dx.doi.org/10.1007/978-3-319-06200-6_16
http://developer.android.com/ndk
http://dx.doi.org/10.14279/tuj.eceasst.69.963
http://dx.doi.org/10.1007/3-540-55602-8_217
http://dx.doi.org/10.1007/3-540-55602-8_217
http://dx.doi.org/10.1145/2584651
http://dx.doi.org/10.1145/1614390.1614394
http://dx.doi.org/10.1007/3-540-63475-4_4

G. Mauro, H. Thimbleby, A. Domeni& C. Bernardschi 13

&(p.g.69,V);, e=eAn=pAVEgQ
(n,v) = (q,Vv')
6(p.0,60,V);, e£evn#pVvVvig
(n,v) = (n,v)

arc

idle

Figure 6: Emucharts operational semantics.

corresponding transition in the diagram; more precisely,the valuation obtained by overriding
the previous valuation with the assignments in the actisoaated with the arc;

e a setQ of states of the formin,v), withne N andv e V;

e atransition relation» € Qx Q, defined by the semantic rules in Figlte 6, where the premises
contain an evend, an arc label, and a logical condition, and the consequer@sin a member
of the transition relation that is enabled if the conditiaids.

With the above definitions, the associated transition sysfeis the tuple Q,—, o), whereqp =
(g, Vo) is the initial state. Since the diagram is deterministizegia sequence of event occurrences
e, ...,&, ..., the transition system has only one sequential path. If antesannot fiect a state (either
it is not permitted or no guard prefixed by the event is sat}fithe system does not change state. The
operational semantics are given in Figure 6.

A.2 Transition system for the generated code

The generated functions are used within a more complexmystlich is responsible for catching events
at the real or simulated user interface and for calling tepeetive functions according to an appropriate
protocol: theinit function must have been called previously, then, when antéseatched, the permis-
sion function of the corresponding trigger is called, anly dfrit returns true can the respective transition
function be executed.

Assume that the data entry subsystem of the device is ctadrby a progran® that responds to
input events by calling the respective functions. Thesetfan will take the device to the next state.

Also the progranP can be modelled as a transition syst&mbased on the following sets, each
one being isomorphicx) to the corresponding set ih, or an extension to that sei) @ setNp = N of
node labels, each represented by an enumerator ofithe labetype inP; (ii) a setXp = Xc U {Xcurr} Of
variables, wher&. = X, each variable irX; represents a context field of teatestructure inP, andXcyr
represents theurr_nodeof the statestructure; i) a setVp = V.U Np of values, wheré/. = V; (iv) a
setEp = E of events, each one associated with one permission funatidrone transition function iR;
(v) a setGp = G of guards, each implemented as the condition af atatement ifP; (vi) a denumerable
setVp = V. UV, of valuations fromXp to Vp, whereV; =V andVy: {Xcurrs — Np; (Vii) a setAp = A
of arcs, where each arc has the fovp(¥curr), Vi (Xeurr), € 9, V), and each arc representsifustatement
in the transition function for everg having guardg as its condition and valuationl = v;, UV, as its
controlled statement, witlf, implemented by thenterfunction andv; by the assignments specified in
the Emucharts diagram.

With the above definitions, |&)p be a set of states where each state is a@ajc), with v, € Vp,,

V¢ € Ve. The transition relationi C Qp x Qp is defined by the semantic rules in figlide 7 applied to
elements of the above sets, and implemented by the permiggictions, which check for each event
e if the conditionvy(Xcurr) = p holds or not, and by the transition functions, which chechéd current
values of the variables satisfy the guards, and update nodlevariables accordingly. The associated

14 MISRA C code generation

, €,(P.0,€0,V.); €=€AVn(Xeur) = PAVCEQ
P
<Vn,Vc> — <q,V,>
, €,(P.0,€0,Vy); €#eVVn(Xeur) # PV Ve Q

(VnaVe) — (N, Vo)

arc

idle

Figure 7: Generated code operational semantics.

transition systenp is the tuple Qp,—P>,qP0), wheregpg is the state defined by the initial values»gfi
and of the context variables, set by thé function. The operational semantics are given in Big. 7.

A.3 Equivalence of the transition systems

To prove the correctness of the generated code, we introthecelefinition of equivalence between
Emucharts states and the program states.

Definition 1. A member m of one of the sets N,¥,E, defined in T, is equivalent) to the member
mp paired to m by the isomorphism between the set containingchtrencorresponding set inpT
Definition 2. A state o= (n,Vv), g€ Q, is equivalent<{) to a state @ = (Vn,Vc), gp € Qp iff N ~ Vn(Xcurr) —
so the value of % is equivalent to node n, and.xVv(x) = vc(Xp) (i.e., matching variables in g and:q
have the same values).

The proof of correctness for the generated code is by inoluain the length of computation. We
assume thal and Tp are the transition systems modelling, respectively, an ¢haris diagram and
a program that uses the generated code, respecting theuskvintroduced protocol, and accepts a
sequence of input events.

Theorem 1.Let T and F be the transition systems introduced in the above paragraphd e= e1,6;...
be a sequence of input event sequencesol=etp,q:,... andop = gpo, gp1, ... be sequences of states,
With — A1) and thi—Gps1)
We prove that, at each step of the computatmpn; gp;:
Induction base. gg ~ gpg by construction.

Induction step. Letq; ~ gp; at stepj. On the occurrence of an evaxtietq; — qj.1) andquiqp(m).
We can prove thaf|j.1) ~ Op(j+1) by case analysis: (I not permitted ing;; (2) e permitted and guard
not satisfied; and (3 permitted and guard satisfied.
Case 1l:enot permitted. If the event is not permitted in the current state, rutds andidlep apply to
T andTp, respectively, so thay;.1) = d; anddp(j+1) = dpj, €quivalent by induction hypothesis. Recall
that the permission function fareturnsfalsein this case, and by hypothesis progr&oes not call
the corresponding transition function.
Case 2:e permitted and guard not satisfied Also in this case, ruleglle andidlep apply to the tran-
sition systems. Thdé statements if® check that the guard does not hold, and the respective dledtro
statements are not executed.
Case 3: e permitted and guard satisfied In this case, Rulearc andarcp apply to both transition
systems, therefore)(T moves from state|; = (n,v) to stateqj,1) = ("', V'), or (i) Tp moves from state
gpj = (Vn, Vc) t0 stategpj.1) = (Vp, Ve). Valuationv;, mapsxcur to a node label equivalent by definition to
n’, andv; maps the context variables p to values equivalent by definition to those assigned’ltp
the context variables im’.

The new states in the two transition systems are therefansagnt.

	Introduction
	Related work
	PVS, model-driven development and Emucharts
	PVS, the Prototype Verification System
	Model-driven development
	PVSio-web
	Emucharts

	From Emucharts to safe C
	Code generation

	Case study
	Mobile applications

	Conclusions
	Correctness of code generation
	Transition system for an Emucharts diagram
	Transition system for the generated code
	Equivalence of the transition systems

